
REDUCING WEB ATTACK SURFACE: MITIGATING SOCIAL ENGINEERING
AND CODE INJECTION THREATS

A Dissertation
Presented to

The Academic Faculty

By

Zheng Yang

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Georgia Institute of Technology

May 2025

© Zheng Yang 2025

REDUCING WEB ATTACK SURFACE: MITIGATING SOCIAL ENGINEERING
AND CODE INJECTION THREATS

Thesis committee:

Dr. Wenke Lee, Advisor
School of Cybersecurity and Privacy
Georgia Institute of Technology

Dr. Brendan Saltaformaggio, Co-Advisor
School of Cybersecurity and Privacy
Georgia Institute of Technology

Dr. Frank Li
School of Cybersecurity and Privacy
Georgia Institute of Technology

Dr. Roberto Perdisci
School of Computer Science
University of Georgia

Dr. Saman Sonouz
School of Cybersecurity and Privacy
Georgia Institute of Technology

Dr. Cormac Herley
Senior Principle Researcher
Microsoft Research

Date approved: March 24, 2025

I dedicate this dissertation to my dearest wife, Wan Qin. Your unwavering faith, boundless

love, and steadfast encouragement have been my greatest sources of strength throughout

this journey. Your belief in me never wavered, even in the most challenging moments, and

for that, I am endlessly grateful. This work stands as a testament to your support and

devotion–without you, it would not have been possible.

ACKNOWLEDGMENTS

First, I would like to express my deepest gratitude to my advisor, Dr. Wenke Lee, for his

unwavering guidance and support throughout my doctoral journey. His patience, insightful

critiques, and invaluable discussions have not only shaped this dissertation but have also

profoundly influenced my growth as a researcher. I am truly grateful for his mentorship,

which has been instrumental in my academic and professional development.

I am also immensely thankful to my co-advisor, Dr. Brendan Saltaformaggio, whose

mentorship has significantly enhanced my ability to write and present research effectively.

His keen insights and constructive feedback have helped refine my ideas and make my

research more compelling.

I extend my sincere appreciation to my thesis committee members, Dr. Roberto

Perdisci, Dr. Saman Zonouz, Dr. Frank Li, and Dr. Cormac Herley, for their valuable

input and contributions. Their diverse expertise and thorough evaluations have greatly

strengthened the quality of my work. I am especially grateful to Dr. Roberto Perdisci for

his inspiration, wisdom, and guidance. His deep understanding and passion for research

have been a source of motivation and have profoundly influenced my academic journey.

I am also deeply indebted to my colleagues, including Dr. Joey Allen, Dr. Simon

Chung, Dr. Feng Xiao, Jizhou Chen, Runze Zhang, and many others. Their collaboration,

shared wisdom, and unwavering support have been indispensable in bringing this work to

fruition. The countless discussions, brainstorming sessions, and shared experiences in the

lab have been both intellectually enriching and personally memorable.

Finally, this journey would not have been possible without the collective support,

guidance, and encouragement of these extraordinary individuals. I feel truly privileged to

have worked with and learned from them. My deepest appreciation goes to each of

them—not only for their contributions to this dissertation but also for their role in shaping

my intellectual and personal growth.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . ix

List of Figures . x

Summary . xii

Chapter 1: Introduction . 1

1.1 Problem Statement . 2

1.2 Thesis Contributions . 3

Chapter 2: Literature Survey . 5

2.1 Web-based Social Engineering Attacks . 5

2.2 Code Injection Attacks In The Web Ecosystem 9

Chapter 3: Trident: Towards detecting and mitigating web-based social
engineering attacks . 14

3.1 Introduction . 14

3.2 A Motivating Example & Challenges . 17

3.2.1 A Motivating Example . 17

3.3 Design . 20

v

3.3.1 Overview . 20

3.3.2 Web Action History Graph . 21

3.3.3 Social-Engineering Agent . 23

3.3.4 WAHG Construction . 24

3.3.5 Feature Extraction . 25

3.3.6 Blocking SE-ads related Navigation 28

3.4 Evaluation . 29

3.4.1 Experiment Setup . 29

3.4.2 Ground Truth & Dataset Cleaning 30

3.4.3 TRIDENT Performance . 32

3.4.4 Feature Importance and Robustness 35

3.4.5 Comparison to State-of-The-Art Systems 37

3.4.6 Runtime Overhead . 40

3.5 Discussions . 42

3.5.1 Limitations . 42

3.5.2 Ethical Considerations . 42

Chapter 4: CoInDef: A Comprehensive Code Injection Defense for the Electron
Framework . 48

4.1 Introduction . 48

4.2 Background & Challenges . 50

4.2.1 A Motivating Example . 52

4.2.2 Challenges . 53

4.3 Design . 54

vi

4.3.1 Threat Model & Assumptions . 54

4.3.2 Design Overview . 54

4.3.3 AST Profile . 55

4.3.4 AST Profile Collection . 60

4.3.5 Runtime Enforcement . 61

4.3.6 Security Analysis . 63

4.3.7 Implementation . 66

4.4 Evaluation . 67

4.4.1 Effectiveness . 70

4.4.2 Runtime Overhead . 77

4.4.3 Comparison To State-of-The-Art 79

4.5 Discussions . 83

Chapter 5: CoInDx: Code Injection Diagnosis for JavaScript via Iterative
Symbolic Analysis on Subprograms 85

5.1 Introduction . 85

5.2 Background & Challenges . 88

5.2.1 Code Injection in JavaScript Apps 88

5.2.2 A Real-World Example . 89

5.2.3 Challenges . 91

5.2.4 Assumptions . 92

5.3 Design . 92

5.3.1 Design Overview . 93

5.3.2 Stack Trace Recovery . 94

vii

5.3.3 Program Recomposition . 95

5.3.4 Iterative Symbolic Analysis . 97

5.3.5 Root Cause Analysis . 99

5.3.6 Implementation . 101

5.4 Evaluation . 103

5.4.1 Accuracy on SecBench.js . 104

5.4.2 Locating Real-World Exploits . 106

5.4.3 Overhead . 108

5.4.4 Case Study: Investigating CVE-2024-4367 110

5.5 Discussion . 112

Chapter 6: Conclusion . 115

References . 116

viii

LIST OF TABLES

3.1 WAHG Objects, Relationships, and Key attributes. 22

3.2 Instrument Hooks to Construct WAHG. 24

3.3 Feature Groups Used by TRIDENT. 26

3.4 Navigation Events Made by Scripts in The Training Dataset. 29

3.5 Model Performance with Different Approaches of Under-sampling the
Majority Class. 32

3.6 Evasion Rates by Altering Key Feature Values. 37

3.7 TRIDENT Compared With State-of-the-art Solutions. 40

4.1 Data Nodes for AST Structural Signature. 56

4.2 A Diverse Set of Applications Vulnerable to Code Injection and RCE Attacks. 69

4.3 AST Profiles Collected in the Learning Phase. 73

4.4 Effectiveness of COINDEF under Enforcement. 74

4.5 Runtime Overhead During User Interaction. 78

4.6 COINDEF Compared With the State-of-The-Art. 79

5.1 Performance of COINDX on SecBench.js. 105

5.2 Performance of COINDX on Real World Applications. 106

5.3 Overhead COINDX Incurs to Benchmark Applications. 109

ix

LIST OF FIGURES

3.1 Example SE-ads: (a) An invisible link covering the whole viewport to force
users to click; (b) Deceptive elements (fake notification, ”Play” and ”Skip
Ad” buttons) to lure users into interacting with them. 16

3.2 Motivating Example: 1⃝ Alice typed “free movies” in Google Search. 2⃝
Alice clicked on the fourth result. 3⃝ Alice wanted to search for “Spider-
Man: No Way Home”, so she clicked the input box to start typing. 4⃝ Alice
found the movie and clicked the play button. 5⃝ Alice was annoyed by the
ads and clicked “Skip Ads”. 6⃝ The movie finally played, and an in-page
notification ward Alice that viruses had infected her Mac. 3⃝, 4⃝, 5⃝, and
6⃝ are SE-ads. They are invisible elements, fake buttons, or in-page push

notifications. 18

3.3 Script Snippets Comparison Between Google Ads and AdSterra. 44

3.4 TRIDENT Design Overview. 45

3.5 WAHG Example of The Motivating Example. 45

3.6 TRIDENT Attributes The Responsible JavaScript Function That Initiates
The Navigation. The functions in the pink elliptical are accountable for
SE-ads. 45

3.7 Feature Importance of Different Combinations of Feature Groups. 46

3.8 Runtime Performance. 47

4.1 The Process Models of Electron. 50

4.2 A Real-world Motivating Example. 52

4.3 COINDEF Design Overview. 55

x

4.4 AST Structural Signatures of Legitimate and Malicious Code. An example
taken from eval(cl.‘${color}()‘) [99] shows that code injection
alters the AST structural signature. 58

4.5 An AST Profile Example. 59

4.6 AST Profile Hooks Implementation. 67

4.7 The False Positive Example Observed on Discord. Although the “In-App
View” video player is disabled, the user can still click the link to open the
video using a browser. 76

4.8 The Detailed Attack Chain on Discord. 81

5.1 A Real-World Example of Exploiting CVE-2024-4367 [126]. The code is
simplified for brevity. 88

5.2 COINDX Workflow Overview. 93

5.3 Tracking Event Activities for Stack Trace Recovery. 94

5.4 The Composer Extracts Source Code and Creates A Symbolized New
Program. 96

xi

SUMMARY

The web ecosystem has become an essential platform for communication, business, and

entertainment, yet it remains highly vulnerable to various forms of injection-based cyber

threats. These include not only technical exploits like code injection attacks, but also social

engineering threats that inject misleading content, invisible overlays, or malicious scripts

to deceive users and compromise web applications. While existing security solutions tend

to focus narrowly on either system hardening or user education, they often fall short in

mitigating the increasingly sophisticated and blended attack techniques seen in the wild.

This dissertation presents a unified, multi-layered defense strategy against such

injection-based threats through the design and implementation of three novel security

mechanisms: TRIDENT, COINDEF, and COINDX. Each system targets a different class of

attack vector and collectively contributes to a reduced attack surface for both end-users

and developers.

We first introduce TRIDENT, a browser-based defense system that detects and blocks

social engineering attacks distributed through low-tier ad networks. By analyzing ad script

behaviors, TRIDENT identifies and mitigates deceptive content injected to ad publisher

websites that lead users to social engineering websites. Then, we propose COINDEF, a

customized Electron engine designed to prevent code injection attacks by enforcing

execution policies. Unlike traditional XSS mitigation strategies that focus on browser

isolation, COINDEF ensures that only trusted code executes within the Electron

environment by validating the structural integrity of JavaScript’s abstract syntax tree and

execution context. Last, we present COINDX, a root cause analysis framework for code

injection attacks in JavaScript applications. Given the complexity of JavaScript and its

dynamic dependencies, traditional vulnerability detection methods struggle with state

explosion or accuracy. COINDX addresses this by constructing a simplified program

based on call stack traces and applying iterative symbolic analysis to reproduce the

xii

vulnerable state and pinpoint the root cause.

By integrating these three systems, this dissertation advances web security through a

proactive and automated defense model. Rather than reacting to known signatures or

relying solely on user awareness, the proposed framework reduces the attack surface by

preventing both social and technical injections before they can succeed. TRIDENT limits

user exposure to deceptive web content, COINDEF safeguards execution environments in

hybrid applications, and COINDX provides developers with precise tools for vulnerability

remediation.

Ultimately, this research underscores the importance of a holistic approach to web

security–one that recognizes the convergence of social and technical vectors under the

broader category of injection attacks. The solutions presented here contribute to a more

resilient web ecosystem by bridging the gap between content-level, runtime, and

developer-facing defenses.

xiii

CHAPTER 1

INTRODUCTION

The modern web ecosystem is a cornerstone of digital communication, commerce, and

information exchange. However, its vast interconnectedness and reliance on user

interactions make it a prime target for cyber threats. Among these, injection

attacks—whether exploiting technical vulnerabilities or user behavior—pose a significant

challenge to web security.

Injection attacks that target human behavior often rely on social engineering

techniques to deceive users into revealing sensitive information, clicking on harmful links,

or performing unintended actions. These include phishing, impersonation scams, and

misleading pop-ups that exploit psychological triggers such as trust, urgency, or fear. As

web applications become more pervasive, adversaries increasingly inject deceptive

content via email, social media, or compromised websites to manipulate user behavior.

Malvertising (malicious advertising) further complicates the landscape by embedding

psychological lures within technically legitimate platforms.

On the technical front, code injection attacks exploit flaws in web applications to

insert and execute unauthorized code. Common types include Cross-Site Scripting (XSS),

SQL Injection (SQLi), and Remote Code Execution (RCE), which can be used to

exfiltrate data, hijack sessions, or alter application behavior. These attacks not only

compromise the integrity of web applications but also often serve as delivery mechanisms

for content designed to mislead or coerce users.

The convergence of these attack vectors—psychological and technical—has led to

increasingly sophisticated threats. Adversaries may use code injection to present fake

login interfaces, deceptive overlays, or malicious advertisements that facilitate social

engineering tactics. This hybrid threat model underscores the dual nature of modern

1

injection attacks, where both systems and users are targets of exploitation.

1.1 Problem Statement

Prior research in web security has yielded numerous techniques for addressing specific

classes of threats. On the technical side, approaches such as input sanitization, content

security policies (CSP), web application firewalls (WAFs), and static/dynamic analysis

tools have been developed to mitigate code injection attacks like cross-site scripting (XSS)

and HTML injection. While effective in constrained contexts, these solutions often rely on

precise configurations, are bypassed by obfuscation or dynamic code execution, and

typically operate without awareness of the broader user interface or behavioral context in

which the attack occurs.

Conversely, social engineering defenses have largely focused on user education,

phishing detection, or heuristic-based classification of suspicious websites and emails.

These approaches struggle with high false positive/negative rates and assume users can

make security-critical decisions with limited context. Moreover, attackers increasingly

employ social engineering content that mimics benign UI elements and/or misuses

third-party web infrastructure (e.g., ad networks, embedded widgets) to deliver malicious

payloads–effectively bridging the gap between social and technical layers of exploitation.

Despite these advances, existing defenses are disjoint. They either treat code injection

as a purely syntactic problem or treat deceptive injected content as a user perception issue,

overlooking the fact that many modern attacks operate at the intersection of both. For

example, clickjacking and fake browser dialogs exploit UI overlays (social engineering)

while enabling script execution (technical exploitation). Similarly, low-tier ad networks

often deliver payloads that deceive users and trigger code execution, bypassing traditional

threat models.

A key limitation in existing solutions is the lack of an integrated defense strategy that

proactively reduces the attack surface across both user-facing and system-level vectors.

2

That is, there is a gap in systematic defenses that address both social engineering injections

(e.g., deceptive overlays, misleading scripts) and code injection vulnerabilities within web

applications.

This fragmentation in the defense landscape creates blind spots that attackers can

exploit. To date, there is no unified framework that systematically mitigates both social

engineering content and code injection attacks by treating them as related manifestations

of injection-based threats. Addressing this gap is crucial for building resilient web

applications in an ecosystem where trust boundaries are fluid, attacker techniques are

blended, and the line between human and machine-level compromise is increasingly

blurred.

1.2 Thesis Contributions

To address these challenges, this thesis proposes a multi-layered defense strategy aimed

at reducing the web attack surface by hardening the critical bridge to the Internet – the

browser engine. The browser is the primary interface between users and the web, allowing

users to surf the Internet without installing applications locally. However, such capability

also intrigues adversaries to abuse the browser’s functionalities by distributing malicious

content and compromising the users. Since most social engineering and code injection

attacks exploit browser-based interactions, strengthening the browser’s security is critical

for reducing the attack surface.

In chapter 3, we first present TRIDENT, a customized browser designed to detect and

block social engineering attacks that are distributed at scale through low-tier ad networks.

Our research reveals that adversaries leverage these ad networks to attract a large number

of users to social engineering websites for monetization. TRIDENT indirectly identifies and

mitigates social engineering threats by analyzing the behavior of ad scripts.

Next, in chapter 4, we present COINDEF, a security-enhanced Electron engine

designed to defend against code injection attacks. Traditional XSS attacks on websites are

3

typically confined to the browser, limiting their impact. However, Electron’s architecture

fuses web and native environments, significantly amplifying the power of XSS attacks.

COINDEF enforces strict execution policies by validating the structural integrity of the

abstract syntax tree and the execution context, thereby preventing unauthorized code

injection in a comprehensive manner.

Finally, in chapter 5, we introduce COINDX, a framework for conducting root cause

analysis of code injection attacks on JavaScript applications to help developers remediate

vulnerabilities. Analyzing JavaScript applications is particularly challenging due to the

dynamic nature of JavaScript and its complex dependencies. COINDX takes an innovative

approach by constructing a simplified program based on a call stack trace generated by

security alerts. It then applies iterative symbolic analysis on this simplified program to

accurately reproduce the vulnerable program state, effectively avoiding state explosion and

pinpointing the root cause of the vulnerability.

Collectively, TRIDENT, COINDEF, and COINDX contribute to attack surface

reduction by proactively identifying, preventing, and analyzing hybrid cyber threats.

TRIDENT reduces exposure to social engineering threats by detecting malicious

advertisements before users can interact with them. COINDEF mitigates the risks posed

by code injection in Electron applications by restricting unauthorized code execution at

the engine level. COINDX strengthens web security by providing developers with precise

root cause analysis, enabling them to remediate vulnerabilities efficiently. By integrating

these three technologies, this thesis aims to minimize the exploitable entry points within

the web ecosystem, thereby significantly reducing the attack surface for users and

developers alike.

4

CHAPTER 2

LITERATURE SURVEY

This chapter presents the literature survey for the risks of social engineering attacks and

code injection attacks in the web ecosystem, along with the countermeasures.

2.1 Web-based Social Engineering Attacks

Miramirkhani et al. [1] analyzed how tech support scams were distributed through

advertising networks. Kharraz et al. built Surveylance [2], which is specifically designed

to detect survey scams. Invernizzi et al. developed EvilSeed [3], a crawler that searches

the Internet to identify risky websites that install unwanted software. Vadrevu and

Perdisci [4] use visual clustering and heuristics to identify SE attack campaigns at the

landing page level, which is done offline and does not focus on detecting SE-ads. These

have studied web-based SE attacks through malicious advertising, and they either focus on

detecting specific web SE attack vectors or lack a defensive method towards their findings.

Rafique et al. [5] built a classifier to identify Free Live Streaming online services. They

found those free streaming players often had overlay ads, e.g., fake play buttons or fake

close ads buttons, that were particularly designed to fit the flash player element. From

their measurement, there are 5-6 overlays present on the video players. Furthermore, 93%

of the video players are put under the overlays, which cover 90% area of the player. On

average, a click on an overlay ad has a 50% chance of taking the visiting user to a malicious

website. Though this study was done in 2015 and flash player has been depreciated since

then, the same strategies are still widely used by the lower tier ad network [4]. The website

stream2watch.com and its sister sites reported in this study are still active nowadays and

accommodate millions of visits per month 1. This work discovers that ads injected on free

1Traffic data is obtained from https://www.similarweb.com/website/stream2watch.sx

5

streaming websites may deliver malicious content, but it does not provide any defensive

methods to protect users.

Zheng et al. [6] instrumented Chromium to measure the click interceptions on the

Alexa top 250K websites. A click interception occurs when, for example, a user clicks on

an HTML element to open example.com, but opens suspicious.com instead. An injected

third-party script can easily achieve this goal by modifying an anchor tag’s href

attribute, registering event handlers that listen to mouse clicks and use window.open to

open a new page, or putting visual deception elements to lure a user into clicking. The

authors created a crawler to click every element on a website to trigger navigation and

note down the destination URL in May 2018. The result reveals that 624 websites use

different techniques to intercept clicks. The total visits to those websites, according to

Similar Web API, were 43.3M per day, which is almost 70k per day per website on

average. This vast traffic essentially increases the chance of getting baited by regular

users. This work discusses the fundamental techniques adversaries can use to intercept

users’ clicks. Unfortunately, it also lacks a systematic way to detect their proposed

harmful intercepts. The issues they found are still not addressed. For example, the authors

gave an example website that included a malicious script in Figure 1(b). This script

belongs to the AdSterra ad network. This ad network created more than 500 domains to

serve its ads, leading to 7,644 social engineering websites in the study of [4]. Based on

our datasets, AdSterra is still distributing such malicious scripts to its publishers to

mislead end users.

Sanchez-Rola et al. [7] present the first comprehensive study of user clicks’ possible

security and privacy implications. This study proposes a click “Contract”, which means

what a user click is what the user should finally see. Nonetheless, after crawling 100k

websites from Alexa Top domains and domains offering free content, roughly 20% of the

websites contain an invisible overlay that intercepts users’ clicks; moreover, 10% of all

websites redirect the user to a completely different third-party domain. In addition, about

6

80% of websites mislead the users by reporting incorrect href attribute of links. Even

worse, 45% of these link point to third-party domains. Finally, they reported that 65% of

those websites have fake local clicks setup, which means the websites serve elements that

should not be clickable but registered with event listeners to capture users’ clicks.

These studies have shown that users often reach Social Engineering Websites

(SE-websites) by interacting with malicious ads. More specifically, attackers are inclined

to leverage low-tier ad networks to inject ads into many different publisher websites and

use these ads to lure users to their SE-websites so that various attacks such as lottery

scams, reward scams, tech support scams, etc., can be launched. Importantly, these

low-tier ad networks often do not inject traditional ads onto the page. Instead, they inject

Document Object Model (DOM) elements into ad-publishing web pages and leverage

different social engineering tricks to lure users into clicking these elements to trigger ad

network-driven navigation to a WSEA page. For instance, the ad network may inject a

transparent overlay covering the entire publisher page and listen to users’ clicks on any

portion of the page. We refer to these non-traditional ads that leverage various SE tricks to

lure users’ clicks as Social Engineering Ads (SE-ads).

Clickjacking. Clickjacking is a UI redressing attack that uses multiple transparent or

opaque layers to trick users into clicking on third-party content to bypass the same-origin

policy [8]. The underlying motivation of this attack is to steal clicks on the first-party

website to achieve specific actions on the third-party website the user has logged in, for

example, making a financial transaction or clicking a “like” button on a social platform.

Often, these third-party contents are loaded in iframes by malicious scripts.

Framebusting [9] is a good defense against clickjacking. However, it degrades the user

experience on websites that require cross-origin iframes, and the implementation

inconsistencies are concerning [10]. Previous works [11, 12] rely on the users to verify

what they have clicked, which is not comprehensive and has usability concerns [13].

Although clicks initiate most web-based social engineering attacks, they are not

7

traditional clickjacking attacks. However, both attacks may use the same techniques

nowadays.

Ad blocking. Generic ad blockers are efficient at blocking unwanted resources. However,

they suffer from incompleteness and are accessible to evade [4, 14]. More advanced ad

blockers [15, 16, 17, 18] employ ML techniques to complement the generic ad blockers.

Unfortunately, they are not trained to detect SE-ads and block the subsequent events

triggered by interacting with those SE-ads.

Din et al. [17] proposed PERCIVAL, a deep learning model put inside the image

rendering pipeline of Chromium browser to classify images that are about to be rendered

on the screen. Percival first collect images from Alexa top 1k websites and then label

those images by comparing their URL with the EasyList. Percival achieves an accuracy of

96.76%. This tool classifies ads by the ad images. However, the DOM elements that

intercept users’ clicks do not render visible images, which can evade Percival easily.

Iqbal et al. [15] created a system, ADGRAPH, to detect ads and trackers using features

extracted from a page’s network activities. ADGRAPH leverage two sets of features:

structural features contain the information of what kind of scripts initiate what network

requests, e.g., is the script from eval?, is it a third party script?, the connectivity of the

nodes, etc.; content features which express what those network requests are like, e.g., do

they contain ad keywords?, what domain party it is?, what is the length of the URL? etc.

Then ADGRAPH determines whether to block a network request by examining these

features. This model outperforms the existing filter lists and can correctly distinguish

benign ad/tracker resources blocked by filter lists. Siby et al. developed WEBGRAPH [18]

to improve the robustness of ADGRAPH by removing the content features and adding a

network, storage, and shared information flows.

ADGRAPH is tailored to block traditional online ads and trackers. Those SE-ads, such

as fake buttons, overlays, and event listeners, can easily evade ADGRAPH due to their

NON-AD nature. Creating those elements does not require any network requests except

8

the first one to load the script, which can evade them by tweaking its URL a little, such as

removing AD keywords and shortening its length. Therefore, ADGRAPH, serving for

blocking general ads, will not work perfectly for those “fake” or “malicious” ads.

WEBGRAPH [18] is an improved version of ADGRAPH tracking information flow by

collecting more network activities. Such improvement does not capture the features

demonstrated by SE-ads.

Browser Data Provenance.

Browser data provenance represents activities when visiting a website as a directed

acyclic graph (DAG) that describes information flow between DOM objects (e.g., a

JavaScript function registering a listener on a button). DAG of a browsing session can

provide important insights into what a script does to the page in real-time. When a

sensitive event occurs, for example, a new browser tab is created, the graph allows us to

backtrack which script is responsible for the new tab.

JSGRAPH [19] instruments Chromium to log interesting DOM APIs to build a graph

for forensic analysis offline. MNEMOSYNE [20] builds a provenance graph by leveraging

the existing APIs in Chrome Devtool Protocol (CDP). PAGEGRAPH [16], as the successor

of ADGRAPH [15], instruments the browser and expose its API through CDP, which sends

a completed page graph when the web page emits unload event. These tools are

efficient. Nonetheless, they are either for offline use or lack essential information

concerning relationships between tabs.

2.2 Code Injection Attacks In The Web Ecosystem

Web Applications. Web applications are prone to Cross-Site Scripting (XSS) attacks,

including Stored, Reflected, and DOM-based XSS. Stored XSS persists on the server and

executes whenever users access the affected page. Reflected XSS occurs when input is

immediately reflected in the response, while DOM-based XSS exploits client-side

JavaScript to modify the DOM and execute scripts. XSS can lead to session hijacking,

9

data theft, and unauthorized actions. Vulnerabilities arise due to improper input validation,

unsafe functions like innerHTML, and lack of a content security policy (CSP). Third-party

scripts and misconfigurations increase the risk. These inputs usually come from user input

fields (e.g., comments, search bars), query parameters, and dynamic content rendering.

Client-side JavaScript manipulation and external scripts expand the attack surface.

Node.js Applications. Node.js applications are vulnerable to Command Injection and

Prototype Pollution, which is the goal of code injection in the native environment.

Command injection allows attackers to execute system commands through unsanitized

input in functions like child process.exec(). Prototype pollution enables

malicious manipulation of object prototypes, affecting application behavior globally.

Vulnerabilities occur due to unsafe command execution, dynamic JavaScript properties,

and reliance on third-party libraries. Poor input validation and outdated packages increase

exposure to these risks. Attack surfaces include API endpoints that execute system

commands, functions interacting with the filesystem, and JSON payloads in HTTP

requests. Prototype pollution often targets libraries that extend or merge objects, like

lodash.

Electron Applications. Electron apps combine Web and Node.js environments, exposing

them to Remote Code Execution (RCE), XSS, and Insecure IPC. RCE can occur when

nodeIntegration is enabled (e.g., through open-redirect to open a new window),

allowing malicious scripts to execute Node.js commands. XSS in Electron escalates into

RCE, while insecure IPC communication can lead to privilege escalation. Vulnerabilities

arise from misconfigurations like enabling nodeIntegration, loading untrusted

sources with loadURL(), and failing to use contextIsolation. Improper

validation of IPC messages further increases the attack surface. Attack surfaces include

untrusted web content, input fields in web views, and poorly implemented IPC channels.

When nodeIntegration is enabled, injected scripts gain full access to Node.js,

leading to system compromise. Recent studies highlight the security risks in applications

10

built on the Electron framework. Xiao et al. [21] showed how shared contexts in Electron

could escalate XSS attacks to severe RCE incidents. They developed XGUARD to prevent

RCE, but it addresses only the symptoms, not the root cause of code injection attacks. Jin

et al. [22] studied vulnerabilities in the UI components of Electron applications, proposing

DOMTYPING to enforce DOM integrity, which effectively prevents code injection through

DOM modifications but doesn’t address dynamic code execution or open-redirect issues.

Ali et al. introduced INSPECTRON [23], designed to identify misconfigurations in Electron

applications. However, even with proper configurations, attackers can exploit Electron

vulnerabilities [24] to gain privileged access.

Code Injection Mitigation. Security researchers have extensively studied code injection

vulnerabilities in the web ecosystem over the past decade. Prior solutions, such as

dynamic taint analysis [25, 26, 27, 28], achieve effective mitigation by instrumenting the

browser engine to track data flows. However, these approaches often incur significant

runtime overhead and are challenging to maintain due to the frequency of browser

updates. Other efforts [29, 30], attempt to replace the dangerous eval with “safe” eval

by modifying the way to invoke eval. While useful, this approach does not extend well

to the Electron framework due to its broad attack surface and lacks tamper-resistance as

they are in the same privilege layer as attackers for Electron applications. Additionally,

whitelist-based solutions [31, 32, 33] enforce AST integrity to prevent web-based code

injection, but they enforce policies before scripts are parsed, incurring high runtime

overhead. These methods also lack the execution context needed to counter mimicry

attacks in Electron applications, limiting their effectiveness in complex cross-environment

applications.

Program Analysis Techniques for JavaScript. Various program analysis techniques

have been developed to analyze JavaScript programs and uncover vulnerabilities.

Symbolic analysis-based solutions [34, 35, 36, 37] are commonly employed to detect

prototype pollution vulnerabilities by examining possible object inheritance issues and

11

property changes. Dynamic analysis-based methods [38, 19, 20, 39, 40] focus on

instrumenting the browser engine to gather runtime traces of JavaScript code, providing

insights into potential vulnerabilities through behavior tracking. Although these

techniques are effective for analyzing JavaScript behavior in traditional web

environments, they cannot be directly applied to Electron applications for defending

against code injection, due to the unique attack surfaces and shared contexts present in

these hybrid applications.

Root Cause Analysis for JavaScript. RCA has been widely explored for binary

programs but remains underdeveloped for JavaScript applications. Existing RCA

frameworks such as ARCUS [41] and BunkerBuster [42] leverage symbolic execution and

constraint solving to trace exploit origins in compiled binaries. However, these techniques

are not applicable to JavaScript due to its semantic gap. For JavaScript applications, prior

research has primarily focused on execution monitoring rather than RCA. PMForce [43]

systematically analyzes postMessage handlers to detect security violations in client-side

JavaScript. SilentSpring [44] explores prototype pollution vulnerabilities in Node.js

applications by analyzing object dependency graphs. While these works contribute to

understanding JavaScript security, they do not perform iterative symbolic analysis on

reconstructed execution traces as COINDX does.

Symbolic Execution for JavaScript. Symbolic execution has been successfully applied

to detect JavaScript vulnerabilities, but existing tools are not designed for root cause

analysis. ExpoSE [45] is a symbolic execution engine for JavaScript that efficiently

explores execution paths by symbolizing input-dependent variables. NodeMedic [46]

extends symbolic execution to analyze security flaws in the Node.js ecosystem. However,

these approaches are limited to bug detection and do not attempt to reconstruct execution

traces for RCA.

COINDX builds upon symbolic execution by introducing iterative symbolic analysis,

allowing it to refine and resolve symbolized undefined functions and variables. Unlike

12

previous work, COINDX operates on simplified subprograms reconstructed from call stack

traces, reducing state explosion and enabling more precise vulnerability diagnosis.

JavaScript Event Tracing and Instrumentation. Event tracing and instrumentation have

been widely used to monitor JavaScript execution for various purposes, such as

performance profiling and debugging. Chrome DevTools [47] provides a built-in tracing

tool to capture and analyze JavaScript execution events. SYNODE proxies eval and

exec functions to trace untrusted input flows in Node.js applications. COINDX leverages

event tracing to capture execution events and reconstruct call stack traces for RCA.

13

CHAPTER 3

TRIDENT: TOWARDS DETECTING AND MITIGATING WEB-BASED SOCIAL

ENGINEERING ATTACKS

3.1 Introduction

Social Engineering (SE) has become an ever more sophisticated and common attack

method [48]. Recent surveys report that 84% of hackers leverage Web-based Social

Engineering Attacks (WSEAs) in the cyber kill chain with a high success rate [49, 50, 51].

Moreover, 64% of companies have experienced web-based attacks, and 62% have seen

phishing and WSEAs [52]. Attackers also target regular Internet users. The Federal Trade

Commission received 2.8 million fraud reports from consumers in 2021 in the United

States, which led to a $5.8 billion financial loss [53]. The top 3 fraud categories –

impostor scams (e.g., romance scams and tech support scams), online shopping scams,

and reward and prize scams (e.g., survey scams) – are commonly seen on the Internet [1,

2, 4, 14]. These scams account for $2.3 billion of losses, which almost doubled from

2020.

To mitigate the impact of WSEAs, researchers have been studying and developing

countermeasures. For example, Miramirkhani et al. analyzed tech support scams [1],

Kharraz et al. built Surveylance [2], which is specifically designed to detect survey scams,

and Invernizzi et al. developed EvilSeed [3], a crawler that searches the Internet to identify

risky websites that install unwanted software. However, these previous works only focus

on specific SE attack vectors. Because of the diversity of WSEAs that users can

encounter [48], there is an urgent need for new and more effective in-browser defense

systems that can accurately detect generic WSEAs.

This chapter proposes a new defense system that aims to detect and block generic

14

WSEAs in real-time, while the user is browsing the web.

The main challenge we face is that directly detecting malicious web pages related to

WSEAs is extremely difficult due to the large variety of social engineering tactics attackers

can employ and the freedom they have in building malicious content. Therefore, in this

work, we investigate how to indirectly detect and block WSEAs at their inception before

the user interacts with the related scam content.

Recent works have shown that users often reach Social Engineering Websites

(SE-websites) by interacting with malicious ads [5, 6, 54, 2, 1, 55, 56, 4]. More

specifically, attackers are inclined to leverage low-tier ad networks to inject ads into many

different publisher websites and use these ads to lure users to their SE-websites so that

various attacks such as lottery scams, reward scams, tech support scams, etc., can be

launched. Importantly, these low-tier ad networks often do not inject traditional ads onto

the page. Instead, they inject DOM elements into ad-publishing web pages and leverage

different social engineering tricks to lure users into clicking these elements to trigger ad

network-driven navigation to a WSEA page. For instance, the ad network may inject a

transparent overlay covering the entire publisher page and listen to users’ clicks on any

portion of the page. We refer to these non-traditional ads that leverage various SE tricks to

lure users’ clicks as Social Engineering Ads (SE-ads).

As mentioned above, SE-ads are non-traditional ads. They are often invisible,

malicious ads that, when interacted with, navigate the browser to a landing page

containing SE attacks. A previous study [6] reported that attackers often leverage two

types of techniques (registering click event listeners and injecting invisible links shown in

Figure 3.1a) to deploy invisible malicious ads to steal users’ clicks. In addition, SE-ads

also appear as misleading in-page components, such as an in-page push notification or

fake ”Skip Ads” or ”Play” buttons, as illustrated in Figure 3.1b, to induce users to interact

with them. Given these features, we can see that SE-ads are not traditional ads, although

we still refer to them as ads because they are injected into a publisher page by ad

15

(a) (b)

Figure 3.1: Example SE-ads: (a) An invisible link covering the whole viewport to force
users to click; (b) Deceptive elements (fake notification, ”Play” and ”Skip Ad” buttons) to
lure users into interacting with them.

networks. Therefore, rather than attempting to detect WSEAs directly by analyzing their

contents and/or URLs related to the WSEAs, we focus on detecting their leading causes,

namely SE-ads.

Although most SE-ads come from ad networks, existing ad-blocking tools are not

effective in detecting SE-ads for two major reasons. First, the ads are not generally

visible, so ad-blocking tools such as Percival [17], which block ads through the image

rendering pipeline, cannot detect them. Second, the ad networks that distribute these

SE-ads are extremely motivated to evade ad blockers [4]. For example, in Table 3.7a and

Table 3.7b, we show that neither commercial ad blocker [57] nor the most recent

state-of-the-art ML-based ad-blocker [15] is effective against SE-ads.

To address the challenge of detecting SE-ads to mitigate WSEAs, we propose

TRIDENT – a novel system that detects SE-ads in real-time and blocks the subsequent

web-based social engineering attacks. To this end, TRIDENT develops an in-memory

graph representation of a web page and its activities, for example, registering event

listeners to intercept clicks, manipulating Document Object Model (DOM) to inject

deceptive elements shown in Figure 3.1, which we call the Web Action History Graph

16

(WAHG). During a user’s browsing session, TRIDENT uses the WAHG to protect users

from potential SE attacks that are launched through SE-ads in real-time. Specifically,

during a user’s browsing session, TRIDENT vets each navigation event to determine if it is

initiated by a SE-ad. When TRIDENT detects the navigation is related to a SE-ad, it

redirects the user to an interstitial page to make the user aware of the danger ahead.

To extensively evaluate TRIDENT, we crawled over 100K websites obtained from

October 2021 to January 2022, which allowed us to collect 258,008 unique JavaScript files

and their running contexts, including over 1,479 SE-ads. In our experimental evaluations,

we found that TRIDENT can detect SE-ads with an accuracy of 92.63% with a precision of

90.63%, and a recall of 96.28%, outperforming prior work [15] by more than 10%.

3.2 A Motivating Example & Challenges

In this section, we present a real-world example of SE-ads hosted on a high-ranking search

result from Google Search and discuss the limitations of prior, generic ad-blocking work.

3.2.1 A Motivating Example

In this section, we introduce a real-world motivating example that demonstrates exactly

how victims arrive on SE-websites by interacting with the SE-ads.Figure 3.2 gives a clear

description of how an ad network manipulates the users to interact with SE-ads by including

JavaScript (JavaScript) code into a content-sharing website, also known as an ad publisher.

Google Search Result Leads to SE Attacks. The attack begins on the popular Google

search engine where the victim, Alice, completes a Google search for the phrase, “free

movies”. Despite Google Search being one of the most highly-respected search engines, it

still struggles to filter out websites that include malicious content from the top results of the

search. For instance, at the time of writing, Google Search returns an illegal movie sharing

website (ww.movies123.sbs) in the top 4 results for the query “free movies”. As a result,

Alice is unfortunately supplied with a mixture of benign and malicious search results. As

17

6

4

5

3

1

2

Figure 3.2: Motivating Example: 1⃝ Alice typed “free movies” in Google Search. 2⃝ Alice
clicked on the fourth result. 3⃝ Alice wanted to search for “Spider-Man: No Way Home”,
so she clicked the input box to start typing. 4⃝ Alice found the movie and clicked the
play button. 5⃝ Alice was annoyed by the ads and clicked “Skip Ads”. 6⃝ The movie
finally played, and an in-page notification ward Alice that viruses had infected her Mac.
3⃝, 4⃝, 5⃝, and 6⃝ are SE-ads. They are invisible elements, fake buttons, or in-page push

notifications.

this is one of the top results, many users may click on the link to ww.movies123.sbs.

At first glance, this website appears innocuous while also providing a diverse selection

of popular, well-known movies. However, under the hood, ww.movies123.sbs includes

scripts obtained from low-tier ad networks that have one goal in mind: to trick visitors

into clicking on the SE-ads these scripts so they can make money from their malicious

activity. Looking at Figure 3.2, several mouse event listeners, registered on #document,

intercept Alice’s click on the search box at step 3⃝. In fact, any click on the page triggers

the listeners, which dynamically determines what page to open for Alice. Due to these

click interceptions, Alice is obligated to interact with SE-ads when trying to search for

a movie to watch. Before Alice can type the movie name, the SE-ad opens up a new tab,

which asks Alice to install “Rainbow Blocker” which is a known AdWare [58]. When Alice

arrives at the spider-man movie, she clicks on the play button at step 4⃝ and “Skip Ads”

at 5⃝. Unfortunately, the SE-ads are attempting to trick Alice into downloading browser

18

extensions, which claim to be necessary to watch the movie. However, after further manual

analysis of their code, we found that these extensions were trackers and AdWare, which

track users and harm their digital privacy. After seven clicks, Alice could watch the movie

after closing all the opened tabs. While Alice is watching, an in-page notification pops up

to warn Alice that her Mac is infected. Alice becomes nervous and clicks on the banner

to download software to clean her mac at step 6⃝. This software was confirmed to be an

AdWare by VirusTotal [59].

Low-tier Ad Networks Are Popular but Hijack Clicks. Ad publishers are inclined to

cooperate with low-tier ad networks, which pay more than high-profile advertising

platforms [60]. For example, AdSterra pays USD $17.55 for a click [61], which is 10x

more than what Google ads pay.

These low-tier ad networks, therefore, are strongly motivated to elicit clicks by the

fact that advertisers pay more for clicks than impressions [62]. To achieve the goal of

harvesting as many clicks as possible, these low-tier ad networks may use SE tricks. As

described by the reverse engineered ad scripts in Figure 3.3b in the Appendix, they inject

in-line scripts to insert a transparent layer and register a mouse event listener. The visitor is

then forced to trigger the event listener to open a new window and load ads. This approach

is extremely different from what the high-profile ad networks do, and does not follow the

general standards [63, 64, 65, 66]. In contrast, looking at the pseudo code from Google ads

in Figure 3.3a, the ad publisher prepares a container for the ad script to inject an iframe that

can isolate the ad’s contents such that it cannot directly access the first party’s contents.

However, the standard ad publishing process is not likely to get more clicks.

Therefore, these content-sharing websites, as ad publishers, prefer low-tier ad networks

even though these ad networks may use SE tricks to get more clicks. Thus, the low-tier

ad networks can transfer a fraction of their high revenue obtained from advertisers to those

ad publishers. The advertisers are satisfied by having more ads exposed to users which

would turn into a higher conversion rate. This business model undoubtedly is intriguing to

19

attackers and provides them with opportunities to spread malicious content (e.g. unwanted

software, WSEAs, etc.).

3.3 Design

3.3.1 Overview

In this section, we introduce TRIDENT, a novel real-time detection system for identifying

Social Engineering Ads (SE-ads) and blocking navigation to potential Social Engineering

Websites (SE-websites). At a high-level, TRIDENT takes advantage of two intuitions: (1)

SE-ads use tricks (e.g., click-jacking and social engineering) to lure users into interacting

with strategically placed DOM elements and triggering unwanted browser navigation; and

(2) SE-ads often navigate the user to malicious websites that host social engineering attacks

(e.g., tech support scams, malicious downloads, etc.). Therefore, to detect SE-ads and

block the subsequent events, TRIDENT monitors the user’s browsing session and vets each

navigation to determine if it may be related to a SE-ad. More specifically, during this

vetting process, TRIDENT extracts features related to how this navigation was initiated

and passes these features to its classification module. Finally, if TRIDENT determines this

navigation is SE-ad related, TRIDENT presents an interstitial page to warn the user of the

danger ahead.

While prior approaches [2, 1, 3] focus on specific SE attack vectors, TRIDENT takes a

more generic approach that relies on the causality of how users end up in SE-websites.

Namely, TRIDENT detects WSEAs by detecting the anomalous techniques, which

intercept users’ clicks by all means, routinely used by SE-ads which often lead to websites

that host SE attacks. TRIDENT achieves this by leveraging the design illustrated in

Figure 3.4. First, TRIDENT instrument Chromium by extending the Chrome DevTools

Protocol framework (CDP) [47] with a new agent, Social-Engineering agent (SEAgent).

While a user is visiting a website, the SEAgent collects JavaScript actions (e.g. event

listener registrations, DOM modifications) and sends them to a background daemon. The

20

background daemon builds an in-memory graph representation of the web page and its

activities, which we call Web Action History Graph (WAHG). While TRIDENT builds and

updates the WAHG, it also extracts property features, action features, and consequence

features about the page’s JavaScript code from the graph. These features describe how

these scripts are included, what contexts the scripts are running in, and what the scripts do

on a web page, respectively. These features are then passed to TRIDENT’s classification

module, which classifies the navigation as related to SE-ads or benign.

In the remainder of this section we first give an example of the Web Action History

Graph of the motivating example in subsection 3.3.2, and then explain how TRIDENT

instruments the Chromium browser to collect JavaScript actions in subsection 3.3.3. Next,

we discuss how the WAHG is constructed while the user is browsing a website in

subsection 3.3.4, and the feature extraction along with it in subsection 3.3.5. Finally, we

introduce the classifier in subsection 3.3.6.

3.3.2 Web Action History Graph

The Web Action History Graph (WAHG) is a graph-based representation of a web page.

Nodes in the graph represent web objects (e.g., window, resource, DOM node, etc.) and

edges represent causal relationships between objects. For example, when a script inserts

a new DOM element into the DOM tree, an edge from the script to the element will be

connected into the WAHG. We formally define all graph objects and relationships between

the objects in Table 3.1.

To demonstrate the WAHG’s capability to represent SE-ads, we provide an example

WAHG of the suspicious publishing page, “www.movies123.sbs”, that Alice navigates to

in the motivating example (3⃝) in Figure 3.5. Additionally, to improve the clarity, the

example only contains the portions of the WAHG related to two SE-ad attacks on the page.

The first SE-ad is launched by an inline script on “ww.movies123.sbs” and is represented by

the set of nodes connected by the blue edges. The inline script initiates the deployment of

21

Table 3.1: WAHG Objects, Relationships, and Key attributes.

Object Type Attributes

Frame security origin, url, is page
Window url
Resource url, type
Script url, is isolated, frame owner
Function url, is eval or new function, location
DOM Node tag name, is inserted by js
HTML Parser frame owner

(a) Graph Objects. The unique ID for each object is omitted.

Relationship Example

Attached Frame→ Frame
Compiled by Script→ Frame
Created Script/Function→ Frame
Add event listener Script/Function→ Function
Listen to events Function→ DOM Node
Add callback function Script/Function→ Function
Navigated Frame→ Frame
Opened Frame→Window
Load Window→ Frame
Respond Parser/Script/Function→ Resource
Response Resource→ Parser/Script/Function

(b) Relationship between objects.

the SE-ad by scheduling a delayed callback to be executed using setTimeout. When this

callback is executed, the callback adds a new mouse event listener onto the #document

element which consequently covers the whole viewport. When Alice clicks on the input

box to search for a movie, the click is effectively hijacked. The mouse event listener on

#document is fired and redirects Alice to the malicious “Rainbox Blocker” website. The

second SE-ad attack is shown by the dashed yellow path, which is initiated by the same

inline script, but with a different deployment technique. More specifically, the previously

mentioned inline script injects a third-party ad script that also uses setTimeout to create

an iframe and insert it onto the page. If Alice clicks on the “Skip Ad” button, which is

rendered in the iframe, it would cause Alice to download a malicious Chrome Extension.

22

This example demonstrates the fine-grained details related to a web page that is embedded

into the WAHG.

3.3.3 Social-Engineering Agent

The Social-Engineering Agent (SEAgent) module resides within the browser. During a

user’s browsing session the SEAgent collects the necessary events to construct the

WAHG. To minimize our footprint in the browser, we implemented the SEAgent on top

of the Chrome DevTool’s Protocol framework (CDP) [47].

CDP implements several “domains” where each domain has a set of APIs and events

related to a particular aspect of a web application (e.g., DOM, Network, or Debugging).

Internally, each domain relies on a backend “Inspector Agent” that encapsulates the

necessary instrumentation to support the domain. At first glance, it may appear that the

existing domains may be enough to build the WAHG. For example, the DOM domain

provides information for DOM modifications, and the DOMDebug domain exposes an

API to collect current event listeners. Unfortunately, we found that existing domains were

not capable of supporting real-time information collection, which requires an event to be

emitted immediately when the hooked function is called other than calling APIs to collect

information proactively. For example, the DOMDebugger.getEventListeners API

collects current event listeners on the DOM at the query time. We have to call this API

frequently to capture every registered and removed listener, which is cumbersome and

risky that a malicious listener may be removed when we call this API. Moreover, the

Debugger domain does not implement event hooks for JavaScript executing stack,

which is essential for JavaScript action attribution discussed in subsection 3.3.4.

To address this problem, we implement the SEAgent, which implements four types of

hooks to collect JavaScript actions for constructing the WAHG in real-time. All the hooks

are implemented to emit events. Whenever the hooked API is called, it emits an event

immediately. For example, the instrumentation in event listener registration collects the

23

Table 3.2: Instrument Hooks to Construct WAHG.

Hooks Description Locations

DOM
Record DOM actitivties including adding and remove
DOM nodes and modifiying nodes’ attributes and
style. Attribute the operation to a JS function if
applicable.

Node creation, insertion, and removal

Node attributes modification

Node style update

Page
Record frame activities including iframe attachment
and detachment, frame navigation, and opening new
tabs. Attribute the operation to a JS function if
applicable.

iframe attach and detach

Frame navigation

Opening new windows

Network
Record network activities including what resources
are requested and who are responsible for the requests

Network requests

Network responses

Script
Record JavaScript activities including what scripts are
compiled and executed, what user callbacks are
added, and what event listeners are registered.

Script compilation, execution

Function invocation

Add user callbacks

Add event listeners

event target, event, and the listener function whenever a script or function calls

addEventListner to meet the real-time requirement for feature collection. The details

of the hooks are listed in Table 3.2.

3.3.4 WAHG Construction

In this section, we discuss in detail how TRIDENT uses the event logs collected by the

SEAgent to progressively construct the WAHG in real-time.

TRIDENT parses every event and translates the results into nodes and edges. There

are two important attribution steps that TRIDENT performs: JavaScript attribution, which

associates DOM events to a responsible JavaScript file, and navigation initiator attribution,

which determines which script requests the navigation such that TRIDENT only needs to

inspect paths to this script node on the WAHG instead of inspecting all the script nodes.

We discuss in detail how both tasks are completed in the remainder of this section.

JavaScript Attribution. TRIDENT needs to attribute all DOM events to the accountable

script. To do so, for each interaction and event we attribute the event to the current

executing JavaScript function. For instance, when the executing script “../..7d94.js” inserts

24

an event listener onto the page, we connect the script to the listener in Figure 3.6a. This

approach addresses most cases for finding the responsible JavaScript file, However,the

two global JavaScript functions, eval and Function, pose challenges when we are

trying to attribute events to the correct functions or scripts. For example, when an external

script loads, it invokes eval to evaluate a JavaScript code snippet. This process requires

compiling the snippet and generates a new script object, but this snippet will not have a

valid source (or URL). In these cases, we assign any events caused by the snippet to its

caller’s URL. We use the same approach for the Function API as it works similarly to

eval.

Navigation Initiator. There are two types of navigation initiators: a script or a user’s action

(e.g., clicking a link, typing in the address bar). Finding the initiator to a navigation event

helps us reduce the analysis space by avoiding analyzing all scripts, because attackers have

to navigate the users to the websites under their control. Figure 3.6a presents a JavaScript

function initiator, the click listener, which opens a new page. By analyzing the WAHG,

TRIDENT can locate the responsible script that may lead to a SE-websites. Obviously, not

all navigation events are initiated by JavaScript code directly. In Figure 3.6b, an anchor

tag is inserted by a timer callback function. When the user clicks on the link, it opens a

new window. Based solely on the information on this path, TRIDENT cannot determine

what code is responsible for the navigation. To handle these cases, TRIDENT learns what

href attribute is assigned to or updated for all the anchor nodes. It connects the JavaScript

function that modified or updated the anchor node to the new window by matching their

URLs.

3.3.5 Feature Extraction

In this section, we discuss the features used to learn the characteristics of malicious scripts

and benign scripts.

25

Table 3.3: Feature Groups Used by TRIDENT.

Property Features

execution context (first party or third party frame)
script type (inline, remote file, eval, or function)
owner (first party or third party)
requestor (HTML parser or another script)
requestor’s properties

Actions Features

register event listeners (event type, event target)
add timer callbacks (setTimeout, setInterval)
insert DOM nodes (node type)
open new windows (url, target)
initiate same-tab navigation (url)
attach iframe (src)
modify DOM node attributes (attributes)
send network requests (resoure type, url)

Consequence Features

of redirect hops
of unique domains
redirect type (JS-driven, response-header-driven)

Feature Descriptions

TRIDENT’s features are divided into three groups – property, action, and consequence

features – as shown in Table 3.3. The first group introduces what type the script is and

where it comes from; the second group describes what the script does on the web page;

and the last group contains redirect information. We leverage our domain experts’

intuitions on web development and experiences from previous studies [6, 54] to choose

these features to describe what happens before and after navigation.

Property Features. Property features target the properties of a script including how the

script is included in a web page, who owns the script, and the context it is running in.

TRIDENT determines the property features when a script is compiled and executed. If the

script is inserted to the web page by another script, TRIDENT adds the requestor’s

26

properties, too. First-party scripts are usually included by the website operator, which

implies they are mostly trusted, whereas third-party scripts (e.g., ad scripts from ad

networks) are unverified and should not be trusted. As described in the motivating

example in subsection 3.2.1, the legitimate ad scripts follow the FTC rules [64] to inject

ads, for example, by isolating their ad contents inside an iframe. In contrast, SE-ad scripts

are strongly motivated to elicit user’s click by all means. Therefore, TRIDENT uses this

feature group to learn whether a suspicious action should be trusted or not.

Action Features. Action features represent the behaviors exhibited by a script on the web

page. These actions primarily are related to click hijacking including registering event

listeners, adding large hyperlinks, and injecting visually deceptive elements. Each action

becomes an edge in the WAHG. TRIDENT extracts the features from both the node’s and

the edge’s properties. For instance, the register event listeners feature considers the

event type of the edge and event target of the target node. More specifically, a

JavaScript function registers an event listener that listens to mouse events on a specific

DOM element. This DOM element is the event target. TRIDENT checks whether

this DOM element is a JavaScript inserted DOM Node or a built-in large element (e.g.

#document, body). For actions involved in network requests such as open new

windows, attach iframe, initiate same-tab navigation, and send network requests,

TRIDENT examines the URL to determine where the resources are from. This feature

group helps TRIDENT learn to separate malicious activities from benign ones. For

example, appending an transparent hyperlink covering the whole viewport is more

suspicious than adding a visible iframe to load benign ads.

Consequence Features. Consequence features describe what happens after the

navigation. We extract the URLs in the redirect chain and collect the number of unique

domains. TRIDENT also checks whether the redirect is initiated by JS or a HTTP response

header. We consider the redirect chain between the first page and the eventual landing

page because the window directly opened by clicking an ad usually is not the eventual

27

landing page [67, 4]. This is from the intuition that ad networks need to determine what ad

to present by collecting the user’s cookies before making a decision. Unlike clicking on

ads, clicking on a link to an article usually directly opens the article without any redirects

because the website knows where the user is heading. Therefore, redirects between the

opening action and the final landing action are good indicators of ads. This is useful for

TRIDENT when determine whether a newly opened tab is for ads or not.

To conclude, TRIDENT’s main goal is to detect navigation made by clicking benign ads,

links, or SE-ads. Simply put, benign ads follow FTC rules which create iframes that do not

intercept users’ clicks; genuine links usually do not need to redirect the users multiple

times; and SE-ads steal users’ clicks by all means and redirect the users to SE-websites.

3.3.6 Blocking SE-ads related Navigation

The final portion of TRIDENT is its classification module. When a navigation is about to

occur, the extracted features discussed in subsection 3.3.5 are passed to the classification

module, which will classify the navigation as SE-ad-related or benign. If the navigation

is determined to be SE-ad-related, TRIDENT will block the navigation to prevent the user

from being directed to the social-engineering attack. Internally, TRIDENT uses a random

forest [68] classifier for classification. We configure the random forest as an ensemble of

100 decision trees with each decision tree using
√
N features, where N is the total number

of features.

During visiting, the SEAgent send events to the post-processing daemon

continuously, which build the WAHG. When a navigation request is scheduled, the

daemon extracts the features except the consequence features and sends them to the

classifier. When the navigation is about to commit, the daemon receives the updated

consequence features and reruns the classifier before the landing page commits. When the

classifier classifies a navigation request as malicious, the SEAgent inserts an interstitial

warning page to make the user aware of the dangers ahead. Note that we use one single

28

model rather than two models, trained with and without consequences features, because

the performance difference is minimum as shown in subsection 3.3.5.

3.4 Evaluation

This section discusses the extensive experimental evaluations we completed for TRIDENT

and compares TRIDENT with the state-of-the-art tools. Our evaluations address the

following research questions:

RQ1: How accurately can TRIDENT detect navigation initiated by SE-ads?

RQ2: Are the features used by TRIDENT understandable and robust?

RQ3: How well does TRIDENT perform compared with the state-of-the-art tools?

RQ4: What is the runtime performance overhead for SEAgent?

3.4.1 Experiment Setup

In this section, we discuss the websites used in our evaluation and how we simulated user

actions to trigger SE-ads and navigation to SE-websites for data collection.

Data Source. Our data collection process relied on publicwww.com (P.W.) [69], a popular

source code search engine, to collect scripts that may deploy SE-ads. We obtained over

100,000 ad publisher websites by searching JavaScript code snippets on P.W. by following

the approaches used in the study [4]. These JavaScript code snippets were obtained by

analyzing websites, which were open-sourced in that study, and websites we encountered

by searching for free content-sharing websites, which prefer to include low-tier ad networks

as suggested by the prior research [5].

Table 3.4: Navigation Events Made by Scripts in The Training Dataset.

Class Label New-Tab Nav. Same-Tab Nav.

Malicious 1,358 121
Benign 5,726 250,803

Crawler Design. Unlike prior works [15, 16, 18] that only crawl the Internet by loading

29

the home page, this work requires a crawler to interact with as many SE-ads as possible.

We built the crawler on top of Puppeteer [70] to simulate users’ interactions with the web

pages, and developed a clicking strategy conducive to triggering navigation events. First,

we collect anchor elements that point to a different origin and place them in an anchor

node pool. Additionally, we collect elements with mouse listeners in a mouse event pool.

Because large elements have a higher chance of being clicked, we sort the DOM nodes

in descending order of the element’s bounding box size to prioritize the elements that are

most likely to capture a real user’s clicks. Our crawler clicks the elements in these pools

one-by-one. If a click triggers navigation, the crawler takes a screenshot of the navigated

page.

We deployed the crawlers into 20 docker containers simulating users’ interactions with

websites from October 2021 to January 2022 to collect training data and in March 2022 to

collect data for examining TRIDENT’s robustness. We use these two datasets to evaluate

the accuracy, investigate TRIDENT’s false positives and false negatives, and compare with

the state-of-the-art tool, which we will discuss in detail in the following sections. We will

refer to the first dataset as the training dataset and the second as the testing dataset.

3.4.2 Ground Truth & Dataset Cleaning

This section first introduces the techniques we used to collect ground truth for the datasets

and then discusses our approaches to cleaning and balancing the datasets.

Ground Truth. Prior works [15, 16] rely on EasyList and EasyPrivacy [71] as the ground

truth to label ads related URLs. Unfortunately, these lists focus on generic ads. Using these

lists as the ground truth would make TRIDENT target generic ads, rather than SE-ads, which

is not our goal. To identify the ground truth in our datasets, we developed a semi-automated

approach as the following.

• Landing page screenshots clustering. During crawling, when a new tab is open, or

cross-origin navigation occurs, the crawler will take a screenshot of it. Following the

30

methodology in [4], we cluster the screenshots and manually review each cluster to

identify whether a landing page is a SEW. If it is, we identify the script responsible for

initiating this navigation and label it malicious.

• Categorical BlockList, Google Safe Browsing, and VirusTotal. We choose three

services for identifying whether a website is malicious or not, a categorical BlockList

[72] on Github, which is popular in the community and is updated frequently, Google

Safe Browsing (GSB) [73], and VirusTotal (VT) [59]. We consider a URL malicious if

it falls in the buckets of Malware, Scam, Abuse, Phishing, and Fraud in the BlockList,

is determined unsafe by GSB, or is flagged out by at least one of the engines in

VirusTotal. Then, we feed all landing page URLs, and the URLs in the redirect chain to

these three services to label them automatically. If a page’s URL is labeled malicious,

we find the script which initiated the navigation to this page and label it malicious.

We aggregate the results from the two components. A script is considered malicious

when either of the two components says it is malicious.

Datasets Cleaning. We found that the datasets were heavily imbalanced after labeling.

There were two problems in the datasets: (1) the data was heavily imbalanced between

classes, and (2) the data was imbalanced within the negative class (e.g., more scripts for

rendering first-party contents than scripts for injecting third-party ads). This is expected

because benign scripts are ubiquitous. Training TRIDENT directly on this imbalanced

dataset would undoubtedly produce a poor model. There are generally two strategies to

overcome the imbalanced dataset problem: (1) over-sample the minor (malicious/positive)

class, or (2) under-sample the majority (benign/negative) class. To address our problems,

we decided to under-sample the negative class as recommended by the state-of-the-art

techniques [74, 75] to reduce the false-negative rate as our goal is to detect SE-ads as

accurate as possible.

Additionally, we removed “silent” scripts that do not invoke any DOM APIs of our

interest and under-sampled the same number of positive class from the negative class,

31

which addressed the first problem. To address the second problem, we analyzed the

distribution of the features and found that benign scripts tended to navigate the users in the

same tab. In contrast, the malicious scripts preferred to open new windows, as shown in

Table 3.4. Randomly sampling from the benign class would yield a large portion of

same-tab navigation entries, making a performant classifier. However, this classifier would

not generalize to websites that open windows in new tabs, which are data points near the

classification border. Therefore, we need to choose more samples near this border, in this

case, more entries in the new-tab navigation from the benign class. After running this

experiment, we chose 50% from new-tab entries and 50% from the same-tab ones. We

will explain why we choose this ratio in subsubsection 3.4.3.

3.4.3 TRIDENT Performance

To answer RQ1, we evaluated our model using 10-fold cross-validation on the training

dataset and reported the average accuracy. Next, we discuss the disagreement between

TRIDENT and the ground truth data by testing the model on 1,000 websites sampled from

the testing dataset.

Table 3.5: Model Performance with Different Approaches of Under-sampling the Majority
Class.

New-tab Nav. Same-tab Nav. Accuracy Precision Recall

100% 0% 87.76% 86.69% 89.31%
90% 10% 88.30% 86.09% 91.68%
50% 50% 92.63% 90.63% 96.28%
0% 100% 99.76% 99.78% 99.43%

Random 99.36% 99.14% 99.59%

No Sampling 97.69% 89.71% 76.39%

32

Accuracy

This section discusses how we tackled the imbalanced data problem and describes the

model’s performance trained with the balanced dataset.

First, we trained the model with the raw imbalanced dataset (no sampling), which gave

us a good accuracy rate but bad precision and recall rates, as shown in Table 3.5. Next, to

improve the performance, we used five approaches to balance the dataset. Table 3.5

presents the results. Notably, the more STN entries we sample, the better the model

performs. However, it lacks generality. When we trained the model with NTN benign

samples (all benign data points near the borderline), the accuracy dropped to 87.76%.

Although the model has the lowest accuracy, this situation (each navigation opens a new

tab) is implausible. As shown in Table 3.4, 97.77% of the navigation events happened in

the same tab for the benign class. Therefore, to be conservative and include a good

number of data points near the borderline from the benign class, we decided to use 50%

from the NTN entries and 50% from the STN entries for the benign samples to balance the

dataset.

With this training dataset, TRIDENT detects SE-ads related navigation with 92.63%

accuracy, 90.63% precision, and 96.28% recall.

False Positives & False Negatives

We now analyze TRIDENT’s false-positive and false-negative cases. We selected 500

random websites from the benign class and 500 from the malicious class. We then tested

this dataset on the model, which yielded the accuracy of 93.01%, the precision of 93.34%,

and the recall of 93.02%. From these 1,000 websites, TRIDENT reported 20 false

negatives and 136 false positives. We now discuss these cases with examples.

False Positives. We noticed that 72% of the false positives had ad scripts from

PopCash [76]. After revisiting these websites manually, we confirmed these scripts

injected SE-ads on the page. Because the block lists we used to label the ground truth are

33

imperfect, it is normal to miss these scripts. Fortunately, TRIDENT detected them based on

their behaviors. In addition to the PopCash cases, we found another 23 websites that inject

SE-ads, which were not labeled correctly. For the remaining 15 websites, seven were adult

websites that injected ad scripts to redirect visitors to live cam websites; the other eight

rendered regular ads, which TRIDENT classified incorrectly. Excluding the mislabeled

cases, we only have 15 false positives, all interactions with regular ads. These cases

convert to a 1.5% false positive rate. Moreover, they are ads, and it does not harm the

users when TRIDENT blocks them.

False Negatives. After investigating the false negatives, we found 17 cases out of the

total 20 websites were caused by incorrect labeling. For example, VirusTotal incorrectly

flagged out websites navigated from www.reg.ru. Excluding those mislabeled cases, we

found three false negatives: one script on a streaming website, one on an adult website,

and one on a cryptocurrency scam website. The streaming (ligastream2.blogspot.com) and

cryptocurrency scam (lookscrypto.de) websites had click event listeners registered to hijack

user’s clicks as of writing. However, the ad scripts employed the Pop Under technique,

which opens a new window for the same website the user is visiting and navigates the

original tab to a cross-origin website. Because opening a same-origin window is likely

benign, TRIDENT did not detect the script that opened the new tab. However, the navigation

made from the original tab was classified as malicious. The adult website hentaibedta.net

embedded malicious links in its first-party content. Specifically, it included ad images that

pointed to an external website (ouo.io/QqJgfz). This external website eventually landed the

user on a malicious browser extension downloading page and two reward scam pages. The

SE-ads on the adult site were injected by the first-party script and behaved as if they were

the first-party content. Although TRIDENT failed to detect the script, we argue that the

script was a first-party script and the website operator injected those SE-ads on purpose.

Furthermore, it is extremely infrequent: only one website out of 1000 websites did this. By

tweaking the features’ values for this false negative, we found that if the script was from a

34

third-party, TRIDENT could detect it. To conclude, TRIDENT can capture most malicious

SE-ad activities except when the website, as the owner, injects SE-ads as the first-party

content on purpose.

3.4.4 Feature Importance and Robustness

To answer RQ2, we assessed TRIDENT’s classifier by analyzing its feature importance to

confirm that the features were understandable and reflected domain experts’ intuitions.

Beyond explaining feature importance, we analyzed our model’s robustness against

concept-drift [77] and evading techniques.

Feature Importance

We select the features based on our domain knowledge, experts’ intuitions, and previous

studies [6, 54]. We want the features to be meaningful and understandable. To this end,

we evaluated the feature group importance guided by the Leave-One-Group-Out approach

proposed in [78]. We reported the results in Figure 3.7 using ROC curves. The property

feature group has the lowest AUC score, whereas the action feature group has the highest

score. This result is understandable that the properties of a script do not indicate its

maliciousness, and what a script does reflects its objective most. Although it is 0.03%

lower than the best score by using all the three feature groups, based on the discussion in

subsubsection 3.4.3, the property feature group is helpful when a data point is near the

decision boundary.

Also, the scores of training with and without consequence features only have 0.67%

difference. Therefore we can use one single model at the two spots mentioned in

subsection 3.3.6.

35

Robustness

In this section, we evaluated how well TRIDENT performs against concept-drift [77] by

testing the model using the testing dataset. Next, we tested the robustness of TRIDENT’s

classifier by altering feature values to simulate evading TRIDENT.

Concept Drift. Machine learning models are known to lose their effectiveness over time

due to the underlying changes in the data distribution used to train the model. We build

TRIDENT to slow down the degradation process by focusing on the behaviors of the scripts

that inject SE-ads. To this end, we evaluated TRIDENT’s accuracy over time by testing

it on a dataset crawled in March 2022. The results showed that TRIDENT achieves an

accuracy of 90.66% with a precision of 88.18% and a recall of 91.75%. The accuracy,

precision, and recall dropped by 1.97%, 2.45%, and 4.53%, respectively. From the testing

dataset, we observed that 5.33% benign websites tended to navigate users with more than

one redirect in March 2022, while it was 2.90% two months ago. This behavior shift made

TRIDENT produce a higher false-positive rate (7.67%). The degradation could be reduced

by periodically retraining the model with new data.

Evasion Simulation. We have discussed one sample that evaded TRIDENT in

subsubsection 3.4.3. Given the limitation of gathering more evading samples, we

simulated the evasion by altering the feature values. We generated four guidelines based

on our domain experts’ intuitions for feasible evading techniques: (1) include the

malicious script as the first-party script; (2) put the script as inline script; (3) directly bring

the user to SE-websites without redirects; and (4) behave as benign scripts while steal

clicks. Based on these four guidelines, we reported the evasion rates in Table 3.6 by

techniques.

First, we changed the property feature groups to make the scripts first-party and/or

inline. This alternation yields a maximum of 5.11% evasion rate. Next, we let the attacks

directly bring the users to the SE-websites. This change alone leads to a 3.62% evasion rate.

36

Table 3.6: Evasion Rates by Altering Key Feature Values.

Approaches Evasion Rate

First-party script (Fst.Pty.) 2.13%
Inline script (Inl.) 5.11%
No redirects (NoRdr.) 3.62%
NoRdr. + Fst.Pty. 2.56%
NoRdr. + Inl. + Fst.Pty. 9.17%

Do not request external resources 1.49%
Do not add callbacks 1.49%
Do not attach iframes 1.92%
Do not modify node attributes 1.70%

When combining the techniques used for the property features, the evasion rate went up to

9.17%. Finally, we tested altering the action features, which is the most challenging part

since we need to keep the attacks valid. We took a conservative approach in that we kept

the features related to DOM manipulations, including event listener registrations, DOM

node modifications, etc. We only updated the remaining features in this feature group and

reported the result in the lower part in Table 3.6. We did not report the combination of these

behaviors since the evasion rate did not increase significantly. The highest evasion rate was

1.92% by not attaching iframes on the page.

In summary, we found that the attackers can evade TRIDENT with a high rate only if

they can include their malicious scripts as first-party by colluding with the website owner

or compromising the web servers. However, this is unlikely because the attackers can have

better choices of compromising visitors when they can access the web servers.

3.4.5 Comparison to State-of-The-Art Systems

To answer RQ3, we compared TRIDENT with two state-of-the-art tools: Brave Shields,

the adblocking module for Brave Browser [57] from industry, and ADGRAPH [15] from

academia. We first show Brave Shields is insufficient using filter-list based approach and

then show ADGRAPH was not suitable for SE-ads.

37

Traditional Blacklist-Based Ad-Blockers

Adblock Plus is the most popular blacklist-based ad-blocker. It leverages manually

maintained blacklists to deny or whitelists to allow ad or tracker traffic. Brave Browser

has integrated a variety of filter lists, which are a superset of Adblock Plus’s, so we setup

its ad-blocking component [79] locally to see how well TRIDENT performs against

traditional ad-blockers. Brave Shields takes in a script URL and a frame URL and returns

a binary decision. We feed Brave Shields our the script URLs along with their

corresponding running frame’s URLs and analyze the disagreements between Brave

Shields and the ground truth. As described in dataset cleaning section, we obtained 1,479

positive samples for the training dataset, of which Brave Shields missed 14.74%. To make

a fair comparison, we tested Brave Shields on our two batches of datasets. First, we

performed a 70/30 training/testing split of our training dataset, following the data

balancing method we used previously, and trained a model to test the testing split. The

second dataset was the testing dataset we collected in March 2022. To evaluate how well

TRIDENT performs against Brave Shields, considering our labeled datasets as ground

truth, we only need to focus on false negative rate, the rate of evading the detection.

Table 3.7a reports that TRIDENT outperforms Brave Shields almost by 7 times.

Machine Learning Based Ad-Blockers

We focus on two related prior works on ad-blocking: ADGRAPH, the first ML-based

ad-blocking tool that is based on the contents of ads and trackers [15] and WEBGRAPH,

the first ML-based ad-blocking tool that is based on the action of ads and trackers[18]. In

the following, we discuss why ADGRAPH and WEBGRAPH cannot solve the problem

TRIDENT is trying to solve.

First, we replicated ADGRAPH by crawling Alexa Top 10k using the open-sourced

ADGRAPH binary, labeled its data using the latest filter lists as of writing, and built the

same classifier as described in the paper. The model’s accuracy was around 93% for

38

detecting generic ads, which was 5% lower than the original model. This is not surprising

that ADGRAPH suffers concept-drift over time [77]. We then created the testing dataset by

letting ADGRAPH crawl random P.W. 1k websites from our website seed list. The

accuracy dropped to 83.25%, and the precision for detecting the malicious class dropped

to 70%. This shows that ADGRAPH for generic ads does not work well for SE-ads.

Next, we sampled 1,000 websites from the training dataset and 1,000 websites from

the testing dataset, respectively. We refer the two datasets as P.W. 1k Trn. and P.W. 1k Tst.

for simplicity. For each batch of P.W. 1k, 500 were from websites that were known to

publish SE-ads and 500 were from websites that were benign. Then, we let ADGRAPH

crawl these 2,000 websites and labeled the datasets using our ground truth. Finally, we

trained ADGRAPH and TRIDENT on the same training dataset and tested them on the

same testing dataset. As shown in the lower part in Table 3.7b, TRIDENT outperforms

ADGRAPH by over 10%. ADGRAPH trained by P.W. 1k Trn. performs even worse than

the generic model. However, this is not an apple-to-apple comparison. The ADGRAPH for

Generic and ADGRAPH for SE-ads are two different models as they are trained on

different datasets which are labeled differently. The former targets generic ads while the

latter targets SE-ads. Moreover, while replicating ADGRAPH, we found URLs with

protocol data: will be considered as NON-AD in the labeling process of ADGRAPH.

This implies resources using base64 encoded URL would likely escape ADGRAPH’s

detection because ADGRAPH can extract nothing from such URLs. This gives the

adversaries opportunities to import external scripts using

"data:text/javascript,ZG9Tb21ldGhpbmcoKQ==" which means

doSomething() to evade ADGRAPH.

WEBGRAPH improves the robustness of ADGRAPH by removing the content features

and adding network, storage, and shared information flows. Because WEBGRAPH is not

open-sourced as of writing, we are not able to evaluate it with our datasets. However,

we argue WEBGRAPH is not designed to capture how a script manipulates the DOM to

39

Table 3.7: TRIDENT Compared With State-of-the-art Solutions.

Dataset FNR by Brave Shields FNR by TRIDENT

First batch 15.14% 2.13%
Second batch 12% 1.49%

(a) False Negative Rates of detecting SE-ads by Brave Shields and TRIDENT. The first batch is 30%
split from the training dataset. The second batch is from the testing dataset.

Model Accuracy Precision Recall

ADGRAPH for Generic Ads 83.25% 80.12% 81.65%

ADGRAPH for SE-ads 81.51% 71.34% 75.33%
TRIDENT 95.07% 96.11% 95.49%

(b) TRIDENT outperforms both ADGRAPH models for detecting SE-ads.

lure user to social engineering websites. Hence, its performance on our datasets should be

equivalent with ADGRAPH’s.

3.4.6 Runtime Overhead

To answer RQ4, we evaluated the runtime performance of SEAgent, the major component

that may induce overhead, including running time and memory and CPU usage.

Running Time Overhead. To quantify the impact on the user experience, we measured

the page load time to evaluate the running time overhead for the Tranco top 1k

websites [80]. To measure the page load time and the induced overhead, we leveraged

Chromium’s TRACE EVENT instrumentation infrastructure for profiling [81]. We added a

new trace category named blink.seagent and put TRACE EVENT0 marco to the

beginning of each instrumentation hook. Then, we enable blink.user timing to

measure the page load time, which is defined as the time spent between the navigation

request start and the load event end [82]. For each website, we loaded the page into the

browser for 10 times and selected the median page-load overhead.

The distributions of the runtime overhead are shown in Figure 3.8a. The median

runtime overhead is 2.13% which results in 0.02 second increase in the page load time,

40

which are comparable to previous works [20, 19, 16]. Looking at outliers, we found the

websites have more DOM modifications were more impacted by the SEAgent. For

instance, www.kickstarter.com took the longest to load with 14.34% (0.33 seconds)

overhead. After checking this website, we found that JavaScript inserted more than 35,000

DOM nodes and modified the attributes of them, and then removed half of them before the

page was fully loaded. These outliers are rare given that the overhead for the 95% of the

Tranco 1k list is less than 5.7%.

Resource Overhead. To evaluate TRIDENT’s resource usage overhead, we measured the

CPU and memory usage for the websites listed in the Tranco top 1k [80]. It is challenging to

separately measure the precise resource consumption of TRIDENT’s components, because

this would require sophisticated code instrumentation to calculate how much memory is

allocated and how many CPU cycles are consumed. Therefore, we leverage an alternative

approach that allows us to estimate the resource usage overhead. We use the ps [83]

command to continuously record the CPU and memory usage of the browser processes

(with 100ms granularity) while visiting the home page of every website in the Tranco top

1k list ten times (i.e., 10k page loads in total), using both vanilla Chromium and TRIDENT.

Every time a page is visited, we wait for the page to be fully loaded, and then wait another

10 seconds before visiting the next page.

To compare the resource usage of vanilla Chromium and TRIDENT, we summarize

the results as Cumulative Distribution Function (CDF) graphs in Figure 3.8b. As seen

from Figure 3.8b, TRIDENT induces negligible CPU overhead and limited memory usage

overhead, which is mainly driven by TRIDENT’s need to perform data serialization and

buffer browser data objects that are then recorded to the TRIDENT’s trace files.

Summary. With 2.13% overhead on page load and negligible CPU and memory overhead

on modern devices, we believe TRIDENT is capable of being deployed onto a real

production environment in a real-time setting.

41

3.5 Discussions

3.5.1 Limitations

This section discusses the limitations of TRIDENT in two ways. One is the runtime

environment of TRIDENT which may allow adversaries to learn the existence of TRIDENT

and refuse to display malicious content. The other is that the diversity of the training

dataset may be limited when we crawled the Internet.

Runtime Environment. We envision TRIDENT being deployed as a browser extension

with Chrome DevTools Protocol turned on as a prototype, which exposes TRIDENT’s

existence. Adversaries may detect TRIDENT and then cloak themselves or refuse to

display content until the users turn off TRIDENT. To address this limitation, we could

embed TRIDENT directly into the browser to make it invisible to those adversaries. We

leave this for future work.

Ground Truth. Unlike previous works [15, 17, 18, 67, 84] which target at generic ads and

trackers, TRIDENT targets at SE-ads, which are not as ubiquitous as those ads and trackers.

Thereby, we rely on publicwww.com to collect websites that inject SE-ads. To this end,

the diversity of the training dataset is limited to a small number of ad networks we have

identified by reverse-engineering their ad scripts. While TRIDENT performs well based

on this dataset collected from publicwww.com, its accuracy may drop when it encounters

unseen ad network scripts. However, TRIDENT can periodically retrain its classifier on

improved ground truth as the users provide feedback.

3.5.2 Ethical Considerations

In line with previous studies [4, 14, 20] that need to crawl the Internet, our crawling

experiments simulated user’s clicks on ad publishers, which may lead to advertisers’

landing pages. Because our primary goal is to analyze the behavior of interacting with

SE-ads, we argue it would not be possible without clicking on the websites to trigger

42

SE-ads and navigate to SE-websites. Moreover, our crawlers do not target any specific ads

or ad campaigns. They randomly choose ten clickable elements and ten links. These

clicks resulted in 5,726 opened windows that load benign contents. Assuming that all of

these windows eventually reached the landing pages of advertisers, we found our crawler

made two clicks on the ads for each advertiser on average. Considering the average CPC

(cost per click) being USD $0.75 [62], the cost to each advertiser would be USD $1.5 on

average. This result shows that our crawling experiment ensured minimal financial losses

for legitimate advertisers while generating results that help prevent people from falling

into web-based social engineering attacks.

43

1 <!-- ad slot on nytimes.com -->
2 <div
3 id="dfp-ad-top" class="place-ad placed-ad" data-position="top"
4 data-size-key="top" data-google-query-id="CNrG4..."
5 ><iframe src="https://.google..."/></div>

1 // an inline script to
2 // configure ad size for the div
3 var adConfig = function() {...};
4 // a remote script:
5 // doubleclick/pubads_impl_*.js
6 var adFrame = createAdIframe(adConfig);
7 appendAdFrame('#dfp-ad-top', adFrame);
8 ...

(a) Ad scripts from Google Ads.
1 var popunder = {
2 init: function(event) {
3 ...
4 return setTimeout(function() {
5 // open a new window to load ads
6 windowOpenerNull(),
7 removeTransparentLayer()
8 }, 500),
9 sendClickMetrics()

10 ...
11 },
12 createTransparentLayer: function(
13){...},
14 removeTrasparentLayer: function(
15){...},
16 ...
17 }
18

19 // register click event listener
20 document.addEventListener(
21 isChrome ? 'mousedown': 'click',
22 handler(event) {
23 removeTransparentLayer();
24 ...
25 popunder.init(event);
26 })

(b) In-lined ad scripts from adSterra.

Figure 3.3: Script Snippets Comparison Between Google Ads and AdSterra.

44

addEventListener
appendChild

modifyAttribute
...

openWindow

Chromium

Blink
DevTools

§3.3 SEAgent §3.4 WAHG

§3.5 Feature Extraction

- JavaScript Identifier
- Frame Identifier
- Property Features
- Action Features
- Consequence Features

§3.6 Classification

Safe navigation

SE Navigation
Detected

Figure 3.4: TRIDENT Design Overview.

compile
add

request

inline ad
script register

#document

respond

3rd party

ad script

add
3rd party
ad script

compile

unregister

click

123movies

Rainbow

Blocker

setTimeout

callback

create

setTimeout

callback

open

click event
listener

attach "skip ad"
iframe5

3

load

new
window

Figure 3.5: WAHG Example of The Motivating Example.

listen to mouse clicks

openListener:

click

#document

registerScript:

../..7d94.js

compile

Page:

/

Rainbow

Blocker

load

new

window

(a) Navigation Initiator as a JavaScript
Function

insert open

Callback:

setInterval

<a href />

add

compile

Page:

/search

Chrome

Extension

Script:

../..7d94.js

load

new

window

(b) Navigation Initiator as an Anchor tag

Figure 3.6: TRIDENT Attributes The Responsible JavaScript Function That Initiates The
Navigation. The functions in the pink elliptical are accountable for SE-ads.

45

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Prop. (area=0.7029)
Acti. (area=0.9768)
Cons. (area=0.9552)
Prop.+Acti. (area=0.9797)
Prop.+Cons. (area=0.9691)
Acti.+Cons. (area=0.9867)
Prop.+Acti.+Cons. (area=0.9864)

Figure 3.7: Feature Importance of Different Combinations of Feature Groups.

46

Overhead Ratio
(a)

0

2

4

6

8

10

12

14

Pa
ge

 L
oa

d
Ov

er
he

ad
 P

er
ce

nt
ag

e w
/ R

ec
or

di
ng

Median at
2.13%

Mean at
2.45%

75% at
3.26%

95% at
5.7%

Overhead Absolute Value
(b)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

In
str

um
en

tat
io

n
Ho

ok
s O

ve
rh

ea
d(

s)

Median at
0.02s

Mean at
0.03s

75% at
0.04s

95% at
0.11s

(a) The runtime overhead induced on the page load by TRIDENT for the Tranco
1k. (a) presents the runtime overhead increase for the page load. (b) provides
the absolute time induced by TRIDENT.

0 10 20 30 40
%CPU

(a)

0.0

0.2

0.4

0.6

0.8

1.0

Lik
el

ih
oo

d
of

 o
cc

ur
re

nc
e

CDF of CPU Usage (%)

Trident
Vanilla Chrome

0 50 100 150
Resident Set Size in MB

(b)

0.0

0.2

0.4

0.6

0.8

1.0

Lik
el

ih
oo

d
of

 o
cc

ur
re

nc
e

CDF of Memory Usage (MB)

Trident
Vanilla Chrome

(b) The runtime resource usage induced on the page load by TRIDENT for the
Tranco 1k.

Figure 3.8: Runtime Performance.

47

CHAPTER 4

COINDEF: A COMPREHENSIVE CODE INJECTION DEFENSE FOR THE

ELECTRON FRAMEWORK

4.1 Introduction

The increasing popularity of the Electron framework for developing cross-platform

applications highlights the enduring allure of software paradigms that leverage familiar

web technologies [85]. However, this novel use of web technologies outside of the

sandboxed browser setting also means vulnerabilities from web applications (e.g.,

cross-site scripting (XSS), prototype pollution, etc.) can affect the underlying client

machine, potentially resulting in the remote execution of malicious code (RCE).

One such attack with real-world consequences is the Water Labuu campaign

discovered in October 2022 [86], which spreads malicious messages through Meiqia, an

Electron-based chatting application used by over 400,000 companies for customer service.

A simple click on the malicious message injects malicious code into the app and leads to

the exploitation of CVE-2021-21220 [87], stealing more than 300,000 US dollars worth of

cryptocurrency. Unfortunately, Meiqia is not the only one that is vulnerable. Similar

campaigns can be launched against other high-profile apps like Slack, Discord, MSTeams,

potentially targeting any subsequently discovered RCE [88, 89, 90, 91, 92, 93, 94] to

execute malicious code of the attackers’ choice on million’s of machines and devices.

Despite extensive research into defenses against XSS for web applications [25, 26, 27,

32, 28] and RCE for native environments like NodeJS [29, 30, 40], little has been done to

address the root cause of such RCE attacks–code injection–within Electron applications.

These prior solutions are effective within their respective runtime environments (web or

native), but they are not equipped to handle the dual environments nature of Electron

48

applications, which fuse web and native environments. This fusion introduces unique

vulnerabilities and a broader attack surface [24], rendering existing defenses ineffective

for protecting both environments simultaneously. Although recent studies have examined

the attack surfaces in Electron applications and proposed mitigation [21, 22, 23], none

have addressed the underlying code injection issues driving these security risks.

In our pursuit of a comprehensive and practical defense, we investigated the

underlying cause of code injection attacks in Electron applications. Our research reveals

two insights: 1) A code injection attack will ultimately change the semantics of the

original code, reflected by a structurally different abstract syntax tree (AST), resulting in a

modified or new AST structure. 2) The JavaScript engine of Electron is the choke point to

provide comprehensive protection against code injection for the web and native

environments simultaneously. Consequently, we turned our attention to preserving AST

structural integrity in the JavaScript interpreter so that we can prevent code injection by

enforcing the AST structural integrity with contextual information.

To this end, we propose COINDEF, a comprehensive Code Injection Defense for the

Electron Framework. COINDEF works in the JavaScript interpreter (i.e., V8) of Electron

applications to build AST profiles and enforce them at runtime. COINDEF works in two

phases. In the learning phase, COINDEF identifies all JavaScript code contained in the

application to be protected and generates the expected AST profiles of all the code with

the execution context using both static profiling and dynamic profiling. In the enforcing

phase, COINDEF validates every JavaScript code that is being interpreted by comparing

the observed AST against those extracted in the learning phase. Furthermore, COINDEF

leverages predefined security policies (security-first or usability-first) at runtime to

accommodate unseen AST profiles that are not profiled in the learning phase. As working

in the choke point in the execution pipeline for all code, COINDEF enables comprehensive

mitigation against maliciously injected code. COINDEF also incurs negligible runtime

overhead by taking a free ride (precomputing AST profiles) when the parser is parsing the

49

Main Process

embed

Renderer Processes

Launch
User Code

Dependencies
Preload
Scripts

V8

Blink

V8

NodeJS Sensitive APIs
(e.g., eval, exec)

BrowserWindow
SubFramesMain

(IPC, ContextBridge)

User Code

Dependencies

Figure 4.1: The Process Models of Electron.

source code. As such, code only needs to be validated once in its lifetime, incurring no

runtime overhead during user interactions.

We evaluated COINDEF on 20 representative real-world Electron applications with

code injection and RCE vulnerabilities, listed in Table 4.2. The applications we tested

include widely used ones like Slack and MSTeams, as well as popular open-source

projects such as boostnote and joplin. We first collected the AST profiles as the expected

behavior model for each application using the approach discussed in subsection 4.3.4.

After completing the learning phase, we proceeded to carry out 20 exploits using payloads

previously reported as successful. The evaluation results show that COINDEF effectively

blocked all the exploits. Furthermore, COINDEF only incurred, on average, a 3.96% one

time overhead at startup time (subsection 4.4.2) and negligible (Table 4.5) over the

remaining lifetime of the Electron application. Additionally, we conducted a comparison

with state-of-the-art solutions for Electron applications (subsection 4.4.3) to highlight the

comprehensive protection COINDEF provides and discussed where prior solutions failed.

4.2 Background & Challenges

Process Models. Figure 4.1 presents the architectural overview of the Electron

framework. Conceptually, the Electron framework consists of two processes. The main

process assumes responsibility for native API access with the support of NodeJS. The

50

renderer process focuses on rendering the UI and managing user interactions backed up by

Blink, Chromium’s renderer engine. Upon initializing the main process, Electron’s main

process creates a BrowserWindow object. This window object launches an HTML page

as the UI that runs in the renderer process. Notably, the renderer process relies on Blink

and thus inherits the security mechanisms of Chromium, including site isolation, which

prevents direct communication between different web frames [95]. To establish

communication between the main and the renderer processes, Electron introduces preload

scripts, which are bounded to the renderer process and provide BrowserWindow objects

with access to sensitive APIs (e.g., shell, ipcRenderer) defined in those preload

scripts through Inter-process Communication (IPC). Additionally, Electron offers

developers the NodeIntegration option to directly integrate NodeJS’s context into

the renderer processes, facilitating fast development.

SubFrames. Chatting applications like Discord provide “In-App View” features to allow

their users to directly view external resources (e.g., watch a YouTube video) in the main

application window. However, these applications do not load arbitrary external content.

Instead, they have clearly defined the Content Security Policy (CSP) to only load trusted

resources and render them in the isolated iframe, which we annotated as SubFrames

in Figure 4.1. The JavaScript code running in the SubFrames is isolated from the main

application to prevent it from tampering with the main application. Since these resources

are only presented at runtime, they are unknown to static analysis tools and may not be

there when being dynamically profiled.

The shared context between the main and the renderer processes provides UI access to

the native OS resources. Meanwhile, it opens security holes for Electron applications:

code injection in the UI can springboard into the main process and achieve RCE by either

directly invoking those APIs through shared context enabled by misconfigured

contextIsolation [89] or crafting a series of sophisticated payload to abuse the

correctly exposed APIs [91]. contextIsolation is the critical security feature

51

Discord

Remote Attacker

a link to a
trusted website

Main Process
SubFrame

(CSP allowed)

Execution Context Shared

BrowserWindow
(attacker controlled)

XSS

Victim

interacts

nodeIntegration: false,
contextIsolation: false,

1

2

3

4 cmd

Renderer Processes

Native Modules

DiscordNative execa

Figure 4.2: A Real-world Motivating Example.

Electron creates to ensure the JavaScript code running in the UI’s process cannot

arbitrarily access the powerful NodeJS context running in the main process. With context

isolation enabled, Electron creates contextBridge to expose functions connected to

native OS resources to the UI for desktop experience. Unfortunately, these security

suggestions are not well followed by application developers [21, 23]. Even worse,

attackers have found ways to bypass these restrictions in some scenarios [96, 97].

In the rest of the paper, we use MainProcess to represent the main process,

BrowserWindow to represent the top frame in the renderer process, and SubFrames

to represent non-top frames in the renderer process.

4.2.1 A Motivating Example

As shown in Figure 4.2, a real attack scenario [89] begins by sending a website link to a

potential victim in step 1 . Although Discord has defined CSP to prevent code injection,

it cannot guarantee all its partners follow the same security practices. As a result, there is

still a possibility for trusted partners with insufficient security practices to be exploited and

serve as an open gate for the entire system.

In this example, one of the trusted partner websites, sketchfab.com, has a cross-site

scripting (XSS) vulnerability when rendering annotations for 3D models. The attacker

takes advantage of this feature and sends the victim a well-crafted 3D model containing

52

malicious JavaScript code. Then, the XSS bug gets triggered as the victim interacts with

the 3D model isolated in a SubFrame in step 2 using the “In-App View” feature.

Specifically, the XSS payload successfully navigates the parent frame (the top window or

the content of the BrowserWindow) to an attacker-controlled webpage in step 3 by

exploiting CVE-2020-15174 [98], which is called a open-redirect attack. Since this

attacker-controlled webpage is now in the context of the top window, it gains access to

Discord’s BrowserWindow context, escaping from the isolated SubFrame.

Meanwhile, due to the inadequate setting (contextIsolation: false) of

isolation between the main and the renderer processes, the UI can access the sensitive

NodeJS APIs (e.g., fs, child process, etc.) even in the renderer process. This

misconfiguration gives the attacker further opportunities to compromise the main process.

Consequently, the attacker overwrites two JavaScript’s built-in methods (i.e., prototype

pollution attacks) to successfully invoke a privileged NodeJS module DiscordNative

and achieves remote code execution through execa in step 4 .

4.2.2 Challenges

If the victim is using the web version of Discord, the attack would stop in step 3 because

the user has been navigated away from discord.com. There would be no subsequent

attacks at all. Unfortunately, in the setting of Discord’s Electron application, because of

the shared context (APIs) between the main and the renderer processes, the initial code

injection attack evolves into a more severe RCE, causing more harm to the victim. If we

just focus on defending against step 3 , attackers can always find alternatives to trigger

step 4 , rendering the single-point defense ineffective. Based on this observation and the

requirements of users, we conclude three significant challenges to overcome to mitigate

code injection attacks in Electron applications:

C2. Negligible Runtime Overhead. The protective system must operate with minimal

runtime overhead to avoid any noticeable lag or slowdown that could lead users to disable

53

the defense.

C3. Tamper-Proofing. To ensure robust security, the protective system should be tamper-

resistant, meaning it must be deployed within a privileged layer that is inaccessible to

remote attackers, thereby preventing any unauthorized modifications.

4.3 Design

4.3.1 Threat Model & Assumptions

We design COINDEF to prevent code injection attacks for Electron applications in a

comprehensive and fast manner for Electron applications in the production environment.

It defends against remote attackers attempting to inject malicious payloads into Electron

applications and safeguards users who unknowingly copy and paste such payloads. These

attacks exploit vulnerabilities in Electron applications and their dependencies, allowing

remote attackers to control the victim’s device or steal their digital assets. Therefore,

applications that deliberately accept and execute arbitrary user inputs are out of scope.

Importantly, in the context of Electron applications, the application, its dependencies, and

vendors are not intentionally malicious but rather vulnerable. Therefore, issues related to

the software supply chain attacks fall outside our scope. Moreover, COINDEF does not

require the code of Electron applications to be human-readable. In other words, COINDEF

takes the code released in the production build as is, which is usually minified, bundled, or

obfuscated.

4.3.2 Design Overview

Figure 4.3 illustrates the high-level work flow of COINDEF. COINDEF takes in as an

Electron application in the learning phase to construct its AST profiles for enforcement. In

the enforcing phase, COINDEF validates the AST profiles generated at runtime against the

learned ones. Unlearned AST profiles encountered at runtime are handled according to

predefined security policies (detailed in subsubsection 34) based on the protection mode:

54

Application

Security
Policies

AST Profile
Generator

Learned
AST Profiles

Runtime
AST Profiles

Runtime
Enforcer

Inputs Learning Enforcing

Figure 4.3: COINDEF Design Overview.

security-first or usability-first. To overcome the challenges outlined in subsection 4.2.2,

COINDEF operates in the language interpreter, a central place where all JavaScript code

(i.e., both web and native) must pass through. This placement not only ensures

comprehensive protection (C1) but also is tamper-proof (C3) from remote attackers since

COINDEF has higher privileges than the JavaScript code for residing in the interpreter.

Furthermore, COINDEF takes advantage of the existing JavaScript code parsing process to

get an almost free ride for constructing AST profiles, incurring negligible runtime

overhead (C2).

4.3.3 AST Profile

A good AST profile should only block maliciously injected code while allowing

legitimate ones. In the context of code injection, an AST profile in COINDEF is an

abstract representation of the source code that is either existing legitimate static code or

dynamically generated with legitimate inputs from remote sources (e.g., user inputs,

network responses) given its running context. The naive code-signing method can

guarantee the legitimacy of the static code but cannot accommodate the dynamically

generated code that can change the signature frequently. To achieve this goal, COINDEF

builds AST profiles by constructing context-aware AST structural signatures.

55

Table 4.1: Data Nodes for AST Structural Signature.

Node Type Parent Type Data Type

literal any string or number
name property string or number
key property string or number

value property
object or array literal,
string, or number

variable proxy not (call or assign or new) string

AST Structural Signature

To generate such AST structures for any code, whether hard-coded (i.e., static) or

dynamically generated (i.e., dynamic), COINDEF extracts each AST node’s type, value,

and position when the interpreter parses the source code. To allow varying legitimate user

inputs for dynamic code, COINDEF replaces the concrete values with placeholders for

certain data nodes. Table 4.1 lists all types of data nodes in an AST including the value of

a literal, name, or key node which can only be a string or a number; the value of a value

node under a property parent can be an object literal, an array literal, a string, or a number.

By design, none of these nodes should introduce function definitions or invocations in an

AST. If controlled by an attacker, a variable proxy (i.e., the variable’s identifier) can

be pointed to a function or an object. Therefore, COINDEF only allows the value to

change when the variable proxy node is not under a call, new, or assign expression.

Such an AST structural signature prevents the (malicious) inputs from defining a new

function, overwriting the prototype functions, calling existing functions, or executing code

directly, which simply searching for function-related operations cannot achieve. For

instance, given JavaScript code that is vulnerable to code injection attacks:

eval(`cl.${color}()`), the dynamic input is color. The expected legitimate

color can be a literal (e.g., red). When eval executes, an AST is generated as shown

in Figure 4.4a. However, attackers can change the value of color from red()to

red();exec(’cmd’)//, resulting in arbitrary code execution and a different AST

56

structure as highlighted in Figure 4.4b. By checking the code’s AST structural signature in

Figure 4.4b with the baseline in Figure 4.4a, COINDEF can detect and reject the malicious

code, exec(’cmd’). Since COINDEF does not consider node’s values for

property.name, any legitimate, expected inputs to color (e.g., yellow, green)

can pass the validation.

Detecting only function invocations in the AST is insufficient because injected code can

execute directly without invoking existing functions. To address this, our AST structural

signature captures both function-related operations and direct code execution paths. This

comprehensive approach ensures that even non-invoked, standalone code injections are

detected, enhancing the robustness of our protection by accounting for all possible injection

vectors within the AST structure.

Execution Context Annotation

The execution context is essential for Electron applications to distinguish the privileges

of web and native code and generate finer-grained AST profiles for mitigating mimicry

attacks [100]. For example, suppose the attackers can leverage Electron’s vulnerabilities

(e.g., CVE-2022-29247 [101]) to access the native environment through the web layer. In

that case, they can directly import NodeJS libraries as what has been defined in the native

code to pass the AST structural signature validation. Based on the least-privilege principle,

COINDEF isolates the AST profiles based on their running processes (i.e., MainProcess,

BrowserWindow, and SubFrames) and annotates each AST profile with the process

context and code context, including the caller information and callsite location if it is an

eval-like call, exemplified in Figure 4.5. To facilitate fast enforcement, COINDEF also

divides the AST profiles into two categories, static and dynamic, per process.

Static Profile. COINDEF considers an AST profile static when the interpreter interprets a

static script file and functions defined in the script file. For instance, when Electron

renders an HTML page, the HTML parser invokes V8 to compile code defined in

57

cl.red();

Type:call

Type:var
Value:cl

Type:property

Type:name
Value:red

func root

(a) Legitimate Code.

(a): [t_call, t_property, t_var,
v_cl, t_name, v_placeholder]

(b): [t_call, t_property, t_var,
v_cl, t_name, v_placeholder,
t_call, t_var, v_exec, t_literal,
v_placeholder]

Type:call

Type:var
Value:exec

Type:literal
Value:cmd

Type:call

Type:var
Value:cl

Type:name
Value:red

cl.red();exec('cmd')//();

func root

Type:property

(b) Malicious Code.

Figure 4.4: AST Structural Signatures of Legitimate and Malicious Code. An example
taken from eval(cl.‘${color}()‘) [99] shows that code injection alters the AST
structural signature.

<script src=‘‘A.js’’>. Currently, the requester is the HTML parser; therefore,

static profiles have no execution context other than the running process. Due to the lazy

compilation policy1, not all JavaScript code in a script file is interpreted immediately. That

is, some functions, if not invoked immediately, are only parsed and compiled when other

code invokes them. Specifically, while parsing the source code of a script, the parser will

skip some functions that are not immediately invoked and remember their names and

scopes. When those skipped functions are invoked, the parser will parse the function body

1https://v8.dev/blog/preparser

58

Runtime
Context

Annotation

Type:call

Type:var
Value: cl

Type:property

Type:name
Value: red

AST Structure AST Profile
Process: MainProcess
Caller: r16:c9@index.js
Eval: true
Type: dynamic
Callsite: 118
URL: NA
AST:[t_call, t_property, t_var,
v_cl, t_name, v_placeholder]

Figure 4.5: An AST Profile Example.

to generate bytecode for them. At this time, the requester is a JavaScript function.

However, these functions are defined in the static script file and are not changeable.

Therefore, COINDEF still considers AST profiles of such lazily compiled functions static

after checking their original script with local files.

Dynamic Profile. COINDEF considers an AST profile dynamic when the code comes from

dynamic code generation APIs (e.g., EventHandler, eval, document.write),

obtained from the code injection sinks defined in CodeQL [102]. Beyond the code injection

sinks, COINDEF also considers the scenario where one script includes or imports another.

For example, when script A includes script B by appending another <script> tag or runs

eval-like or importScript APIs to execute code dynamically, COINDEF considers

the AST profile of Script B or the dynamically evaluated code as a dynamic profile. Note

that dynamically generated code also complies with the lazy compilation policy. COINDEF

uses the same method to assign types to functions defined in dynamically generated code.

Figure 4.5 shows that an eval-like API is invoked at the 118th character of a caller

function defined at row 16, column 9 in the file “index.js.” Since this code is dynamically

generated, the profile type is “dynamic” and URL is marked as “N/A.” Because

property.name is a data node, the value is marked as a placeholder.

59

4.3.4 AST Profile Collection

Modeling an Electron application can be done either statically or dynamically. However,

the accuracy of static analysis decreases significantly on bundled, minified, or obfuscated

JavaScript code, which is often the code format of Electron applications for production

release. Moreover, static analysis cannot provide an accurate execution context in the

enforcing stage. For example, without running the code, there is no way to be sure what

process it will be running in. Therefore, we opted for a hybrid learning approach to build

AST profiles of an application for COINDEF. Static profiling guarantees the completeness

of the application, while dynamic profiling complements it by annotating the contextual

information and recording any dynamic code execution at runtime.

COINDEF collects AST profiles at the function level to preserve AST structural

integrity within the execution context. This choice aligns with the JavaScript interpreter’s

compilation process, where functions serve as the fundamental units for execution. In line

with this design, COINDEF enforces policies by letting the interpreter return a noop

function when an AST profile is determined invalid; otherwise, it returns the original

function object. With this function-level granularity, COINDEF learns static profiles PS

through static profiling (S) and dynamic profiles PD through dynamic profiling (D) for an

Electron application (A), which together is denoted as PA = PS ∪ PD.

Static Profiling. COINDEF customizes D82, a shell interface to V8, to exclusively invoke

V8’s parser and generate AST structural signatures. This customization disables the lazy

compilation described in subsubsection 4.3.3, forcing the parser to build the AST

structural signature for every JavaScript function defined in the local files. This enables

static profiling to provide COINDEF with a comprehensive model of the application.

Specifically, COINDEF obtains PS as:

PS = {pi,j = G(i, j)|∀Fi ∈ A,∀fj ∈ Fi}
2https://v8.dev/docs/d8

60

where PS is the set of all AST structural signatures collected from every JavaScript function

in every file of A and G is the AST structural signature generation procedure. Fi is a

JavaScript file contained in A’s installation package, and fj is a JavaScript function defined

in Fi. i is the URL (e.g., file://path) of a JavaScript file and j is the location (i.e.,

row and column) of a JavaScript function. During dynamic profiling, pi,j is annotated with

runtime context based on i. It is important to note that PS is a complete set of all JavaScript

functions defined in A.

Dynamic Profiling. COINDEF comprehensively exercises each application to supplement

the static profiles (PS) using a semi-automated approach that simulates user interactions,

similar to other state-of-the-art techniques [21, 103, 104]. This approach begins with a

crawler that systematically interacts with the application’s UI, clicking on buttons and

menus and typing text. To improve the performance of this approach by covering more

complex features, we supplement it with manual exercising based on the application user

manuals If available, we also employ end-to-end test cases to simulate user interactions

and trigger features, ensuring we cover all relevant functionalities. Given a dynamic code

trigger action T in such a dynamic profiling procedure, COINDEF obtains:

PD = {pi,j = G(i, j)|Cj ∈ Fi, Fi ∈ A, T (i, j) is triggered}

where G is the AST structural signature generation procedure and Cj denotes dynamic code

execution APIs within the JavaScript file Fi, which are discovered during static profiling.

4.3.5 Runtime Enforcement

In the enforcing phase, COINDEF validates AST profiles generated at runtime (R = RD +

RS , where RD and RS are dynamic and static AST profiles generated at runtime) against

those learned in the learning phase (P = PD + PS). Any unlearned profiles, defined as

61

U = R− P , are handled according to predefined security policies. Specifically,

U = (RD +RS)− (PD + PS) = (RD − PD) + (RS − PS)

Since PS is a complete set of JavaScript functions in A, RS − PS = ∅, concluding

U = RD − PD. This unlearned set (positives) U includes true positives caused by attacks,

denoted as T , and false positives caused by unlearned features, denoted as F . The goal of

the enforcement is to block T and accommodate F with best-effort under the premise of

security-first following security policies.

As outlined in algorithm 1, the enforcer takes in as the current runtime AST profile r

and the learned AST profiles P . If r is a static profile, COINDEF simply checks it against

PS by its URL and callsite (line 2-line 6). When r is a dynamic profile, COINDEF tries

to find a match in PD based on its URL, caller, and callsite. If COINDEF can find the

learned AST profiles for the given execution context, it lets r proceed as long as R.ast is

validated (line 7-line 11). Otherwise, COINDEF applies the predefined security policies on

r to determine its security impact and proceed accordingly (line 12-line 33).

Security Policies for Unlearned AST Profiles

We define the security policies for COINDEF based on Electron’s existing security model

and best practices. These policies focus on assessing the data flow for imported dynamic

code, the execution context in which this code is intended to run, and the security origins

of remote resources. Additionally, COINDEF employs two working modes: security-first

and usability-first to balance the security and usability.

First, COINDEF performs a data flow analysis on r along its call stack trace to determine

whether its source code consists only of locally defined variables. For instance, a network

response is considered a remote variable, as it is not defined within the local scope, whereas

a hard-coded string is defined locally. Based on this analysis, COINDEF assigns r a scope

62

designation of local or remote (line 12). If r is confirmed to have a local scope,

meaning the source code is concatenated with hard-coded strings intended by developers,

COINDEF permits r to proceed regardless of the running process (line 15-line 17).

Next, COINDEF checks the security origin of r, assigning it one of three values:

same, cross, or empty (line 13), where empty indicates that the dynamic code is

generated through eval or Function. Simultaneously, COINDEF loads allowed

security origins as defined in the application, obtained through the hybrid profiling process

(line 14). COINDEF then examines the process in which r is intended to run to determine

its privilege level. If r is in the MainProcess process, COINDEF rejects it based on a

zero-trust security policy (line 18-line 20). If r is in the BrowserWindow process and

its security origin differs from that of BrowserWindow, COINDEF also rejects it. If the

security origin matches, COINDEF consults a user-defined property (i.e.,

SameOriginInBrowser) to decide whether to permit same-origin content in

BrowserWindow, defaulting to false (line 21-line 26). For SubFrames, COINDEF

denies r if the user has disabled SubFrames, which is disabled by default; otherwise,

COINDEF allows r only if its security origin matches one of the allowed security origins

(line 27-line 33).

4.3.6 Security Analysis

Now, we formalize the security analysis as follows. Definitions.

Tmodel: an AST representation of the program execution learned in the profiling phase.

Truntime: an AST resulting from runtime input (e.g., user input, dynamic code) in the

enforcing phase.

V: the set of Tmodel learned from the whole program, and Tmodel ∈ V .

C: the execution context of a Tmodel at a given program point, and Tmodel ∈ VC,VC ⊆ V .

63

DataNode ⊂ T : the set of leaf nodes representing data values (e.g., string literal) expected

to vary at runtime.

ExecNode ⊂ T : the set of internal nodes representing executable logic (e.g., call

expression).

IntermediateNode ⊂ T : the set of internal nodes representing expressions and statements

(e.g., block statement).

Children(n): each node n ∈ IntermediateNode has a sequence of children forming a

subtree, denoted by Children(n) = [n1, n2, . . . , nk].

AST Structural Signature Enforcement. COINDEF enforces the AST structural

signature by the function:

Match(Tmodel, Truntime) =
k∧

i=1

match(mi, ri)

where COINDEF requires that ∀mi ∈ Tmodel, ri ∈ Truntime, match(mi, ri) = true. We

denote the type of a node n ∈ T as:

type(n) =


data if n ∈ DataNodes

exec if n ∈ ExecNodes

intermediate otherwise

∀mi ∈ Tmodel, ri ∈ Truntime, the value of match(mi, ri) function is set to the following

conditions:

1. Type mismatch is disallowed:

type(mi) ̸= type(ri)⇒ match = false

64

2. Data nodes must match in type:

 type(mi) = data

type(ri) = data
⇒ match = true

3. Exec nodes must match exactly:

 type(mi) = exec

type(ri) = exec
⇒ match = (mi == ri)

4. Intermediate nodes must match recursively on their children:



type(mi) = intermediate

children(mi) = [mi1 ,mi2 , . . . ,mik]

type(ri) = intermediate

children(ri) = [ri1 , ri2 , . . . , rik]

⇒ match(mi, ri) =
k∧

j=1

match(mij , rij)

Execution Context Enforcement. COINDEF enforces that any runtime AST must

conform to the allowed structure for its execution context:

∀ Truntime,∃ Tmodel ∈ VC

such that Match(Tmodel, Truntime) = true at Context C.

Now, consider a code injection gadget on the DOM,

element.appendChild(user inputs). Let U be the user inputs, If

COINDEF observes only non-script DOM nodes from U during the learning phase,

65

COINDEF obtains VC = ∅, where C is the execution context of this API call. Then,

COINDEF will block any injected scripts since ¬(∃ Umodel ∈ VC). If U contains script

elements in the learning phase, then Umodel ∈ VC . Enforcement then permits only

structurally consistent ASTs with variability restricted to data leaf nodes:

∃ Umodel ∈ VC ∧ Match(Umodel,Uruntime)

Thus, the attacker’s freedom is limited to modifying literal values (e.g., strings, constants)

without the ability to define, modify, or invoke arbitrary logic. Any injected payload that

deviates from the learned script structure will be blocked since:

Match(Umodel,Uruntime) = false at Context C.

For cases where input validation cannot be definitively resolved–due to incomplete

learning, ambiguous context, or mixed data types–COINDEF defers to a predefined set of

security policies (??). These policies combine static and dynamic analyses, such as local

data flow inspection and runtime execution context profiling, to maintain security

guarantees while supporting usability.

4.3.7 Implementation

As illustrated in Figure 4.6, COINDEF integrates instrumentation hooks into V8’s

interpreter to gather AST node information, modeling both static and dynamic code

behaviors.

When code is processed, the language parser tokenizes it and constructs two objects:

script info and parser info. These objects contain metadata about the script,

including the AST, source location, text range, and the origin of the code (static or

dynamic). Before bytecode generation begins, COINDEF collects contextual information

by examining the JavaScript stack frames provided by V8, selecting the top frame as the

66

AstVisitor

code parser

script_info

call stack

parser_info

Hooked

Hooked

caller
is_eval,
location,
source

AST

extract node type,
value, and position

Interpreter

AST
Profile

Code
Context

Process
Context

AST
Structure

Figure 4.6: AST Profile Hooks Implementation.

caller. It extracts the dynamic code’s location if sourced from eval-like APIs to establish

the code context. During bytecode generation, COINDEF hooks into the base

AstVisitor functions to extract node type, value, and position within the AST. Note

that COINDEF does not profile internal JavaScript functions from NodeJS and Electron, as

these are loaded before the user program and are immutable. To annotate processes,

COINDEF utilizes hooks in Electron’s web frame delegates. V8’s Isolate represents

isolated instances of the V8 engine, with the main process running NodeJS’s JavaScript

context and browser windows running standard JavaScript with additional Electron APIs.

By hooking into Electron, COINDEF identifies the process creating the Isolate and

annotates the process context accordingly.

The modifications for AST profile generation and enforcement are minimal, comprising

fewer than 150 lines of code in V8 and an additional 500+ lines in two self-contained C++

files for logging and validation.

4.4 Evaluation

67

Algorithm 1: AST Profile Enforcement.
Data: Current Runtime AST Profile r, Learned AST Profile P , Security Policies S
Result: Whether to generate the function object

1 begin
// r is exemplified in Figure 4.5.

2 if r.type == static then
3 PS ← a nested hash map keyed by url, callsite for r.process;
4 p← PS .find(r.url, r.callsite);
5 return p.validate(r.ast);
6 end
7 PD ← a nested hash map keyed by url, caller, callsite for r.process ;
8 ps← PD.find(r.url, r.caller, r.callsite);
9 if ps ̸= ∅ and ps.validate(r.ast) then

10 return true ;
11 end

// security policy for other cases.
// local or remote dataflow scope of r.

12 scope← localDataFlow(r) ;
// empty-, cross- or same-origin

13 origin← originCheck(r.url) ;
// obtained from hybrid profiling.

14 allowedOrigins← S.allowedOrigins ;
15 if scope == local then
16 return true;
17 end
18 if r.process == MainProcess then
19 return false;
20 end
21 if r.process == BrowserWindow then
22 if origin != same then
23 return false;
24 end

// S.SameOriginInBrowser is false by default.
25 return S.SameOriginInBrowser;
26 end
27 if r.process == SubFrames then

// S.SubFrame is false by default.
28 if not S.SubFrame then
29 return false;
30 end
31 fOrigin← frameOrigin(r.caller);
32 return fOrigin ∈ allowedOrigins;
33 end
34 end

68

Ta
bl

e
4.

2:
A

D
iv

er
se

Se
to

fA
pp

lic
at

io
ns

V
ul

ne
ra

bl
e

to
C

od
e

In
je

ct
io

n
an

d
R

C
E

A
tta

ck
s.

#
A

pp
lic

at
io

n
Vu

ln
er

ab
le

Ve
rs

io
n

E
le

ct
ro

n
Ve

rs
io

n
L

in
e

of
C

od
e

G
itH

ub
St

ar
s

R
ef

er
en

ce
In

je
ct

io
n

D
es

cr
ip

tio
n

A
tt

ac
k

Ve
ct

or
s

1
M

ST
ea

m
s

v1
.4

.0
0.

48
55

v8
.5

.5
18

7,
29

5
N

/A
[9

1]
a

m
es

sa
ge

to
ac

hi
ev

e
te

m
pl

at
e

in
je

ct
io

n
at

ta
ck

s
T

I,
S-

X
SS

,R
C

E
2

Sl
ac

k
v4

.3
.2

v7
.1

.9
15

3
(m

in
ifi

ed
)

N
/A

[8
8]

an
em

be
dd

ed
fr

am
e

op
en

in
g

a
m

al
ic

io
us

w
eb

pa
ge

O
R

,R
C

E
3

D
is

co
rd

v0
.0

.1
4

v1
1.

4.
2

10
,9

32
N

/A
[8

9]
a

em
be

dd
ed

fr
am

e
op

en
in

g
a

m
al

ic
io

us
w

eb
pa

ge
O

R
,P

P,
R

C
E

4
V

SC
od

e
v1

.6
3.

1
v1

1.
2.

1
3,

11
4

(m
in

ifi
ed

)
14

7k
[1

05
]a

lo
ca

lfi
le

ex
pl

oi
tin

g
m

ar
kd

ow
n

pr
ev

ie
w

M
P,

R
C

E
5

G
ra

SS
H

op
pe

r
v1

.1
.7

v1
2.

0.
6

71
(m

in
ifi

ed
)

N
/A

[2
2]

a
te

xt
re

nd
er

ed
as

H
T

M
L

in
a

po
pu

p
w

in
do

w
D

-X
SS

,R
C

E
6

A
R

D
M

v1
.4

.9
v1

1.
4.

9
11

,2
71

25
.8

k
[2

2]
a

te
xt

re
nd

er
ed

as
H

T
M

L
S-

X
SS

,R
C

E
7

Jo
pl

in
v2

.9
.1

2
v1

9.
0.

10
17

2,
19

9
36

.2
k

[1
06

]t
he

la
ng

ua
ge

in
di

ca
to

rf
or

th
e

m
ar

kd
ow

n
co

de
fo

rm
at

M
P,

R
C

E
8

B
oo

st
no

te
v0

.2
2.

0
v1

2.
0.

14
10

3,
20

3
20

.6
k

[2
2]

co
de

re
nd

er
ed

as
H

T
M

L
fo

rt
he

m
ar

kd
ow

n
co

de
fo

rm
at

M
P,

R
C

E
9

A
lta

ir-
gr

ap
hq

l
v4

.0
.1

1
v1

4.
0.

1
1,

80
4

4.
7k

[2
2]

qu
er

y
de

sc
ri

pt
io

n
re

nd
er

ed
as

H
T

M
L

S-
X

SS
,R

C
E

10
A

pp
iu

m
-d

es
kt

op
v1

.2
2.

0
v7

.1
.2

13
3

(m
in

ifi
ed

)
4.

5k
[1

07
]i

nc
om

in
g

ht
tp

re
qu

es
tr

efl
ec

te
d

as
H

T
M

L
R

-X
SS

,R
C

E
11

Si
m

pl
en

ot
e

v2
.9

.0
v9

.1
.0

20
,6

15
4.

4k
[9

4]
m

ar
kd

ow
n

fil
e

no
tb

ei
ng

pr
op

er
ly

sa
ni

tiz
ed

M
P,

R
C

E
12

B
lo

ck
B

en
ch

v3
.9

.3
v1

3.
1.

2
49

,2
80

2.
1k

[2
2]

a
fil

en
am

e
re

nd
er

ed
as

H
T

M
L

D
-X

SS
,R

C
E

13
el

ec
tr

on
-c

ru
d

v2
.8

.0
v1

0.
0.

0
1,

16
8

1.
5k

[2
2]

da
ta

ba
se

re
co

rd
s

re
nd

er
ed

as
H

T
M

L
S-

X
SS

,R
C

E
14

ar
c-

el
ec

tr
on

v1
6.

0.
1

v1
3.

1.
1

9,
97

1
1.

3k
[9

3]
H

T
T

P
he

ad
er

re
nd

er
ed

as
H

T
M

L
S-

X
SS

,R
C

E
15

vm
d

v1
.3

4.
0

v3
.0

.9
1,

97
6

1.
2k

[1
08

]m
ar

kd
ow

n
fil

e
no

tb
ei

ng
pr

op
er

ly
sa

ni
tiz

ed
M

P,
R

C
E

16
an

ta
re

s-
sq

l
v0

.5
.6

v1
4.

0.
1

25
6,

52
5

1.
1k

[2
2]

da
ta

ba
se

ta
bl

e
na

m
es

re
nd

er
ed

as
H

T
M

L
S-

X
SS

,R
C

E
17

M
ar

kd
ow

ni
fy

v1
.4

.1
v7

.2
.4

10
,3

37
86

8
[1

09
]m

ar
kd

ow
n

fil
e

no
tb

ei
ng

pr
op

er
ly

sa
ni

tiz
ed

M
P,

R
C

E
18

Po
dd

yc
as

t
v0

.8
.0

v1
1.

2.
1

2,
39

5
16

0
[1

10
]b

oo
km

ar
k

re
nd

er
ed

as
H

T
M

L
S-

X
SS

,R
C

E
19

O
hH

ai
B

ro
w

se
r

v3
.4

v8
.2

.5
2,

73
6

52
[1

11
]b

oo
km

ar
k

re
nd

er
ed

as
H

T
M

L
S-

X
SS

,R
C

E
20

Ju
ke

bo
ks

v2
.2

.2
v1

1.
2.

3
1,

36
0

23
[2

2]
fil

en
am

e
re

nd
er

ed
as

H
T

M
L

D
-X

SS
,R

C
E

A
tta

ck
V

ec
to

rs
–

T
I:

Te
m

pl
at

e
In

je
ct

io
n,

M
P:

M
ar

kd
ow

n
Pr

ev
ie

w
,O

R
:O

pe
n-

R
ed

ir
ec

t.
A

tta
ck

V
ec

to
rs

–
PP

:P
ro

to
ty

pe
Po

llu
tio

n,
R

-X
SS

:R
efl

ec
te

d
X

SS
,D

-X
SS

:D
O

M
-B

as
ed

X
SS

,S
-X

SS
:S

to
re

d
X

SS
.

N
/A

in
G

itH
ub

St
ar

s
m

ea
ns

th
ey

ar
e

no
to

pe
n-

so
ur

ce
d.

69

To evaluate COINDEF ’s effectiveness and practicability in protecting users from code

injection attacks and whether it effectively addresses the challenges presented in

subsection 4.2.2, we address the following research questions:

RQ1: How effectively can COINDEF protect users from code injection attacks and the

subsequent RCE?

RQ2: How do FP and FN impact user experience?

RQ3: What is the runtime overhead?

RQ4: How comprehensive is COINDEF compared with the SOTA tools?

To answer these research questions, we evaluate COINDEF on 20 diverse applications that

are vulnerable to code injection and RCE, using their real-world exploits. These

applications are selected for their broad representation across software categories, scales,

types of vulnerabilities, and use cases. We source them from the GitHub Advisory

Database [112], articles, and technical blogs [91, 89, 88, 105, 92].

4.4.1 Effectiveness

To address RQ1 and RQ2, we evaluate COINDEF on 20 applications with diverse code

injection vulnerabilities and report on its effectiveness in blocking all RCE exploit attempts

while only incurring non-intrusive false positives.

Diverse Code Injection Vulnerabilities

As described in Table 4.2, the code injection points of the vulnerabilities generally fall

into three categories: messages, remote resources, and markdown files, covering the

prevalent code injection attack vectors for Electron applications, including template

injection, markdown preview, open-redirect, prototype pollution, and all types of XSS.

Among these attack vectors, open-redirect is particularly threatening in Electron

applications and is not handled in prior work [22, 21], because it opens a new website and

completely takes over the BrowserWindow, resulting in legitimate call chain through

70

IPC to the MainProcess. For example, collaboration applications like MSTeams, Slack,

and Discord have injection points within the messaging feature. In the case of MSTeams,

an attacker can exploit a vulnerability in rendering the display name of a mentioned user

in a group chat to launch a code injection attack on AngularJS’s template engine. For

Slack, the injection point is a malicious file uploaded to file.slack.com and then sent to a

victim via messaging. Similarly, for Discord, attackers can inject malicious code through

messages. These two attacks leverage malicious iframes and a vulnerability of Electron to

launch an open-redirect attack to load attacker-controlled content in the

BrowserWindow, which pollutes the prototype of certain built-in functions to achieve

RCE. Some applications load remote resources and injection points can be found within

these resources. For example, in electron-crud, attackers can inject JavaScript code into

the records of the connected database to launch a Stored XSS. The malicious records

allow attackers to execute arbitrary code. Productivity applications like VSCode have

injection points within markdown files. These files may contain well-crafted HTML

payloads that are not properly sanitized. When users interact with these markdown files,

the injected code executes, leading to RCE.

Experiment Setup

The primary objective of evaluating COINDEF is to assess its effectiveness in blocking

code injection attempts while allowing legitimate user inputs. To ensure realistic testing,

we use the vulnerable versions of each application listed in Table 4.2, ensuring that all code

injection attacks constitute novel (i.e., 0-day) attacks for each application and COINDEF is

agnostic to these attack vectors.

Note that all the attack payloads have been confirmed to work and are modified

without causing harm to the end host but triggering the logs that indicate it is an attack.

Specifically, for applications exploited by malicious messages, we used an MITM proxy

to inject malicious payload into the messages. For example, to exploit MSTeams, we first

71

logged in MSTeams with COINDEF enabled as a potential victim. Then, we used another

account to send a message to the potential victim. The message was hijacked and injected

with a malicious payload. Then, we observed whether the malicious payload was executed

to log the compromise indicator for each step in the attack chain. We injected code into

the remote content for applications that exploit them. For example, to exploit

electron-crud, we created a MySQL database and inserted a malicious record. Then, we

use electron-crud to read the malicious record to compromise the application. For

applications exploited by markdown previews, we crafted malicious markdown files and

opened the files with those applications.

Learning Phase

Using the methods outlined in subsection 4.3.4, we collect AST profiles for all 20

applications. Table 4.3 presents the size of these AST profiles alongside the human effort

required for their collection, measured in hours. The AST profiles are organized by

process (i.e., MainProcess, BrowserWindow, and SubFrames) and type (i.e.,

static or dynamic). Notably, only three collaborative applications (i.e., MSTeams,

Slack, and Discord) and VSCode exhibit dynamic code in SubFrames. This is because

collaborative applications include “In-App View” features, while VSCode executes

extensions in isolated environments. Our results show that 18 out of the 20 applications

generate and run code dynamically, with more complex applications producing and

executing greater amounts of dynamic code. The applications also run more dynamic code

within the BrowserWindow process compared to MainProcess, which is expected

since users interact primarily through the UI components, triggering dynamic code

generation in BrowserWindow. Notably, achieving a converged state of learned AST

profiles required approximately 4 hours for complex applications and about 30 minutes for

simpler ones, as shown in the last column of Table 4.3. In the converged state, the number

of AST profiles no longer increases, indicating that our exercising strategies have fully

72

Table 4.3: AST Profiles Collected in the Learning Phase.

Application Main Process Browser Window Sub-Frames Human
HoursSt. Dyn. St. Dyn. St. Dyn.

MSTeams 3,034 67 16,591 127 0 32 4
Slack 4,115 37 15,682 198 0 56 4
Discord 1,491 3 24,619 649 0 82 4
VSCode 2,808 135 21,806 310 0 9 2 (0.1∗)
GraSSHopper 831 42 5,798 189 0 0 1
ARDM 1,311 75 4,486 3 0 0 1
Joplin 873 73 5,734 53 0 0 2 (0.1∗)
Boostnote 710 24 9,226 1 0 0 1
Altair-graphql 1,439 1 10,515 13 0 0 1
Appium-desktop 2,243 11 7,315 53 0 0 1
SimpleNote 1,337 2 4,234 13 0 0 1 (0.1∗)
BlockBench 3,378 24 24,773 67 0 0 1
electron-crud 1,372 0 11,893 1 0 0 1
arc-electron 1,033 0 11,449 11 0 0 1
vmd 773 0 8,453 34 0 0 0.5
antares-sql 1,379 2 5,551 125 0 0 1
Markdownify 732 0 1,142 1 0 0 1
Poddycast 1,091 0 1,864 1 0 0 0.5
OhHai Browser 963 0 2,435 0 0 0 0.5
Jukeboks 1,268 0 912 0 0 0 0.5
∗ time cost with automated end-to-end testing. St.: Static. Dyn.: Dynamic.

covered the necessary code paths.

Enforcing Phase

When learning is complete, we enter the enforcing mode for each application and use

them as our daily drivers for a month, during which we attack each application. We

evaluate COINDEF based on the two security modes defined in COINDEF. The default

mode, security-first, disables SubFrames from loading cross-origin resources (i.e.,

S.SubFrame = false) and rejects unknown same-origin content in

BrowserWindow (i.e., S.SameOriginInBrowser = false), as outlined in

algorithm 1. The alternative mode, usability-first, permits both cross-origin resource

loading in SubFrames and same-origin content in BrowserWindow to prioritize

73

Table 4.4: Effectiveness of COINDEF under Enforcement.

Application Code
Cov.∗

of
Attacks

Security-first Usability-first Overhead
% (ms)FP FN FP FN

MSTeams 77.68% 3 0 0 0 0 6.07% (39)
Slack 84.71% 5 2 0 0 1 9.31% (19)
Discord 78.36% 6 10 0 0 1 6.79% (701)
VSCode 86.92% 4 5 0 0 0 1.83% (4)
GraSSHopper 88.12% 3 0 0 0 0 4.18% (12)
ARDM 82.57% 2 0 0 0 0 4.11% (16)
Joplin 79.28% 6 0 0 0 0 5.70% (63)
Boostnote 95.51% 3 0 0 0 0 2.71% (13)
Altair-graphql 75.58% 5 0 0 0 0 4.64% (18)
Appium-desktop 79.27% 3 0 0 0 0 4.49% (80)
SimpleNote 92.04% 3 0 0 0 0 2.97% (13)
BlockBench 78.61% 2 0 0 0 0 5.67% (48)
electron-crud 79.31% 7 0 0 0 0 2.51% (9)
arc-electron 93.27% 5 0 0 0 0 1.72% (11)
vmd 91.58% 3 0 0 0 0 3.55% (13)
antares-sql 85.49% 8 0 0 0 0 3.87% (9)
Markdownify 92.31% 4 0 0 0 0 2.90% (12)
Poddycast 100% 2 0 0 0 0 1.04% (2)
OhHai Browser 100% 2 0 0 0 0 2.35% (7)
Jukeboks 100% 3 0 0 0 0 2.71% (11)

Mean 87.03% 3.95 0.85 0 0 0.10 3.96%
∗: code coverage during enforcement testing.

flexibility and usability.

Code Coverage During Enforcement Testing. To fairly evaluate the defensive

mechanism for COINDEF, we adopt function-level code coverage on first-party code, as

defined by V8 [113]. This choice is motivated by the well-documented bloat of JavaScript

dependencies, where developers may import a single function from a large module,

resulting in low overall code coverage if third-party code is included. Moreover, we focus

on function-level rather than block-level code coverage, as COINDEF enforces the

integrity of the AST profile for JavaScript functions, not their individual blocks. Once a

function passes validation, it is allowed to execute in full. We use Acorn [114], a popular

JavaScript parser, to statically count the number of functions in the first-party code as our

74

ground truth. During the testing phase, we log the number of functions invoked to

calculate the test coverage. As shown in Table 4.4, the applications were exercised

thoroughly. For simple and small applications (three out of 20), achieving 100% code

coverage was straightforward. For medium size applications (five out of 20), we achieved

over 90% code coverage. For more complex applications (12 out of 20), such as Slack and

VSCode, we achieved over 75% code coverage, indicating robust test coverage across

varying application complexities.

Protection Result. As illustrated in Table 4.4, we executed a total of 79 attacks across 20

applications, with each application facing between two and eight targeted attacks. Each

individual attack focused on a specific code injection point. However, in some cases,

reaching RCE required a series of attacks in a kill chain, as illustrated in subsection 4.2.1.

For instance, six attacks launched against Discord formed two separate attack sessions,

each involving three interdependent attacks (i.e., open-redirect, prototype pollution, and

RCE) that combined to achieve RCE. In the security-first mode, COINDEF successfully

blocked all code injection attempts for all 20 applications with few false positives. In

usability-first mode, COINDEF allowed two code injections to bypass protection in two

applications but still prevented the final RCE with zero false positives. This result

suggests that for applications primarily used locally without loading remote content (e.g.,

GraSSHopper, SimpleNote, Markdownify), COINDEF reliably prevents code injection

attacks under both modes. For applications (e.g., Slack, Discord) with more interactive

features, such as “In-App View” functionality, COINDEF may miss one attack targeting

SubFrames but it nonetheless delivers robust protection by securing critical processes in

the BrowserWindow and MainProcess contexts, blocking any code injections into

these processes and subsequent RCE attacks (RQ1).

False Positives. In our evaluation, we observed 17 false positives in the security-first mode

across 3 of the 20 applications tested, while the usability-first mode produced zero false

positives. These 17 cases fall into two categories: 1) unlearned features provided by remote

75

Figure 4.7: The False Positive Example Observed on Discord. Although the “In-App View”
video player is disabled, the user can still click the link to open the video using a browser.

content and 2) unlearned updates. Specifically, 12 false positives resulted from “In-App

View” features in Slack and Discord, such as video playback or file previews within isolated

SubFrames. In security-first mode, scripts running within SubFrames are disabled,

blocking this content, as illustrated in Figure 4.7. Although this leads to an empty video

window, users can still click the link to open it in an external browser. The remaining

five false positives occurred in VSCode due to extension updates that introduced new script

files. We suggest that users can temporarily enable learning mode for these extensions to

gather the necessary AST profiles for these updates.

False Negatives. In the usability-first mode, we observed two false negatives, while the

security-first mode produced zero false negatives. Both false negatives stemmed from

exploits targeting “In-App View” features. Specifically, these attacks injected code into

trusted SubFrames, attempting to escalate privileges by controlling a

BrowserWindow. Although the injected code in SubFrames succeeded in accessing a

BrowserWindow object, COINDEF blocked further code execution in the

BrowserWindow process due to its strict security enforcement upon the

BrowserWindow process. Therefore, COINDEF prevented the RCE even though the

attack succeeded in the initial stage in SubFrames.

The FP and FN analysis suggest that the impact on the user experience is minimal

76

(RQ2). If the users want to enjoy the “In-App View” features, they can opt-in for the

usability-first mode, in which the security in the main application is still guaranteed.

4.4.2 Runtime Overhead

To answer RQ3, we conducted two runtime performance evaluation experiments to assess

the runtime overhead introduced by COINDEF to applications. Both experiments were

performed on Ubuntu 22.04, equipped with an Intel CPU E5-2680v3 operating at 2.50GHz

and 64 GB DDR4 memory running at 2133 MHz.

Page Load. In the first experiment, we measured the overhead caused by COINDEF during

the page loading process, which is in line with prior work [15, 20, 39, 19, 16, 21]. We

initiated a timer when the navigationStart event was triggered and concluded the

measurement when the loadEventEnd event was fired on the initial web page. This time

difference represented the page load time. As some applications load remote websites as

their first page (e.g., Slack and Discord), we ran the application once before testing to warm

up the network cache, thus reducing the impact of network latency. For more complex

applications like VSCode, which encompass multiple pages/frames, we only measured the

overhead for the main frame (e.g., the editor window for VSCode).

To calculate the overhead for page load, we executed the application ten times with and

without COINDEF enabled, selecting the median time cost. As indicated in the last column

of Table 4.4, COINDEF introduced an average overhead of only 3.96%, with the highest

overhead of 9.31% observed for Slack and the lowest of 1.04% for Poddycast. Although

the overhead for Slack appears relatively high, the additional time contributed by COINDEF

is merely 19 milliseconds. Notably, COINDEF exhibits higher overhead for applications

that require network connections, such as MSTeams and Discord. For instance, Discord

performs update checks before loading the first page, and our testing environment’s first

page comprises rich content with 57 script files sourced from discord.com. These 57 script

files triggered validation for over 20,000 AST profiles.

77

Table 4.5: Runtime Overhead During User Interaction.

Time (ms) Runs Min Median Mean Max

Baseline 10 111.9 116.9 116.63 119.9
COINDEF 10 113.9 116.9 117.02 120.1

Overhead 1.78% 0.00% 0.33% 0.17%

Interaction. Consistent with previous work [22], we utilized the Speedometer 2.0

benchmark suite [115] to measure the overhead for user interactions. The Speedometer

2.0 benchmark suite comprises 17 uniquely implemented TodoMVC applications. The

benchmark simulates user actions of adding, completing, and removing items from a to-do

list. In this process, the benchmark sequentially executes the 17 TodoMVC applications.

For each application, the test begins by adding 100 items one at a time, with each item

containing some content. Subsequently, the test iteratively marks each item as complete.

Finally, the benchmark concludes by removing all the items individually. We repeated this

process ten times, with and without COINDEF. As shown in Table 4.5, the time cost for

running all 17 TodoMVC applications ranges from 111.9 milliseconds to 119.9

milliseconds for the baseline version of Electron, while it is between 113.9 milliseconds

and 120.1 milliseconds. The interactive overhead is as small as 0 and as large as 1.78%.

By design, COINDEF is not supposed to introduce runtime overhead for user interaction

because COINDEF does not hook in function calls. Therefore, we applied all the data

samples to measure their confidence intervals and came to the conclusion that these two

sample sets come from the same distribution, which indicates that COINDEF does not

introduce any runtime overhead during user interactions. Note that in scenarios where the

application loads remote scripts, there will be minimal overhead as we measured for app

startup (shown in Table 4.4). However, compared with the network latency during user

interaction, such milliseconds overhead is negligible.

Storage. The storage overhead grows linearly (i.e., O(n) where n is the number of functions

defined in the app). The largest one (Discord) is around 2 MB on disk and around 10 MB

78

Table 4.6: COINDEF Compared With the State-of-The-Art.

Attack
Vectors

of
Attacks

SYNODE [29] DOMTYPING [22] XGUARD [21] COINDEF∗

FP FN FP FN FP FN FP FN

Discord
OR 1 0 1 0 1 0 1 1 0
PP 1 0 1 0 1 0 1 0 0

RCE 1 0 1 0 1 0 0 0 0

jukebox
D-XSS 1 0 1 0 0 0 1 0 0
RCE 1 0 1 0 0 0 0 0 0

AllinOne†
D-XSSD 2 0 2 1 0 0 2 0 0
D-XSSE 2 1 0 0 2 0 2 0 0
S-XSSD 2 0 2 1 0 0 2 0 0
S-XSSE 2 1 0 0 2 0 2 0 0

OR 2 0 2 0 2 0 2 1 0
PP 1 0 1 0 1 0 1 0 0

RCE 10 0 6 0 6 2 0 0 0

Total CI 14 2 10 2 9 0 14 2 0
Total RCE 12 0 8 0 7 2 0 0 0

CI-Code Injection, OR-Open Redirect, PP-Prototype Pollution, D-: DOM-based, S-:Stored,
XSSD: XSS via DOM Manipulation, XSSE : XSS via dynamic code execution.
†: 14 code injection attacks leading to 12 RCE. PP does not lead to RCE directly.
∗: in the security-first mode

in memory, indicating this overhead is negligible.

4.4.3 Comparison To State-of-The-Art

To answer RQ4, we compare COINDEF with the most relevant state-of-the-art solutions

that either directly protect Electron applications or can be extended to do so. Based on

our research, we identified three SOTA solutions: SYNODE, XGUARD, and DOMTYPING.

While SYNODE was originally designed to protect NPM modules only, it can be extended to

address RCE threats in Electron applications. XGUARD and DOMTYPING are specifically

designed for Electron applications.

Experiment Setup. For a representative comparison, we selected three applications:

Discord, a complex application discussed in subsection 4.2.1; Jukeboks, a simpler

79

application; and a custom-built application (i.e., AllinOne) that incorporates a range of

attack vectors, including XSS, OR, PP, and RCE. Specifically, we derived code injection

attacks based on the CVEs identified in our evaluation dataset and the XSS cheat sheet

from OWASP [116] into AllinOne. These attacks include DOM-based XSS via DOM

manipulation (D-XSSD) and dynamic code execution using eval (D-XSSE), Stored XSS

through DOM manipulation (S-XSSD) and dynamic code execution using eval

(S-XSSE), open redirect (OR) from a SubFrame, prototype pollution (PP), and the final

RCE with each code injection attack leads to except for PP. In total, the AllinOne contains

11 code injection points leading to 10 RCE attacks. Notably, we set COINDEF to the

default security-first mode for this comparison.

Result. We present the comparison result in Table 4.6. SYNODE failed to block 10 code

injection attacks, eight of which ultimately resulted in RCE. This is because SYNODE

cannot cover code injection through DOM modifications including open-redirect.

Moreover, SYNODE produces two false positives for dynamic code execution through

eval due to the inaccuracy of static analysis on implicit data flow for string

concatenation. DOMTYPING failed to prevent nine code injection attacks, leading to seven

cases of RCE. this is because DOMTYPING does not handle open-redirect and dynamic

code execution. Furthermore, DOMTYPING reported two false positives for legitimate

DOM modifications. Although XGUARD successfully prevented all RCE attacks, it failed

to block all 14 code injection attempts, meaning that attacks could progress to critical

stages before being mitigated. Meanwhile, XGUARD reported two false positives due to

the incomplete call chain modeled based on minified JavaScript code. In contrast,

COINDEF provided complete protection, successfully preventing all code injection and

RCE attacks across all scenarios. This underscores COINDEF ’s comprehensive coverage

and robust defensive capabilities compared to existing solutions.

Case Study. To better understand the comprehensive protection COINDEF offers, we

elaborate the experiment process with a case study for Discord in Figure 4.8. The attacker

80

window.top.location = "//malicious.com"

2 Attacker controlled website to overwrite built-in functions to
hijack control- and data flows due to the shared context.

1 An open-redirect attack to navigate the browser window

RegExp.prototype.test = function(){return false;}
Array.prototype.join = function(){return "cmd";}
DiscordNative....getGPUDriverVersions();

function getGPUDriverVersions(){
 execa(nvidiaSmiPath, []);
}
function execa(filePath, args){
 const isExecutableRegExp = /\.(?:com|exe)$/i;
 //...
 const needShell = !isExecutableRegExp.test(filePath);
 if (needShell) {
 const shellCommand =[filePath].concat(parsed.args).join(' ');
 }
 childProcess.spawn(shellCommand, parsed.args, parsed.options);
}

3

4

5

Hijack control flow

Hijack data flow

Achieve arbitrary code execution

Sh
ar

ed

Open Redirect

Prototype Pollution

RCE

Figure 4.8: The Detailed Attack Chain on Discord.

first injected JavaScript code onto the DOM of the vulnerable website. The injected code

launched a DOM-based XSS attack to initiate the open-redirect attack. When compiling

the code for navigating the browser window of Discord, COINDEF disabled any code

running in SubFrames, and thus rejected the compilation under the security-first mode.

Subsequently, the interpreter returned a noop function, and the open-redirect attack was

prevented in step 1 . What if the user was under usability-first mode and the attacker

reached 2 ? To show that COINDEF can still provide protection and prevent the attack

from evolving into a remote code execution attack, we turned on the usability-first mode.

When compiling the malicious script inside the malicious website, COINDEF detected

that the malicious JavaScript code was going to run in the context of BrowserWindow.

Then, COINDEF pulled out the AST profiles built for BrowserWindow and found no

entries for the malicious script. Subsequently, COINDEF rejected the compilation and the

interpreter returned a noop function. If the attacker was smarter and could craft the

malicious code to pass the validation and get executed in step 2 . To simulate this effect,

we modified the code and let the attack proceed to this step. However, in order to invoke

the privileged module (DiscordNative shared by the MainProcess) to launch

RCE, the attacker must overwrite two methods for two built-in JavaScript objects: test

for RegExp to hijack the control flow in step 3 and join for Array to hijack the data

flow in step 5 . No matter how sophisticated the attacking code became when being

executed, it had to create two functions, which created two new AST profiles. These two

81

new dynamic profiles were never found in the AST profiles for BrowserWindow given

its running context. Thus, COINDEF blocked the prototype pollution and subsequently

prevented the RCE.

Throughout these steps, it is clear that DOMTYPING and SYNODE failed to handle any

of them because this attack chain does not require DOM modifications and the prototype

pollution attack hijacks both control and data flow to feed an arbitrary command into

spawn. Even if we extended SYNODE to cover more injection APIs (e.g., spawn), it

failed to generate AST templates for this lib as it is designed to execute arbitrary

commands. Although XGUARD caught the final RCE by blocking an unauthorized call

chain to spawn, the attackers can change strategies by stealing the cookies of Discord or

launching social engineering attacks when redirecting the BrowserWindow to a

phishing website.

Robustness. COINDEF demonstrates its robustness by successfully blocking all attacks,

among which are 20 cited attacks and 59 variants trying to evade COINDEF. These

attacks include DOM manipulation, dynamic execution, and other evasion techniques built

on top of our domain expertise. To achieve this robustness, COINDEF limits attackers’

ability to inject foreign code through: execution context integrity

enforcement (subsubsection 4.3.3) and AST structural integrity

enforcement (subsubsection 4.3.3) as formalized in subsection 4.3.6. First, COINDEF

tracks execution context integrity, ensuring that even structurally valid but behaviorally

malicious scripts are detected. Attackers cannot arbitrarily construct a legitimate AST for

a given injection point, as the execution context restricts possible AST modifications.

Then, COINDEF only allows data nodes to change to accommodate legitimate user inputs.

Any injected code inevitably modifies a data node into a subtree, which COINDEF blocks.

This enforcement applies across DOM-based injections, template literals, and eval-like

APIs, preventing attackers from rewriting execution logic.

Deployment. COINDEF’s executable identifies the required Electron version and

82

downloads a corresponding instrumented Electron version, leaving the application code

intact. This convenient integration offers improved code injection security without

modifications or source code access. To generate AST profiles, the application developers

can leverage the existing UI testing cases to provide comprehensive AST profiles. As for

IT administrators and home users, they can leverage automated crawlers and manual

exercises to build AST profiles that are customized for their use patterns, in line with prior

work [31, 32, 22].

Portability. The modifications COINDEF has made for AST profile generation and

enforcement are minimal, numbering fewer than 150 lines in the V8’s code base and two

self-contained files for logging and validation, accounting for 500+ lines of C++ code.

These files containing COINDEF’s hooks remain almost consistent across various

Electron versions evaluated for COINDEF, simplifying porting and reducing maintenance

and compatibility efforts.

4.5 Discussions

Code Coverage. As observed in subsection 4.4.1, COINDEF will incur false positives in

the security-first mode due to unlearned AST profiles from remote resources. It is well

understood that no single security system can promise full code coverage during the

dynamic profiling of extensive programs, meaning some code may not be profiled. Using

the hybrid profiling approach discussed in subsection 4.3.4, the AST profiles we collected

support 20 applications with a testing code coverage of 87.03% on average, with only

incurring a few false positives. We consider further increasing the code coverage for

COINDEF as an orthogonal problem. COINDEF can benefit from the recent research in

debloating and fuzzing web applications [104, 103, 117, 118] for expanded coverage.

Direct Command Injection. COINDEF does not offer direct protection against command

injection (e.g., malicious data directly injected into exec). However, data injection

through code injection attempts is prevented by COINDEF. To improve COINDEF further,

83

we could add NodeJS process handler protection and generate shell command profiles for

inputs sent to related APIs (e.g., exec, spawn). We leave this as future work.

84

CHAPTER 5

COINDX: CODE INJECTION DIAGNOSIS FOR JAVASCRIPT VIA ITERATIVE

SYMBOLIC ANALYSIS ON SUBPROGRAMS

5.1 Introduction

JavaScript drives a vast ecosystem, from client-side user interfaces to backend services

and cross-platform applications. Its dynamic nature and flexibility have propelled its

widespread adoption, but these same qualities also make it a prime target for malicious

exploitation. Code injection attacks, including cross-site scripting (XSS) [119, 43, 28,

120] and remote code execution (RCE) [44, 29, 121, 21, 122], have plagued JavaScript

applications for decades [123, 124], exposing sensitive user data, enabling unauthorized

system access, and undermining application integrity. The persistent prevalence of these

attacks highlights a critical need for robust defenses to secure the JavaScript ecosystem.

Existing runtime enforcement solutions [29, 21, 22, 31, 32] aim to safeguard

applications by monitoring abnormal execution patterns, enforcing code integrity, and

blocking exploits in real-time. While these approaches have proven effective at mitigating

attack symptoms, they fall short of addressing the underlying root cause–the

vulnerabilities that enable the attacks in the first place. By targeting anomalous behaviors

(e.g., suspicious function calls [21] or unexpected payloads [29]) rather than the injection

points that generate them, these defenses leave JavaScript applications susceptible to

novel exploitation paths and recurring vulnerabilities.

Root Cause Analysis (RCA) offers a promising pathway to address this gap by

identifying the origins of code injection vulnerabilities, enabling developers to eliminate

systemic weaknesses. While there has been prior research [41, 42] in RCA for binary

programs, applying these methods to JavaScript is impossible due to the significant

85

semantic gap between system- and web-level semantics. Specifically, attacks on

JavaScript apps do not rely on binary exploitation. Even if an Intrusion Detection System

(IDS) detects malicious behaviors stemming from a code injection attack through a web

application, RCA for binary cannot discover the RCE or XSS being the root cause because

these attacks do not exploit the language engine (the binary component), which is

designed to execute any code passed to its interpreter. Therefore, we need a solution for

the JavaScript ecosystem.

To close this semantic gap, we propose COINDX, a novel RCA framework for code

injection attacks on JavaScript applications. The primary goal of COINDX is to accurately

pinpoint the code injection point and understand how the vulnerability is exploited given

an external alert signal. Unfortunately, it is rarely easy to diagnose what leads to a code

injection attack for JavaScript applications. The complicated data flows due to the

asynchronous nature of JavaScript make it difficult to trace the vulnerabilities to the origin

(i.e., injection point). The dynamically generated code at runtime can obscure the source

of vulnerabilities. Moreover, the vast and interconnected JavaScript package ecosystem

makes isolating root causes difficult.

To address these challenges, we researched the monitoring mechanisms of those

state-of-the-art solutions and found a key insight – What if we could compose a simpler

program that preserves the exploitable program state based on the call stack trace when

the monitoring system alerts? Thus, the vulnerability analysis space can be reduced

significantly without concerning state explosion. The call stack trace can effectively help

construct the control and data flows, circumventing the challenge of static analysis on

JavaScript [21, 29]. The call stack frame also provides source code if there is dynamically

generated code in the call chain, addressing the obscurity of the source of vulnerabilities.

Following this insight, we build COINDX with four components: Stack Trace

Recovery (subsection 5.3.2), Program Composer (subsection 5.3.3), Iterative Symbolic

Executor (subsection 5.3.4), and Root Cause Analyzer (subsection 5.3.5. To enable

86

effective RCA, the developers publish their JavaScript applications with COINDX’s

instrumentation code for tracking event registration, triggering, and handling. When a

code injection monitoring system issues an alert, COINDX dumps the call stack trace,

which ends with the exploiting function call (e.g., eval). Then, the program

composer (subsection 5.3.3) consumes the call stack trace and produces a simplified

program, where the closure variables and dependent functions are marked as symbols.

Next, the symbolic executor (subsection 5.3.4) performs dynamic taint analysis by

executing the program iteratively to produce execution traces that lead to the exploit.

Finally, the execution traces are passed to the root cause analyzer (subsection 5.3.5) to

identify the vulnerability type and code injection location.

To systematically measure COINDX’s accuracy, we evaluated it on SecBench.js [125],

a benchmark of vulnerable JavaScript modules. COINDX achieved zero false positives

and zero false negatives, meaning it correctly identified and analyzed all tested

vulnerabilities. The benchmark dataset includes a diverse range of attack patterns,

including direct injection, context-sensitive injection, and indirect injection scenarios,

demonstrating COINDX ’s robustness in different exploitation models. To assess

COINDX’s effectiveness in diagnosing real-world exploits, we tested it on 12 exploits

targeting publicly disclosed vulnerabilities. These exploits span across 11 different

JavaScript applications, covering a variety of execution environments, including

client-side web applications, native Node.js applications, and Electron-based desktop

applications. The vulnerabilities examined include DOM-based injections, dynamic script

executions, and IPC-based injections in Electron. COINDX successfully found all the root

causes correctly. The runtime incurred by COINDX for tracking event registration,

triggering, and handling is negligible with 1.24% and for web applications, 2.18% for

Node.js applications, and 3.71% for Electron applications. The memory and storage

overhead of storing these logs are less than 10 MB on average.

87

5.2 Background & Challenges

RendererMainEvernote

IPC

ipcMain.on("BrokerBridge", (e, t) => {
Mt.call("openAttachment", {payload: t });
}
Mt.register("openAttachment", (e) => {
 file = downloadIfNotExist(e.payload);
 shell.openPath(file);
})

code = `top.electronApi.ipcRenderer.send(
 "BrokerBridge", {payload})`
FontMatrix = [1 2 3 4 5 (6\" code \")]

1

2

3

PreCompileFont(PDF); 6

5RCE

4
switch(token):
 case("FontMatrix"):
 ...
 new Function(data)
 case("FontBBox"):
 ...

Figure 5.1: A Real-World Example of Exploiting CVE-2024-4367 [126]. The code is
simplified for brevity.

5.2.1 Code Injection in JavaScript Apps

Web Applications. Web applications are prone to Cross-Site Scripting (XSS) attacks,

including Stored, Reflected, and DOM-based XSS. Stored XSS persists on the server and

executes whenever users access the affected page. Reflected XSS occurs when input is

immediately reflected in the response, while DOM-based XSS exploits client-side

JavaScript to modify the DOM and execute scripts. XSS can lead to session hijacking,

data theft, and unauthorized actions. Vulnerabilities arise due to improper input validation,

unsafe functions like innerHTML, and lack of a content security policy (CSP). Third-party

scripts and misconfigurations increase the risk. These inputs usually come from user input

fields (e.g., comments, search bars), query parameters, and dynamic content rendering.

Client-side JavaScript manipulation and external scripts expand the attack surface.

Node.js Applications. Node.js applications are vulnerable to Command Injection and

Prototype Pollution, the goal of code injection in the native environment. Command

injection allows attackers to execute system commands through unsanitized input in

functions like child process.exec(). Prototype pollution enables malicious

manipulation of object prototypes, affecting application behavior globally. Vulnerabilities

occur due to unsafe command execution, dynamic JavaScript properties, and reliance on

third-party libraries. Poor input validation and outdated packages increase exposure to

88

these risks. Attack surfaces include API endpoints that execute system commands,

functions interacting with the filesystem, and JSON payloads in HTTP requests. Prototype

pollution often targets libraries that extend or merge objects, like lodash.

Electron Applications. Electron apps combine Web and Node.js environments, exposing

them to Remote Code Execution (RCE), XSS, and Insecure IPC. RCE can occur when

nodeIntegration is enabled (e.g., through open-redirect to open a new window),

allowing malicious scripts to execute Node.js commands. XSS in Electron escalates into

RCE, while insecure IPC communication can lead to privilege escalation. Vulnerabilities

arise from misconfigurations like enabling nodeIntegration, failing to use

contextIsolation, and loading untrusted sources with loadURL(). Improper

validation of IPC messages further increases the attack surface. Attack surfaces include

untrusted web content, input fields in web views, and poorly implemented IPC channels.

When nodeIntegration is enabled, injected scripts gain full access to Node.js,

leading to system compromise.

5.2.2 A Real-World Example

The root cause analysis in COINDX begins when an end-host runtime monitor flags a

running Electron-based application for executing some abnormal code. Monitoring

systems that can detect such events generally fall into two categories: system-level

monitoring [127, 128] and application-level monitoring [21, 29]. However, COINDX does

not rely on how or why the application was flagged. The only prerequisite is identifying

the flagged application. It is crucial to note that these monitoring systems detect attacks at

the symptom level–when the attack manifests–rather than at its onset or root cause.

Consequently, the information provided to COINDX indicates only where the attack was

detected, not how it began.

We illustrate the high-level concept of COINDX using a real-world example: exploiting

CVE-2024-4367 [126] on Evernote, an Electron-based application with over 200 million

89

active users [129]. This example is particularly relevant because Electron applications

combine characteristics of both web applications and Node.js applications. Successfully

investigating attacks on Electron apps provides valuable insights that can be extended to

both Web and Node.js applications.

CVE-2024-4367 is a code injection vulnerability in PDF.js, a library Mozilla maintains

for rendering PDF comments in browsers [130]. This vulnerability allows attackers to

inject malicious JavaScript into the font matrix defined in a PDF document.

As illustrated in Figure 5.1, the monitoring system detects and flags an RCE attack from

Evernote. COINDX begins its analysis by capturing a stack trace at the point where a shell

command is spawned in step 1 . However, since the shell spawning function resides within

a callback function, the stack trace only includes two functions–steps 2 → 1 . The source

of the callback remains unclear at this point.

To reconstruct the execution flow, COINDX bridges event listeners and emitters,

connecting 4 → 3 to 2 . Despite this progress, process isolation causes a break in the

event chain. To overcome this challenge, COINDX monitors IPC through the context

bridge shared between the main and renderer processes. This enables COINDX to connect

6 → 5 to 4 , ultimately reconstructing a complete call chain from 6 to 1 .

Next, COINDX extracts each function in the reconstructed call chain and performs

symbolic state reconstruction. The goal is to verify whether the call chain is vulnerable

and exploitable by simulating the attack within a smaller, self-contained program. To

achieve this, COINDX symbolizes two types of variables: 1) function arguments to the top

caller – these inputs are likely attacker-controlled and critical for determining

exploitability; 2) closure variables – these variables and external functions not defined

within the call stack are symbolized as symbolic procedures to assist symbolic execution.

Using these symbolized variables, COINDX constructs a simplified program and executes

it in a concolic execution environment. When the file argument in step 1 becomes

symbolic and includes symbolic expressions (i.e., the PDF buffer) derived from step 6 ,

90

confirming it as a vulnerability.

Next, COINDX focuses on localizing the root cause by analyzing the symbolic

execution trace. This involves a backward trace analysis starting from the symbolic

variable file in step 1 , tracing back to the point where an alternative state was forked.

In this example, the critical conditional branch occurs inside the function

PreCompileFont in step 6 . This function extracts font information from the PDF’s

metadata and parses the header using a switch-case table. When processing the

FontMatrix field, it constructs a new Function object to execute the payload

embedded in the PDF–revealing the root cause of the attack.

As output, COINDX provides 1) a reconstructed execution trace at the branch level, 2)

the branch that leads to the initial code injection attack, and 3) a recommended fix for the

vulnerability.

5.2.3 Challenges

Achieving this root cause analysis requires reconstructing the vulnerable execution trace,

which poses significant challenges for JavaScript applications due to their highly dynamic

nature:

C1. Lack of event tracing support. JavaScript does not provide built-in mechanisms to

construct the call stack trace for event activities. As a result, connecting 3 to 2 within

the same process and 5 to 4 across processes is impossible using existing infrastructure.

This lack of support also extends to web applications for client-side-redirect attacks (i.e., a

malicious script navigates the user to the attacker-controled website) and Node.js apps that

leverage node:events.

C2. Dynamic code generation. The code executed at step 5 is generated dynamically.

During symbolic state reconstruction, it becomes unclear where and what to invoke in its

caller function at step 6 , leading to an incomplete composed program. This challenge

applies to all JavaScript apps, as RCA aims to find the injection point.

91

C3. Root cause location. JavaScript production releases often bundle multiple packages

with code that is minified or obfuscated. This significantly complicates isolating and

identifying the root cause of vulnerabilities.

5.2.4 Assumptions

We consider code injection attacks against JavaScript applications and assume that the

underlying JavaScript engine is trustworthy. To analyze the root cause of such a code

injection attack, COINDX relies on an external code injection detector, such as

SYNODE [29] or XGUARD [21], to produce code injection signal so that COINDX can

collect the call stack trace from the triggering point. Since COINDX reconstructs the

vulnerable state of the program by composing a new, simpler program, it requires access

to the source code. However, COINDX does not require the source code to be

human-readable. In other words, COINDX takes the code of production release as is,

which is often minified, bundled, or obfuscated.

5.3 Design

To investigate the root cause of code injection attacks in JavaScript applications (e.g., the

real-world example discussed in subsection 5.2.2), we propose COINDX. COINDX

systematically addresses the key challenges in root cause analysis by tracking event

registrations and executions to reconstruct an equivalent but simpler vulnerable symbolic

state as the original program. COINDX operates in four key stages:

Event Activity Tracking. It monitors and records event registration, triggering, and

handling to recover the full call stack trace.

Program Recomposition. It constructs a simplified program containing only the functions

involved in the recovered trace, mitigating state explosion for symbolic analysis.

Iterative Symbolic Analysis. It iteratively performs symbolic execution to reconstruct the

vulnerable symbolic state.

92

Event
Logs

Code Injection
Alert

Symptom

Stack Trace
Recovery

Symbolic State
Reconstruction

Symptom

Symbolic Trace
Analysis

Program
Recomposation

Symptom

Root Cause

Root Cause
Report

App

Figure 5.2: COINDX Workflow Overview.

Root Cause Report Generation. It analyzes the execution traces to determine the root

cause, pinpoint the injection location, and provide a recommended fix.

5.3.1 Design Overview

Figure 5.2 illustrates the high-level workflow of COINDX. A JavaScript application (Web,

Node.js, or Electron) executes within COINDX’s event tracking instrumentation code that

monitors event activities. These events are captured in Event Logs, which facilitate the

reconstruction of a complete call stack trace, addressing C1.

When a code injection alert is triggered, COINDX initiates an investigation. First, it

extracts the call stack trace originating from the detected symptom. Then, it identifies the

top caller and checks whether it corresponds to an event handler. Next, if the top caller is

an event handler, COINDX iteratively looks for the function that triggers the event in the

Event Logs to recover the complete call stack trace.

Once the call stack trace is fully reconstructed, COINDX extracts all relevant JavaScript

functions from the source code of the application. If a function is dynamically generated

(e.g., eval), COINDX retrieves its source code from the call stack frame when available,

addressing C2. The extracted functions are then linked together, with closure variables and

functions marked as symbolic variables.

Next, the recomposed program is fed into a symbolic execution engine, which generates

symbolic execution traces iteratively. COINDX analyzes these traces to determine whether

they lead to the code injection symptom and, if so, whether they indicate a vulnerability.

93

BrokerBridge

HTTP

OpenAttachment

Click

Navigation

Event Registration

...

Event HandlingEvent Trigering

HandleBrokerBridge

HandleHTTP

HandleOpenAttachment

HandleClick

HandleNavigation

...

Figure 5.3: Tracking Event Activities for Stack Trace Recovery.

Finally, COINDX produces a root cause report, which includes 1) a reconstructed

execution trace at the branch level, 2) the branch that initiated the code injection attack,

and 3) a recommended patch to mitigate the vulnerability.

5.3.2 Stack Trace Recovery

A fundamental challenge in analyzing code injection attacks is reconstructing the

execution context that leads to the vulnerability. Traditional debugging tools provide stack

traces at runtime, but they often fail to capture the complete execution history in

event-driven JavaScript environments. This limitation arises because JavaScript

applications, particularly in Web, Node.js, and Electron environments, heavily rely on

asynchronous event handling, where execution contexts are fragmented across multiple

callbacks.

Given these challenges, COINDX is designed to track event registration, triggering, and

handling explicitly, allowing it to reconstruct the execution history beyond what standard

stack traces provide. To achieve this goal, COINDX systematically tracks event activities

with additional instrumentation as illustrated in Figure 5.3.

94

Event Registration Tracking. When a JavaScript function registers an event handler (e.g.,

via Target.addEventListener() on DOM objects or EventEmitter.on() for

Node.js environment), COINDX records the event type, associated callback, registration

location in the source code, and the call stack trace.

Event Triggering Tracking. When an event is triggered (e.g., via user interaction or code

from Target.dispatchEvent(), COINDX logs the event type, payload, and the

current call stack trace.

Event Handling Tracking. When an event handler executes, COINDX captures the event’s

context, including the event type and the stack frame at the point of execution.

Call Stack Reconstruction. Upon detecting a code injection symptom, COINDX

iteratively traces back the execution path by matching handled events to their activity logs,

recovering the full call stack trace.

Modern JavaScript applications frequently generate code dynamically (e.g., using

eval-like APIs). To ensure completeness, COINDX extracts dynamically generated

functions from stack frames at execution time. Then, COINDX maps these functions to

their originating contexts when possible. Finally, COINDX incorporates dynamically

created closures and bound variables in the reconstructed execution flow.

5.3.3 Program Recomposition

Once the full stack trace is recovered, the next challenge is preparing the execution

context for symbolic analysis. Directly analyzing the entire application is infeasible due to

state explosion and unnecessary complexity. Instead, COINDX extracts a simplified,

self-contained program derived from the recovered stack trace, ensuring that it retains all

essential execution semantics while remaining tractable for analysis.

The key insight behind program recomposition is that the vulnerable state/trace is

determined by a small subset of the program rather than the entire codebase. By isolating

only the functions involved in the recovered call stack, we eliminate irrelevant code while

95

Recovered Call
Stack Trace

 file: ""
 line: 29
 column: 27
 isEval: true
 ...

 file: "/path/to/file.js"
 line: 15
 column: 7
 isEval: false
 ...

Function Extraction

Symbolized
New Program

Source
Maps

code from
memory

code from
source file

Dependency
Identification

Symbolize
Undef Elements

Figure 5.4: The Composer Extracts Source Code and Creates A Symbolized New Program.

preserving the necessary execution semantics. Any missing dependencies, such as

external functions or variables, are replaced with symbolic values, allowing COINDX to

generalize execution traces and explore additional attack paths. This approach ensures that

the recomposed program remains lightweight, scalable, and expressive enough to

reproduce and extend the original execution trace. To achieve this goal, COINDX executes

the procedures as illustrated in Figure 5.4.

Function Extraction. COINDX extracts all JavaScript functions present in the recovered

stack trace from the source code for statically defined functions and those dumped source

code for dynamically generated functions discussed in subsection 5.3.2. These functions

constitute the core execution context.

Dependency Identification. COINDX analyzes function dependencies, identifying

required variables, closures, and external function calls, using static analysis (e.g.,

JavaScript linter).

Symbolic Representation of Undefined Elements. Any function, variable, or external

96

API that is not explicitly recovered is replaced with a symbolic value. This ensures that

symbolic execution can explore multiple execution paths without being constrained by

missing dependencies.

Control Flow Reconstruction. COINDX connects the extracted functions according to

their invocation relationships, ensuring that the recomposed program retains the logical

execution flow.

Source Code Mapping. Since the call stack trace includes the location of each function, it

is simple for COINDX to map the extracted functions with their original source. COINDX

maintains three hash maps: one for location in the source code with its function code, one

for location in the new program with its function code, and one for location in the new

program with the location in the source code.

By incorporating symbolic values for missing dependencies, the recomposed program

can generate execution traces that are a superset of the original execution trace. This is

because there may be branches within functions. In the vulnerable path, branches were

taken based on concrete inputs. To this end, the original vulnerable trace is fully preserved.

5.3.4 Iterative Symbolic Analysis

After program recomposition, the next step is to perform dynamic taint analysis on the

simplified program. To achieve this goal, we choose a symbolic execution engine to

facilitate the dynamic taint analysis because the recomposed program contains undefined

functions and/or variables (i.e., closures). Directly executing the program will lead to a

crash. Using a symbolic execution engine, on the other hand, can handle those undefined

closures, preventing the execution from crashing. Since JavaScript applications vary

widely in execution environments and runtime semantics, COINDX ensures broad

compatibility by leveraging the Electron runtime (supporting both web and Node.js) for

symbolic execution. This setup enables precise tracking of symbolic values while

preserving JavaScript ’s dynamic execution model.

97

Algorithm 2: Iterative Symbolic Analysis
Data: A Symbolized Program Prog, Source Code Src, A Symbolic Execution

Trace T .
Result: The symbolic representation of variable to the alerting function.

1 begin
2 if not ReachSink(T) then
3 return;
4 end
5 symbol← ExtractSymbol(T);
6 while HasUndefFunc(symbol) do

// The symbol contains functions defined outside
the call stack.

7 Prog← Concretize(symbol, Src, Prog);
// Extracting those functions from the source code

and concretizing Prog.
8 T ← SymbolicExecute(Prog);

// Re-execute the concretized Prog.
9 symbol← ExtractSymbol(T);

10 end
11 return symbol;
12 end

COINDX reproduces the vulnerable execution state by running the program in a real-

world JavaScript environment. To achieve this goal, COINDX performs symbolic execution

on the recomposed program. However, a single pass of symbolic execution may not fully

resolve the data flow, especially when functions or variables were initially symbolized due

to missing definitions. Instead of assuming all symbolic values are attacker-controlled,

COINDX systematically re-evaluates the execution traces by iteratively concretizing and

propagating symbolic constraints. This allows COINDX to distinguish between genuinely

attacker-controlled data flows and benign symbolic values (e.g., functions defined outside

the call stack trace).

Symbolic Execution. First, COINDX automatically creates a harness to invoke the

recomposed program by marking the input arguments as symbols. Next, COINDX creates

symbolic procedures for undefined functions identified in subsection 5.3.3. Then, the

symbolic execution engine explores all feasible execution paths while tracking constraints

98

on symbolic values. Finally, after COINDX explores all paths, COINDX extracts the

execution traces that reach the symptom function (i.e., the alerting function).

Iterative Analysis. After obtaining the symbolic execution traces, COINDX needs to

determine whether the injected code contains attacker-controlled variables. Traditional

taint analysis methods often rely on predefined sources (e.g., network responses, user

input) to infer attacker control. However, due to the presence of symbolized undefined

functions and variables in the recomposed program, a straightforward taint analysis may

yield incomplete or incorrect results. To address this, COINDX employs iterative symbolic

analysis to refine the data flow to validate whether an alerting function receives

attacker-controlled input.

As illustrated in algorithm 2, given the symbolized program Prog, the source code

src, and a symbolic execution trace T , the iterative symbolic analysis starts with checking

whether the trace reaches the alerting function. If yes, it moves to determine whether the

final symbol flowed to the function containing undefined functions. These undefined

functions are symbolic functions defined in subsection 5.3.3. If the symbol has them,

COINDX retrieves the function definitions from the source code and concretizes the

program Prog. Specifically, COINDX replaces the symbolic procedures with concrete

function definitions. Note that, it is possible that the concrete function also invokes

functions not defined locally (closure functions). In this case, COINDX will mark those

closure functions as symbolic procedures again. Then, COINDX executes the concreted

Prog again until the final symbol does not contain any undefined functions. Finally, this

iteration process returns the symbol only containing symbolic variables and their

constraints.

5.3.5 Root Cause Analysis

The final step in COINDX is to analyze the symbolic execution trace to pinpoint the

injection point and identify the attack vector that enabled the vulnerability. Given a

99

symbolic execution trace reaching an alerting function, the goal is to determine: 1) where

in the execution flow the injection occurred and 2) which data flow paths allowed

attacker-controlled input to reach the injection sink. This process enables precise

vulnerability attribution and facilitates automated patch recommendations.

The key insight behind this is that the injection point and attack vector can be traced by

examining the data flow within the symbolic execution trace. Instead of only identifying

the final function that executes malicious code, COINDX systematically traces back the

symbolic constraints to determine how attacker-controlled input propagated through the

execution path. This ensures that the analysis captures both the immediate injection point

and the underlying weakness that allowed the exploit.

Identifying the Injection Point. The injection point usually occurs in the earliest

program location where an attacker-controlled value enters the execution flow and

propagates to an injection sink. To locate this point, COINDX first performs backward

symbolic trace analysis, tracing execution paths in reverse from the alerting function to

determine where injected data originated. Next, dependency tracking is used to analyze

variable assignments, function arguments, and return values, ensuring that all symbolic

values contributing to the injection sink are correctly identified. To confirm attacker

influence, COINDX performs taint verification, checking whether the tracked symbolic

values stem from sources such as network responses, user inputs, or other external

influences. Finally, once the earliest program location introducing attacker-controlled data

is found, COINDX classifies it as the injection point, associating it with the relevant

control flow path.

Extracting the Attack Vector. To determine the attack vector, COINDX analyzes how

the injected data traversed the program and reached the injection point. The first step in

this process is control flow path analysis, where COINDX reconstructs the sequence of

function calls, event handlers, and callback chains that facilitated data propagation. Next,

COINDX performs symbolic constraint analysis, examining transformations applied to the

100

injected data, such as string concatenation, sanitization attempts, or encoding operations.

If modifications exist, COINDX determines whether these transformations still permit an

attack. Based on these analyses, COINDX classifies the vulnerability into one of three

categories: direct injection, where the attacker-controlled input reaches the sink without

modification; context-sensitive injection, where the input undergoes transformations but

remains injectable due to improper sanitization; and indirect injection, where the attack

occurs through an intermediate function call or event-driven execution.

Generating the Root Cause Report. After identifying the injection point and attack

vector, COINDX generates a root cause report to assist developers in vulnerability

remediation. The report includes the reconstructed execution trace, which highlights the

key program branches leading to injection, helping developers understand how the attack

unfolded. Additionally, the report specifies the injection point, providing the exact source

code location where attacker-controlled data first entered the execution flow. To further

clarify the attack mechanism, COINDX details the attack vector, explaining how the

injected data propagated through the program. Finally, the report provides suggested patch

recommendations, including mitigation strategies such as input sanitization, secure API

replacements, or event handler restrictions, with the help of current LLM models.

5.3.6 Implementation

To ensure the practicality and effectiveness of COINDX, we carefully design its

implementation to balance security, performance, and usability. This section details the

implementation of stack trace recovery, program composition, and symbolic execution.

Stack Trace Recovery. To recover full execution traces in an event-driven JavaScript

environment, we modify the JavaScript prototype chain and make it read-only. This

design choice allows developers to integrate COINDX into their codebase without

requiring modifications to the underlying JavaScript runtime of their end users. By

intercepting event registrations and executions through prototype modification, COINDX

101

systematically tracks event bindings and reconstructs call stacks without interfering with

application logic. This approach is both secure and practical. Since JavaScript allows

prototype modifications but restricts certain built-in functions from being redefined,

making our modifications read-only prevents tampering while maintaining compatibility

with real-world applications. Furthermore, compared to alternative approaches—such as

instrumenting the low-level browser engine or Node.js native code, our method is

significantly more practical for real-world adoption. While deeper instrumentation could

provide stronger security guarantees by preventing adversaries from tampering with the

event tracking system, it is far less practical due to the complexity of modifying and

maintaining a custom JavaScript runtime for end users.

Program Composer. To generate the recomposed program for symbolic execution,

COINDX leverages acron [114], a widely-used JavaScript AST parser, alongside

ESLint [131], a static analysis tool, to extract and recompose relevant code from the

recovered stack trace. The program composition process consists of the following steps:

1) COINDX uses Acorn to parse JavaScript source files into an AST, allowing precise

function extraction and analysis. 2) Using ESLint, COINDX performs static analysis to

track function dependencies, identify closure variables, and ensure the integrity of the

recomposed program. 3) Any function or variable that is unresolved in the recomposed

program is replaced with a symbolic representation, ensuring that symbolic execution can

generalize execution traces while maintaining correctness.

Symbolic Execution Engine. For symbolic execution, COINDX integrates with

ExpoSE [45], a symbolic execution engine designed for JavaScript, running within the

Electron runtime. This design choice ensures that COINDX supports both web-based

JavaScript applications and native JavaScript environments such as Node.js and Electron

applications. The Electron-based runtime enables COINDX to execute recomposed

programs in an environment that closely mirrors real-world JavaScript execution, ensuring

accurate symbolic state propagation. By running within Electron, COINDX can handle

102

browser-based execution contexts, event-driven execution models, and native API

interactions, making it more versatile than approaches that rely solely on browser-specific

or native-only execution models. ExpoSE provides fine-grained symbolic constraint

tracking, allowing COINDX to explore execution paths efficiently while maintaining

compatibility with modern JavaScript applications.

Root Cause Report Generation. Given the vulnerable execution trace identified, the

injection point, and attack vector determined, COINDX generates a root cause report to

assist developers in understanding and mitigating the vulnerability through GPT-4o-mini.

This root cause report includes: 1) the reconstructed execution trace, highlighting the key

program branches leading to injection, 2) the injection point, providing the exact source

code location where attacker-controlled data first entered the execution flow, and 3)

suggested patch recommendations, including mitigation strategies such as input

sanitization, secure API replacements, or event handler restrictions.

5.4 Evaluation

To assess the effectiveness and practicality of COINDX, we conduct a comprehensive

evaluation based on real-world applications and known code injection vulnerabilities. The

evaluation is designed to answer the following key research questions:

RQ1: How accurate is COINDX at detecting code injection vulnerabilities? We evaluate

whether COINDX can correctly identify true vulnerabilities while minimizing false

positives and false negatives.

RQ2: Can COINDX locate and analyze real-world exploits? We assess whether COINDX

can successfully reconstruct execution traces and uncover vulnerabilities in widely

used JavaScript applications.

RQ3: Are the reported root causes consistent with real-world advisories and security

patches? We compare COINDX ’s findings with official security advisories and

developer patches to validate its effectiveness in pinpointing the root cause of

103

vulnerabilities.

RQ4: Is COINDX practical to deploy in real-world environments in terms of runtime and

storage overhead? We measure the computational and storage overhead introduced

by COINDX and evaluate its impact on application performance.

5.4.1 Accuracy on SecBench.js

To answer RQ1, we evaluate COINDX ’s accuracy in detecting code injection

vulnerabilities using SecBench.js [125], a benchmark dataset specifically designed for

assessing JavaScript security analysis tools. SecBench.js comprises 40 known code

injection vulnerabilities and 101 command injection vulnerabilities found in widely used

NPM modules, making it a suitable testbed for evaluating COINDX’s detection

capabilities.

The choice of SecBench.js as the benchmark dataset is motivated by several factors:

First, it consists of real-world vulnerabilities found in widely used JavaScript libraries and

frameworks, ensuring that our evaluation reflects security risks encountered in practical

deployments. Second, SecBench.js includes diverse attack patterns, covering different

ways attacker-controlled input propagates to injection sinks, such as direct user input,

event-driven execution, and indirect control flow dependencies. Third, it provides ground

truth labels, allowing us to objectively measure COINDX ’s true positive rate (TPR) and

false positive rate (FPR) against known vulnerabilities.

Experiment Setup. To set up this experiment, we need to modify the existing testing

harnesses for exploiting those vulnerabilities. Specifically, we first add the instrumentation

code for tracking events. Then, we make the exploits to dump the stack trace by raising

a customized Error exception. In other words, when the exploiting payload reaches the

injection sink, a stack trace can be dumped directly. Next, COINDX takes the stack trace

and event logs to identify the root cause.

The detection performance of COINDX on the SecBench.js dataset is summarized in

104

Table 5.1: Performance of COINDX on SecBench.js.

Attack Vectors TP FP FN Accuracy

Code Injection
Direct Injection 31 0 0 100%
Context-Sensitive Injection 7 0 0 100%
Indirect Injection 2 0 0 100%
Subtotal 40 0 0 100%

Command Injection
Direct Injection 83 0 0 100%
Context-Sensitive Injection 15 0 0 100%
Indirect Injection 4 0 0 100%
Subtotal 101 0 0 100%

Total 141 0 0 100%

Table 5.1. The dataset includes a total of 40 code injection vulnerabilities and 101

command injection vulnerabilities. To better understand COINDX ’s accuracy across

different exploitation techniques, we categorize injection attacks based on the attack

vectors introduced in subsection 5.3.5.

We define a true positive (TP) as a case where COINDX correctly identifies the root

cause by locating the exact injection point and execution trace. A false positive (FP) occurs

when COINDX incorrectly identifies an injection point that is not the actual root cause. A

false negative (FN) is when COINDX fails to detect the vulnerability. Since all modules

in the benchmark dataset are confirmed to be exploitable, there are no true negatives (TN),

meaning TN is always zero for each attack vector.

For code injection vulnerabilities, COINDX identifies 31 cases as direct injection, 7

cases as context-sensitive injection, and 2 cases as indirect injection. Among these,

COINDX successfully pinpoints all the root causes. For code injection vulnerabilities,

COINDX identifies 83 cases as direct injection, 15 cases as context-sensitive injection, and

4 cases as indirect injection. Among these, COINDX successfully pinpoints all the root

causes.

These results highlight COINDX ’s ability to accurately detect and attribute code

105

Table 5.2: Performance of COINDX on Real World Applications.

CVE # Application # Functions COINDX # Functions Located Analysis Time (hours)

Web
CVE-2023-33831 FUXA 9,156 17 Yes 0.15
CVE-2023-2564 scanservjs 9,537 10 Yes 0.12
CVE-2024-27448 maildev 10,893 18 Yes 0.18
CVE-2023-49276 uptime 12,863 11 Yes 0.58
CVE-2022-0944 sqlpad 13,881 4 Yes 0.07

Node.js
CVE-2023-42810 systeminformation 6,394 15 Yes 1.63
CVE-2024-56334 systeminformation 7,031 12 Yes 0.56
CVE-2025-24981 @nuxtjs/mdc 10,594 5 Yes 0.12
CVE-2024-4367 pdf.js 17,380 9 Yes 1.17

Electron
CVE-2023-2479 Appium 24,666 16 Yes 1.62
CVE-2024-49362 joplin 12,613 12 Yes 0.46
CVE-2024-4367 Evernote 20,586 28 Yes 1.82

injection vulnerabilities, with most failures occurring in complex indirect injection flows

where symbolic execution constraints could not be fully resolved. The high success rate

across direct and context-sensitive injections indicates that COINDX effectively

reconstructs execution traces and identifies attacker-controlled inputs. However,

challenges remain in handling cases where undefined functions or event-driven execution

models introduce ambiguity in symbolic constraints.

5.4.2 Locating Real-World Exploits

To answer RQ2 and RQ3, we test JavaScript with 11 real-world JavaScript applications

with 12 real-world exploits, covering five Web, three Node.js, and three Electron

applications, to evaluate whether COINDX can locate and analyze real-world exploits.

Experiment Setup. To set up this experiment, we first host the applications in a

controlled environment. We then run the applications with COINDX ’s instrumentation

enabled to capture the event registration, triggering, and handling. Before mounting the

attacks, we ensure that the applications are running correctly and that COINDX is

capturing the events as expected. Then, to simulate the external monitoring tools, we

make the exploits to dump the stack trace by raising a customized Error exception as we

106

do for the benchmark evaluation. Next, we inject known exploits into the applications to

simulate real-world attacks. We then analyze the event logs generated by COINDX to

identify the root cause of the vulnerabilities. Finally, we compare COINDX ’s findings

with official security advisories and developer patches to validate its effectiveness in

locating and analyzing real-world exploits.

Table 5.2 summarizes the results of the real-world exploit analysis. For each

application, we report the number of functions defined in the original application, the

number of functions COINDX extracts for iterative symbolic analysis, whether COINDX

successfully locates the root cause of the vulnerability, and the analysis time in hours used

by COINDX to locate the root cause. Additionally, COINDX also suggests the patch to fix

the vulnerability, which is compared with the official security advisories and developer

patches to validate its effectiveness in pinpointing the root cause of vulnerabilities.

Web Applications. As shown in the top part of Table 5.2, COINDX successfully locates

the root cause of the vulnerabilities in all five applications, demonstrating its effectiveness

in analyzing client-side rendering and event-driven execution models. The analysis time

ranges from 0.15 to 0.58 hours, with an average of 0.22 hours per application. The results

show that COINDX can accurately identify the root cause of vulnerabilities in web

applications, making it a valuable tool for securing client-side applications.

Node.js Applications. For Node.js applications, shown in the middle part in Table 5.2,

COINDX successfully locates the root cause of the vulnerabilities in all five applications,

demonstrating its effectiveness in analyzing server-side processing and high-throughput

workloads. The analysis time ranges from 0.12 to 1.63 hours, with an average of 0.87 hours

per application. The results show that COINDX can accurately identify the root cause of

vulnerabilities in Node.js applications, making it a valuable tool for securing server-side

applications.

Electron Applications. Illustrated in the bottom part in Table 5.2, As a result, COINDX

successfully locates the root cause of the vulnerabilities in all five applications,

107

demonstrating its effectiveness in analyzing multi-process desktop applications. The

analysis time ranges from 0.46 to 1.82 hours, with an average of 1.30 hours per

application. The results show that COINDX can accurately identify the root cause of

vulnerabilities in Electron applications, making it a valuable tool for securing desktop

applications.

5.4.3 Overhead

To answer RQ4, we evaluate the runtime overhead introduced by COINDX when

deployed in real-world applications. Specifically, we measure the overhead incurred

during event registration, triggering, and handling tracking, as these operations form the

core of COINDX ’s runtime instrumentation. The evaluation considers applications across

three major JavaScript execution environments: web, Node.js, and Electron.

For web applications, we use two state-of-the-art benchmarks designed to measure

browser responsiveness. These benchmarks provide a standardized way to assess the

impact of COINDX ’s instrumentation on JavaScript execution performance. For Node.js,

we select two widely used applications: ESLint [131], a widely adopted static analysis

tool used by almost every JavaScript developer, and Express.js [132], the most popular

backend framework for JavaScript. These applications allow us to evaluate COINDX ’s

overhead in both computationally intensive workloads (such as static analysis) and

high-throughput server applications. For Electron, we choose VSCode [133], one of the

most widely used editors, known for its large-scale Electron-based architecture and

comprehensive end-to-end testing. Additionally, we use Electron-IPC-Bench, a dedicated

benchmark designed to stress IPC messages in Electron applications, allowing us to

measure COINDX ’s impact on messaging events efficiency. By evaluating a diverse set of

real-world applications, we ensure that COINDX ’s runtime performance is assessed

across different execution models, including client-side rendering, backend processing,

and multi-process desktop applications.

108

Table 5.3: Overhead COINDX Incurs to Benchmark Applications.

Apps # Events Reg # Events Trg Runtime Memory (MB) Storage (MB)

Web
Jetstream2 [134] 31 854 1.24% 7 2
Speedometer3.0 [115] 14 2,045 0.96% 5 1
Node.js
Eslint [131] 17 651 1.65% 4 1
Express.js [132] 248 542 2.18% 26 15
Electron
VSCode [133] 157 715 3.71% 18 10
electron-ipc-bench 20 1,000 1.71% 5 1

Experiment Setup. To set up this experiment, we ran every application in an Electron

with the event tracking hooks installed. For example, we open those web benchmarks in

Electron’s browser window. For Node.js and Electron applications, we run the built-in test

suites to measure the overhead. When running, we measure the time taken to register and

consume events in the application. We also measure the memory overhead introduced by

COINDX by comparing the memory usage of the application with and without COINDX.

Additionally, we measure the storage overhead by measuring the size of the event logs

generated by COINDX on disk.

We present the results in Table 5.3. For web applications, the overhead is minimal,

with a 1.24% increase in runtime. This is expected, as web applications are typically event-

driven and have a low number of events compared to server applications. For Node.js

applications, the overhead is also negligible, with a 2.18% increase in runtime. This is due

to the lightweight nature of COINDX ’s instrumentation, which only tracks events during

the execution of the application. For Electron applications, the overhead is slightly higher,

with less than 3.71% increase in runtime. This is because Electron applications are more

complex and have a higher number of events compared to web and Node.js applications.

Overall, the results demonstrate that COINDX introduces minimal overhead when deployed

in real-world applications, making it practical for use in production environments. The

memory and storage overhead of storing these logs are less than 10 MB on average.

109

5.4.4 Case Study: Investigating CVE-2024-4367

To illustrate how COINDX operates in practice, we present a case study on

CVE-2024-4367, a real-world code injection vulnerability affecting Evernote, an

Electron-based application with over 200 million active users. This vulnerability stems

from PDF.js [130], a widely used library maintained by Mozilla for rendering PDFs in

browsers and desktop applications. Attackers exploit this flaw by embedding malicious

JavaScript payloads within the FontMatrix metadata of a PDF document, which when

processed, results in arbitrary code execution.

In this scenario, the payload is extracted and executed through new Function(),

leading to RCE. A runtime monitoring system flags this event due to the abnormal

execution of shell commands within the renderer process. However, traditional detection

systems only capture the symptom of the attack–the execution of a system

command-—but do not reveal how the injected payload was processed and executed.

Once the external monitoring system detects the anomalous behavior, COINDX begins its

investigation. The analysis proceeds in several steps:

Stack Trace Recovery. At the moment of attack execution, COINDX collects the stack

trace leading to the execution of the shell command. Initially, this trace contains only the

immediate call sequence, capturing functions within the callback function that invoked the

dangerous API. However, because Electron applications use event-driven execution and

IPC, the source of the vulnerability is not immediately apparent. To reconstruct the full

execution flow, COINDX bridges event listeners and emitters to link related execution

paths. The event logs reveal that the vulnerable function was invoked through Electron’s

IPC mechanism, which is commonly used for communication between the main process

and the renderer process. COINDX traces this execution path across processes, ultimately

identifying that the attack originated from a function inside PreCompileFont() in

PDF.js.

110

Program Recomposition and Symbolization. After reconstructing the call sequence,

COINDX extracts all relevant JavaScript functions involved in the execution flow. The

recovered functions include PreCompileFont(), which processes the FontMatrix

metadata from the PDF, and openAttachment(), which ultimately spawns the shell

command. Because some dependencies are dynamically loaded at runtime, COINDX

symbolically represents undefined variables and missing functions to generalize execution

traces. By composing a simplified program that retains only the relevant execution logic,

COINDX ensures that symbolic execution remains tractable while preserving the key

vulnerability conditions.

Iterative Symbolic Analysis. Using the recomposed program, COINDX executes

iterative symbolic analysis to determine whether the injection point is attacker-controlled.

The symbolic execution engine marks file path arguments and metadata fields as symbolic

variables and explores execution traces where these values propagate to dangerous

functions. Through iterative refinement, COINDX reveals that the injected FontMatrix

value undergoes string manipulation and eventually reaches new Function(), where

it is executed as JavaScript. This confirms that the attacker fully controls the payload

reaching the execution sink.

Identifying the Injection Point and Attack Vector. The injection point is identified as

the FontMatrix parser inside PreCompileFont(), where the PDF metadata is

extracted and processed. COINDX traces the attack vector, showing that the manipulated

FontMatrix field bypasses any sanitization and directly reaches an execution context.

The vulnerability is classified as context-sensitive injection, where the attacker’s input

undergoes transformations but remains exploitable.

Patch Recommendation and Outcome. Based on its analysis, COINDX generates a root

cause report that highlights: 1) The execution trace leading to the attack, including all key

branches. 2) The exact injection point in PreCompileFont(), pinpointing where

untrusted input first enters. 3) The recommended patch suggests that developers

111

implement strict input validation for PDF metadata and prohibit the execution of

dynamically generated functions to prevent such injections.

Following public disclosure, Mozilla addressed CVE-2024-4367 by introducing input

validation checks and removing the use of new Function() for processing

FontMatrix metadata. The patch aligns closely with COINDX ’s suggested fix,

validating its effectiveness in diagnosing real-world vulnerabilities.

This case study demonstrates the effectiveness of COINDX in diagnosing complex

code injection vulnerabilities in JavaScript applications. By leveraging event tracking,

program recomposition, and iterative symbolic analysis, COINDX successfully

reconstructs the execution trace, identifies the root cause, and provides actionable

remediation steps. Unlike traditional runtime monitoring solutions that focus solely on

attack symptoms, COINDX enables developers to eliminate systemic weaknesses,

preventing recurring exploits.

5.5 Discussion

While COINDX demonstrates strong performance in diagnosing JavaScript code injection

vulnerabilities, it has several limitations that should be considered when applying it to real-

world deployments. This section discusses these limitations and potential areas for future

improvement.

Handling of Complex Event-Driven Execution. JavaScript’s event-driven execution

model introduces challenges in reconstructing execution traces, particularly in

applications that heavily rely on asynchronous event dispatching, timers, and

message-passing mechanisms. While COINDX tracks event registration, triggering, and

handling to bridge execution gaps, it may fail to fully resolve non-deterministic event

interleavings in multi-threaded execution contexts, such as Electron’s main-renderer

process communication or Node.js’s asynchronous callbacks. This limitation could lead to

incomplete trace reconstruction, potentially missing subtle vulnerabilities that arise due to

112

race conditions in event execution.

Scalability of Iterative Symbolic Execution. Symbolic execution is known to suffer

from state explosion, particularly when analyzing JavaScript applications with deep call

stacks, dynamically generated code, or extensive control flow branching. Although

COINDX mitigates this issue by recomposing a smaller subprogram from the stack trace,

it may still struggle with large-scale applications where iterative symbolic analysis leads

to an excessive number of execution paths. One possible enhancement is the incorporation

of concolic execution (concrete + symbolic execution) to selectively concretize certain

symbolic values, thereby pruning infeasible execution paths. However, this requires

dumping the values of the variables at runtime, which poses privacy concerns. Future

work could explore privacy-preserving concolic execution techniques to address this

challenge.

Detection of Indirect Injection Attacks. COINDX performs well in identifying direct and

context-sensitive injections, but it faces challenges in detecting indirect injection attacks

where the exploit payload propagates through intermediate function calls, object property

mutations, or external dependencies. An example of this is prototype pollution, where

an attacker manipulates global object properties, leading to unintended function execution

at a later stage. Because COINDX relies on execution trace reconstruction, it may not

capture cases where injection points are introduced indirectly through object modifications

or deferred executions. Addressing this limitation requires enhancing COINDX with data

flow analysis across object hierarchies and tracking implicit control flows that introduce

code execution paths not explicitly present in the stack trace.

Generalizing Root Cause Analysis to Other JavaScript Attacks. COINDX is

specifically designed to diagnose code injection vulnerabilities in JavaScript applications.

However, JavaScript applications face other attack vectors, such as prototype pollution,

deserialization attacks, and path traversal vulnerabilities. Extending COINDX ’s approach

to general root cause analysis for JavaScript security could enhance its applicability across

113

a broader range of security threats. One possible extension is integrating monitoring for

other types of vulnerabilities, such as prototype pollution, by tracking object property

modifications. Once detected, COINDX could reconstruct the execution trace to identify

the origins of the modification and provide insights into how it propagates through the

application, which can be done asynchronous.

114

CHAPTER 6

CONCLUSION

In this dissertation, we have explored the challenges of injection attacks (i.e., socially

engineered content and malicious code) in the modern web ecosystem, highlighting how

modern web threats often span both user interface deception and technical exploitation.

To address these challenges, we introduced three novel systems: TRIDENT, COINDEF,

and COINDX. Together, these solutions form a unified defense framework that detects,

prevents, and analyzes injection-based attacks across different layers of the web stack.

TRIDENT focuses on browser-based detection of deceptive content served through

lower-tier ad networks; COINDEF secures cross-platform applications by enforcing

fine-grained execution policies within the Electron runtime; and COINDX provides

developers with a systematic tool for identifying and understanding the root causes of

code injection vulnerabilities in JavaScript applications.

By emphasizing attack surface reduction rather than reactive threat detection alone,

this research advocates for a proactive security model—one that limits opportunities for

exploitation before they can manifest. The proposed techniques offer complementary

protections that span content filtering, execution policy enforcement, and post-mortem

vulnerability analysis, thereby addressing injection threats holistically. As cyber threats

continue to evolve, we anticipate that browser-integrated defenses, language-aware

execution environments, and automated vulnerability analysis tools will play an

increasingly vital role in safeguarding both users and developers. Ultimately, this work

contributes to a more resilient web ecosystem by rethinking the boundaries between

content-level, application-level, and developer-facing security.

115

REFERENCES

[1] N. Miramirkhani, O. Starov, and N. Nikiforakis, “Dial One for Scam: A Large-
Scale Analysis of Technical Support Scams,” 2017.

[2] A. Kharraz, W. Robertson, and E. Kirda, “Surveylance: Automatically Detecting
Online Survey Scams,” in Proceedings - IEEE Symposium on Security and Privacy,
vol. 2018-May, Institute of Electrical and Electronics Engineers Inc., Jul. 2018,
pp. 70–86, ISBN: 9781538643525.

[3] L. Invernizzi, P. M. Comparetti, S. Benvenuti, C. Kruegel, M. Cova, and G. Vigna,
“EvilSeed: A guided approach to finding malicious web pages,” in Proceedings -
IEEE Symposium on Security and Privacy, Institute of Electrical and Electronics
Engineers Inc., 2012, pp. 428–442, ISBN: 9780769546810.

[4] P. Vadrevu and R. Perdisci, “What you see is not what you get: Discovering and
tracking social engineering attack campaigns,” Proceedings of the ACM SIGCOMM
Internet Measurement Conference, IMC, pp. 308–321, 2019.

[5] M. Zubair Rafique, T. Van Goethem, W. Joosen, C. Huygens, and N. Nikiforakis,
“It’s Free for a Reason: Exploring the Ecosystem of Free Live Streaming Services,”
Internet Society, May 2017.

[6] M. Zhang, W. Meng, S. Lee, B. Lee, and X. Xing, “All your clicks belong to me:
Investigating click interception on the web,” in Proceedings of the 28th USENIX
Security Symposium, 2019.

[7] I. Sanchez-Rola, D. Balzarotti, C. Kruegel, G. Vigna, and I. Santos, “Dirty clicks:
A study of the usability and security implications of click-related behaviors on the
web,” in Proceedings of The Web Conference 2020, ser. WWW ’20, Taipei, Taiwan:
Association for Computing Machinery, 2020, pp. 395–406, ISBN: 9781450370233.

[8] Clickjacking — owasp foundation, https://owasp.org/www-community/attacks/
Clickjacking.

[9] X-frame-options - http — mdn, https://developer.mozilla.org/en-US/docs/Web/
HTTP/Headers/X-Frame-Options, 2022.

[10] S. Calzavara, S. Roth, A. Rabitti, M. Backes, and B. Stock, “A tale of two headers:
A formal analysis of inconsistent Click-Jacking protection on the web,” in 29th
USENIX Security Symposium (USENIX Security 20), USENIX Association, Aug.
2020, pp. 683–697, ISBN: 978-1-939133-17-5.

116

https://owasp.org/www-community/attacks/Clickjacking
https://owasp.org/www-community/attacks/Clickjacking
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

[11] L. S. Huang, A. Moshchuk, H. J. Wang, S. Schechter, and C. Jackson,
“Clickjacking: Attacks and defenses,” in Proceedings of the 21st USENIX Security
Symposium, 2012.

[12] M. Balduzzi, M. Egele, E. Kirda, D. Balzarotti, and C. Kruegel, “A solution for
the automated detection of clickjacking attacks,” in Proceedings of the 5th
International Symposium on Information, Computer and Communications
Security, ASIACCS 2010, 2010.

[13] D. Akhawe, W. He, Z. Li, R. Moazzezi, and D. Song, “Clickjacking revisited a
perceptual view of UI security,” in 8th USENIX Workshop on Offensive
Technologies, WOOT 2014, 2014.

[14] K. Subramani, X. Yuan, O. Setayeshfar, P. Vadrevu, K. H. Lee, and R. Perdisci,
“When Push Comes to Ads: Measuring the Rise of (Malicious) Push Advertising,”
in {IMC} ’20: {ACM} Internet Measurement Conference, Virtual Event, USA,
October 27-29, 2020, 2020, pp. 724–737, ISBN: 9781450381383.

[15] U. Iqbal, P. Snyder, S. Zhu, B. Livshits, Z. Qian, and Z. Shafiq, “AdGraph: A
graph-based approach to ad and tracker blocking,” in Proceedings of the 41st
IEEE Symposium on Security and Privacy (S&P), Virtual Conference, May 2020,
pp. 763–776.

[16] Q. Chen, P. Snyder, B. Livshits, and A. Kapravelos, “Detecting Filter List Evasion
With Event-Loop-Turn Granularity JavaScript Signatures,” May 2021.

[17] Z. Ul Abi Din, P. Tigas, S. T. King, and B. Livshits, “PERCIVAL: Making in-
browser perceptual ad blocking practical with deep learning,” in Proceedings of the
2020 USENIX Annual Technical Conference, 2020, ISBN: 9781939133144.

[18] S. Siby, U. Iqbal, S. Englehardt, Z. Shafiq, and C. Troncoso, “WEBGRAPH:
Capturing Advertising and Tracking Information Flows for Robust Blocking,” in
Proceedings of the 31st USENIX Security Symposium (Security), Boston, MA,
Aug. 2022.

[19] B. Li, P. Vadrevu, K. H. Lee, and R. Perdisci, “Jsgraph: Enabling reconstruction of
web attacks via efficient tracking of live in-browser javascript executions,” in
Proceedings of the 2018 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2018.

[20] J. Allen et al., “Mnemosyne: An Effective and Efficient Postmortem Watering
Hole Attack Investigation System,” in Proceedings of the 27th ACM Conference
on Computer and Communications Security (CCS), Virtual Event, Nov. 2020,
pp. 787–802.

117

[21] F. Xiao, Z. Yang, J. Allen, G. Yang, G. Williams, and W. Lee, “Understanding
and mitigating remote code execution vulnerabilities in cross-platform ecosystem,”
in Proceedings of the 29th ACM Conference on Computer and Communications
Security (CCS), Los Angeles, US, Nov. 2022, pp. 2975–2988.

[22] Z. Jin, S. Chen, Y. Chen, H. Duan, J. Chen, and J. Wu, “A security study about
electron applications and a programming methodology to tame dom
functionalities,” in Proceedings of the 2023 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2023.

[23] M. M. Ali, M. Ghasemisharif, C. Kanich, and J. Polakis, “Rise of inspectron:
Automated black-box auditing of cross-platform electron apps,” in Proceedings of
the 33rd USENIX Security Symposium (Security), Philadelphia, PA, Aug. 2024.

[24] Electronjs electron : Security vulnerabilities, cves, https://www.cvedetails.com/
vulnerability- list /vendor id- 17824/product id- 44696/Electronjs- Electron.html,
(Accessed on 11/05/2024).

[25] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, “Precise client-side
protection against dom-based cross-site scripting,” in Proceedings of the 23rd
USENIX Security Symposium (Security), San Diego, CA, Aug. 2014, pp. 655–670.

[26] B. Stock, S. Pfistner, B. Kaiser, S. Lekies, and M. Johns, “From facepalm to brain
bender: Exploring client-side cross-site scripting,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS), Denver, CO, Oct.
2015, pp. 1419–1430.

[27] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross site
scripting prevention with dynamic data tainting and static analysis.,” in Proceedings
of the 14th Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, Feb. 2007.

[28] S. Lekies, B. Stock, and M. Johns, “25 million flows later: Large-scale detection
of dom-based xss,” in Proceedings of the 20th ACM Conference on Computer and
Communications Security (CCS), Berlin, Germany, Oct. 2013, pp. 1193–1204.

[29] C.-A. Staicu, M. Pradel, and B. Livshits, “Synode: Understanding and
automatically preventing injection attacks on node. js.,” in Proceedings of the
2018 Annual Network and Distributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2018.

[30] S. H. Jensen, P. A. Jonsson, and A. Møller, “Remedying the eval that men do,” in
Proceedings of the 2012 International Symposium on Software Testing and
Analysis, 2012, pp. 34–44.

118

https://www.cvedetails.com/vulnerability-list/vendor_id-17824/product_id-44696/Electronjs-Electron.html
https://www.cvedetails.com/vulnerability-list/vendor_id-17824/product_id-44696/Electronjs-Electron.html

[31] X. Pan, Y. Cao, S. Liu, Y. Zhou, Y. Chen, and T. Zhou, “Cspautogen: Black-box
enforcement of content security policy upon real-world websites,” in Proceedings
of the 23rd ACM Conference on Computer and Communications Security (CCS),
Vienna, Austria, Oct. 2016, pp. 653–665.

[32] P. Soni, E. Budianto, and P. Saxena, “The sicilian defense: Signature-based
whitelisting of web javascript,” in Proceedings of the 22nd ACM Conference on
Computer and Communications Security (CCS), Denver, CO, Oct. 2015.

[33] A. Fass, M. Backes, and B. Stock, “Jstap: A static pre-filter for malicious
javascript detection,” in Proceedings of the 35th Annual Computer Security
Applications Conference (ACSAC), San Juan, Puerto Rico, Dec. 2019,
pp. 257–269.

[34] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining Node.js Vulnerabilities via Object
Dependence Graph and Query,” Tech. Rep.

[35] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting node. js prototype pollution
vulnerabilities via object lookup analysis,” in Proceedings of the 29th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, 2021, pp. 268–279.

[36] Z. Liu, K. An, and Y. Cao, “Undefined-oriented programming: Detecting and
chaining prototype pollution gadgets in node. js template engines for malicious
consequences,” in Proceedings of the 45th IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, May 2024.

[37] M. Kang et al., “Scaling javascript abstract interpretation to detect and exploit
node.js taint-style vulnerability,” in Proceedings of the 44th IEEE Symposium on
Security and Privacy (S&P), San Francisco, CA, May 2023.

[38] J. Jueckstock and A. Kapravelos, “VisibleV8: In-browser Monitoring of
JavaScript in the Wild,” in Proceedings of the Internet Measurement Conference
(IMC), Amsterdam, Netherlands, Oct. 2019.

[39] Z. Yang, J. Allen, M. Landen, R. Perdisci, and W. Lee, “Trident: Towards detecting
and mitigating web-based social engineering attacks,” in Proceedings of the 32nd
USENIX Security Symposium (Security), Anaheim, CA, Aug. 2023, pp. 1681–1698.

[40] I. Koishybayev and A. Kapravelos, “Mininode: Reducing the attack surface of
node.js applications,” in 23rd International Symposium on Research in Attacks,
Intrusions and Defenses (RAID 2020), San Sebastian, Spain, Oct. 2020.

[41] C. Yagemann, M. Pruett, S. P. Chung, K. Bittick, B. Saltaformaggio, and W. Lee,
“{Arcus}: Symbolic root cause analysis of exploits in production systems,” in

119

Proceedings of the 30th USENIX Security Symposium (Security), Virtual
Conference, Aug. 2021.

[42] C. Yagemann, S. P. Chung, B. Saltaformaggio, and W. Lee, “Automated bug
hunting with data-driven symbolic root cause analysis,” in Proceedings of the 28th
ACM Conference on Computer and Communications Security (CCS), Seoul, South
Korea, Nov. 2021.

[43] M. Steffens and B. Stock, “PMForce : Systematically Analyzing postMessage
Handlers at Scale,” in Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, 2020, pp. 493–505, ISBN:
9781450370899.

[44] M. Shcherbakov, M. Balliu, and C.-A. Staicu, “Silent spring: Prototype pollution
leads to remote code execution in node. js,” in Proceedings of the 32nd USENIX
Security Symposium (Security), Anaheim, CA, Aug. 2023.

[45] B. Loring, D. Mitchell, and J. Kinder, “Expose: Practical symbolic execution of
standalone javascript,” in Proceedings of the 24th ACM SIGSOFT International
SPIN Symposium on Model Checking of Software, 2017, pp. 196–199.

[46] D. Cassel, N. Sabino, R. Martins, and L. Jia, “Nodemedic-fine: Automatic detection
and exploit synthesis for node.js vulnerabilities,” in Proceedings of the 2025 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb.
2025.

[47] Chrome devtools protocol, [Online; accessed 20-January-2022], 2022.

[48] F. Salahdine and N. Kaabouch, “Social engineering attacks: A survey,” Future
Internet, vol. 11, no. 4, p. 89, 2019.

[49] Fully 84 percent of hackers leverage social engineering in cyber attacks, https :
//www.esecurityplanet.com/threats/fully-hackers-leverage-social-engineering-in-
cyber-attacks/, 2017.

[50] The social engineering infographic - security through education, https : / / www.
social-engineer.org/social-engineering/social-engineering-infographic/.

[51] G. Costantino, A. La Marra, F. Martinelli, and I. Matteucci, “Candy: A social
engineering attack to leak information from infotainment system,” in 2018 IEEE
87th Vehicular Technology Conference (VTC Spring), IEEE, 2018, pp. 1–5.

[52] 15 alarming cyber security facts and stats — cybint, https://www.cybintsolutions.
com/cyber-security-facts-stats/, 2020.

120

https://www.esecurityplanet.com/threats/fully-hackers-leverage-social-engineering-in-cyber-attacks/
https://www.esecurityplanet.com/threats/fully-hackers-leverage-social-engineering-in-cyber-attacks/
https://www.esecurityplanet.com/threats/fully-hackers-leverage-social-engineering-in-cyber-attacks/
https://www.social-engineer.org/social-engineering/social-engineering-infographic/
https://www.social-engineer.org/social-engineering/social-engineering-infographic/
https://www.cybintsolutions.com/cyber-security-facts-stats/
https://www.cybintsolutions.com/cyber-security-facts-stats/

[53] New data shows ftc received 2.8 million fraud reports from consumers in 2021
— federal trade commission, https : / / www. ftc . gov / news - events / news / press -
releases / 2022 / 02 / new - data - shows - ftc - received - 28 - million - fraud - reports -
consumers-2021-0, 2022.

[54] T. Yu,
A. Association for Computing Machinery. Special Interest Group on Security,
National Science Foundation (U.S.), Association for Computing Machinery, and
ACM Digital Library., “Knowing Your Enemy: Understanding and
DetectingMalicious Web Advertising,” p. 1070, ISBN: 9781450316514.

[55] USENIX Association., ACM SIGMOBILE., and ACM Digital Library., “Towards
Measuring and Mitigating Social Engineering Software Download Attacks,”
USENIX Association, 2005, p. 48, ISBN: 9781931971324.

[56] A. Zarras, A. Kapravelos, G. Stringhini, T. Holz, C. Kruegel, and G. Vigna, “The
dark alleys of madison avenue: Understanding malicious advertisements,” in
Proceedings of the ACM SIGCOMM Internet Measurement Conference, IMC,
Association for Computing Machinery, Nov. 2014, pp. 373–379, ISBN:
9781450332132.

[57] Blocking goals and policy - brave browser wiki, [Online; accessed 20-January-
2022], 2021.

[58] Rainbow blocker adware - easy removal steps (updated), https://www.pcrisk.com/
removal-guides/23298-rainbow-blocker-adware, 2022.

[59] Virustotal, [Online; accessed 20-January-2022], 2022.

[60] How much money do websites make from advertising? https://adsterra.com/blog/
how-much-money-websites-make-from-ads/, 2020.

[61] Best cpm rates for publishers and webmasters, https: / /adsterra.com/blog/geos-
with-high-cpm-rates-for-publishers/.

[62] Google display ads cpm, cpc, & ctr benchmarks in q1 2018, https://blog.adstage.
io/google-display-ads-cpm-cpc-ctr-benchmarks-in-q1-2018, 2018.

[63] Better ads standards - google ad manager, https://admanager.google.com/home/
resources/feature-brief-better-ads-standards/, 2018.

[64] Advertising and marketing on the internet: Rules of the road — federal trade
commission, https : / / www. ftc . gov / business - guidance / resources / advertising -
marketing-internet-rules-road, 2022.

121

https://www.ftc.gov/news-events/news/press-releases/2022/02/new-data-shows-ftc-received-28-million-fraud-reports-consumers-2021-0
https://www.ftc.gov/news-events/news/press-releases/2022/02/new-data-shows-ftc-received-28-million-fraud-reports-consumers-2021-0
https://www.ftc.gov/news-events/news/press-releases/2022/02/new-data-shows-ftc-received-28-million-fraud-reports-consumers-2021-0
https://www.pcrisk.com/removal-guides/23298-rainbow-blocker-adware
https://www.pcrisk.com/removal-guides/23298-rainbow-blocker-adware
https://adsterra.com/blog/how-much-money-websites-make-from-ads/
https://adsterra.com/blog/how-much-money-websites-make-from-ads/
https://adsterra.com/blog/geos-with-high-cpm-rates-for-publishers/
https://adsterra.com/blog/geos-with-high-cpm-rates-for-publishers/
https://blog.adstage.io/google-display-ads-cpm-cpc-ctr-benchmarks-in-q1-2018
https://blog.adstage.io/google-display-ads-cpm-cpc-ctr-benchmarks-in-q1-2018
https://admanager.google.com/home/resources/feature-brief-better-ads-standards/
https://admanager.google.com/home/resources/feature-brief-better-ads-standards/
https://www.ftc.gov/business-guidance/resources/advertising-marketing-internet-rules-road
https://www.ftc.gov/business-guidance/resources/advertising-marketing-internet-rules-road

[65] What are iab standard ads? why are they important? https://www.adpushup.com/
blog/what-are-iab-standard-ads-why-are-they-important/, 2021.

[66] Iab new ad portfolio: Advertising creative guidelines,
https://www.iab.com/guidelines/iab-new-ad-portfolio/, 2022.

[67] U. Iqbal, C. Wolfe, C. Nguyen, S. Englehardt, and D. Zubair Shafiq, “KHALEESI:
Breaker of Advertising and Tracking Request Chains,” Tech. Rep.

[68] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5–32, 2001.

[69] Search engine for source code - publicwww.com, https://publicwww.com/, 2022.

[70] Puppeteer, [Online; accessed 20-January-2022], 2022.

[71] Easylist, [Online; accessed 20-January-2022], 2022.

[72] Blocklistproject/lists: Primary block lists, [Online; accessed 05-June-2022], 2022.

[73] Google safe browsing — google developers, https://developers.google.com/safe-
browsing/, 2022.

[74] M. Kubat, S. Matwin, et al., “Addressing the curse of imbalanced training sets:
One-sided selection,” in Icml, Citeseer, vol. 97, 1997, p. 179.

[75] H. Han, W.-Y. Wang, and B.-H. Mao, “LNCS 3644 - Borderline-SMOTE: A New
Over-Sampling Method in Imbalanced Data Sets Learning,” Tech. Rep., 2005,
pp. 878–887.

[76] Home — popcash, https://popcash.net/, 2022.

[77] A. Tsymbal, “The problem of concept drift: Definitions and related work,”
Computer Science Department, Trinity College Dublin, vol. 106, no. 2, p. 58,
2004.

[78] Q. Au, J. Herbinger, C. Stachl, B. Bischl, and G. Casalicchio, “Grouped feature
importance and combined features effect plot,” arXiv preprint arXiv:2104.11688,
2021.

[79] Brave/adblock-rust, [Online; accessed 20-January-2022], 2021.

[80] V. L. Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and
W. Joosen, “Tranco: A research-oriented top sites ranking hardened against
manipulation,” arXiv preprint arXiv:1806.01156, 2018.

122

https://www.adpushup.com/blog/what-are-iab-standard-ads-why-are-they-important/
https://www.adpushup.com/blog/what-are-iab-standard-ads-why-are-they-important/
https://www.iab.com/guidelines/iab-new-ad-portfolio/
https://publicwww.com/
https://developers.google.com/safe-browsing/
https://developers.google.com/safe-browsing/
https://popcash.net/

[81] The trace event profiling tool (about:tracing),
https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/, 2022.

[82] Page load time - mdn web docs glossary: Definitions of web-related terms — mdn,
https://developer.mozilla.org/en-US/docs/Glossary/Page load time, 2022.

[83] “Ps(1) - linux manual page.” (2022).

[84] U. Iqbal, S. Englehardt, and Z. Shafiq, “Fingerprinting the Fingerprinters: Learning
to Detect Browser Fingerprinting Behaviors,” pp. 1143–1161, 2020.

[85] Electron — npm trends, https : / / npmtrends . com / electron, (Accessed on
08/30/2024).

[86] How water labbu exploits electron-based applications, https:/ /www.trendmicro.
com/en za/research/22/j/how-water-labbu-exploits-electron-based-applications.
html, (Accessed on 08/30/2024).

[87] Cve - cve-2021-21220, https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-
2021-21220, (Accessed on 08/30/2024).

[88] Slack — report #783877 - remote code execution in slack desktop apps + bonus —
hackerone, https://hackerone.com/reports/783877/, (Accessed on 09/01/2024).

[89] Mksb(en): Discord desktop app rce, https : / / mksben . l0 . cm / 2020 / 10 / discord -
desktop-rce.html, (Accessed on 08/30/2024).

[90] Rce in mattermost desktop earlier than 4.2.0 - dev community, https://dev.to/nlowe/
rce-in-mattermost-desktop-earlier-than-420-5aef, (Accessed on 09/01/2024).

[91] Oskarsve/ms-teams-rce, https://github.com/oskarsve/ms-teams-rce/, (Accessed on
09/01/2024).

[92] Cve-2021-28471 - security update guide - microsoft - remote development
extension for visual studio code remote code execution vulnerability,
https : / / msrc . microsoft . com / update - guide / vulnerability / CVE - 2021 - 28471,
(Accessed on 09/01/2024).

[93] Execution with unnecessary privileges in arc-electron · ghsa-v3wr-67px-44xg ·
github advisory database, https://github.com/advisories/GHSA-v3wr-67px-44xg,
(Accessed on 09/01/2024).

[94] Xss vulnarability in markdown mode, https://github.com/Automattic/simplenote-
electron/issues/487, (Accessed on 09/01/2024).

123

https://www.chromium.org/developers/how-tos/trace-event-profiling-tool/
https://developer.mozilla.org/en-US/docs/Glossary/Page_load_time
https://npmtrends.com/electron
https://www.trendmicro.com/en_za/research/22/j/how-water-labbu-exploits-electron-based-applications.html
https://www.trendmicro.com/en_za/research/22/j/how-water-labbu-exploits-electron-based-applications.html
https://www.trendmicro.com/en_za/research/22/j/how-water-labbu-exploits-electron-based-applications.html
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-21220
https://hackerone.com/reports/783877/
https://mksben.l0.cm/2020/10/discord-desktop-rce.html
https://mksben.l0.cm/2020/10/discord-desktop-rce.html
https://dev.to/nlowe/rce-in-mattermost-desktop-earlier-than-420-5aef
https://dev.to/nlowe/rce-in-mattermost-desktop-earlier-than-420-5aef
https://github.com/oskarsve/ms-teams-rce/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-28471
https://github.com/advisories/GHSA-v3wr-67px-44xg
https://github.com/Automattic/simplenote-electron/issues/487
https://github.com/Automattic/simplenote-electron/issues/487

[95] C. Reis, A. Moshchuk, and N. Oskov, “Site isolation: Process separation for web
sites within the browser,” in Proceedings of the 28th USENIX Security Symposium
(Security), Santa Clara, CA, Aug. 2019.

[96] Nvd - cve-2020-15096, https : / / nvd . nist . gov / vuln / detail / CVE - 2020 - 15096,
(Accessed on 09/23/2023).

[97] Nvd - cve-2020-15215, https : / / nvd . nist . gov / vuln / detail / CVE - 2020 - 15215,
(Accessed on 09/23/2023).

[98] Cve - cve-2020-15174, https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-
15174, (Accessed on 08/30/2024).

[99] Security fix for arbitrary code execution - huntr.dev by huntr-helper · pull request
#1 · mikeerickson/cd-messenger, https://github.com/mikeerickson/cd-messenger/
pull/1, (Accessed on 09/01/2024).

[100] D. Wagner and P. Soto, “Mimicry attacks on host-based intrusion detection
systems,” in Proceedings of the 9th ACM Conference on Computer and
Communications Security (CCS), Washington, DC, Oct. 2002, pp. 255–264.

[101] Cve - cve-2022-29247, https : / / nvd . nist . gov / vuln / detail / CVE - 2022 - 29247,
(Accessed on 08/30/2024).

[102] Codeinjection, https : / /codeql .github.com/codeql - standard- libraries / javascript /
semmle / javascript / security /dataflow/CodeInjectionCustomizations .qll /module .
CodeInjectionCustomizations$CodeInjection.html, (Accessed on 10/28/2024).

[103] R. Jahanshahi, B. A. Azad, N. Nikiforakis, and M. Egele, “Minimalist:
Semi-automated debloating of {php} web applications through static analysis,” in
Proceedings of the 32nd USENIX Security Symposium (Security), Anaheim, CA,
Aug. 2023.

[104] B. A. Azad, P. Laperdrix, and N. Nikiforakis, “Less is more: Quantifying the
security benefits of debloating web applications,” in Proceedings of the 28th
USENIX Security Symposium (Security), Santa Clara, CA, Aug. 2019.

[105] Cve-2021-43908 - security update guide - microsoft - visual studio code spoofing
vulnerability, https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-
43908, (Accessed on 09/01/2024).

[106] Joplin desktop app vulnerable to cross-site scripting · cve-2022-45598 · github
advisory database, https : / / github . com / advisories / GHSA - h6c2 - 879r - jffh,
(Accessed on 09/01/2024).

124

https://nvd.nist.gov/vuln/detail/CVE-2020-15096
https://nvd.nist.gov/vuln/detail/CVE-2020-15215
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-15174
https://cve.mitre.org/cgi-bin/cvename.cgi?name=2020-15174
https://github.com/mikeerickson/cd-messenger/pull/1
https://github.com/mikeerickson/cd-messenger/pull/1
https://nvd.nist.gov/vuln/detail/CVE-2022-29247
https://codeql.github.com/codeql-standard-libraries/javascript/semmle/javascript/security/dataflow/CodeInjectionCustomizations.qll/module.CodeInjectionCustomizations$CodeInjection.html
https://codeql.github.com/codeql-standard-libraries/javascript/semmle/javascript/security/dataflow/CodeInjectionCustomizations.qll/module.CodeInjectionCustomizations$CodeInjection.html
https://codeql.github.com/codeql-standard-libraries/javascript/semmle/javascript/security/dataflow/CodeInjectionCustomizations.qll/module.CodeInjectionCustomizations$CodeInjection.html
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-43908
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-43908
https://github.com/advisories/GHSA-h6c2-879r-jffh

[107] Appium-desktop os command injection vulnerability · cve-2023-2479 · github
advisory database, https : / / github . com / advisories / GHSA - xq6j - x8pq - g3gr,
(Accessed on 09/01/2024).

[108] Cross site scripting vulnerability, https://github.com/yoshuawuyts/vmd/issues/137,
(Accessed on 09/01/2024).

[109] Markdownify subject to remote code execution via malicious markdown file · cve-
2022-41709 · github advisory database, https : / /github.com/advisories /GHSA-
c942-mfmp-p4fh, (Accessed on 09/01/2024).

[110] Os command injection vulnerability found in poddycast, https://huntr.dev/bounties/
1624637557081-MrChuckomo/poddycast/, (Accessed on 09/01/2024).

[111] Xss vulnerability · issue #23 · ohhaibrowser/browser,
https://github.com/OhHaiBrowser/Browser/issues/23, (Accessed on 09/01/2024).

[112] Github advisory database, https://github.com/advisories?query=type:reviewed+
ecosystem:npm, (Accessed on 09/01/2024).

[113] Javascript code coverage - v8, https : / / v8 . dev / blog / javascript - code - coverage,
(Accessed on 09/01/2024).

[114] Acornjs/acorn: A small, fast, javascript-based javascript parser, https : / / github.
com/acornjs/acorn, (Accessed on 08/29/2024), 2024.

[115] Speedometer 2.0, https : / / browserbench . org / Speedometer2 . 0/, (Accessed on
09/01/2024).

[116] A03 injection - owasp top 10:2021, https://owasp.org/Top10/A03 2021-Injection/,
(Accessed on 09/01/2024).

[117] B. Amin Azad, R. Jahanshahi, C. Tsoukaladelis, M. Egele, and N. Nikiforakis,
“AnimateDead: Debloating Web Applications Using Concolic Execution,” in
Proceedings of the 32nd USENIX Security Symposium (Security), Anaheim, CA,
Aug. 2023.

[118] E. Trickel et al., “Toss a Fault to Your Witcher: Applying Grey-box
Coverage-Guided Mutational Fuzzing to Detect SQL and Command Injection
Vulnerabilities,” in Proceedings of the 44th IEEE Symposium on Security and
Privacy (S&P), San Francisco, CA, May 2023.

[119] B. Stock et al., “From Facepalm to Brain Bender : Exploring Client-Side Cross-
Site Scripting Categories and Subject Descriptors,” Proceedings of the 22nd ACM

125

https://github.com/advisories/GHSA-xq6j-x8pq-g3gr
https://github.com/yoshuawuyts/vmd/issues/137
https://github.com/advisories/GHSA-c942-mfmp-p4fh
https://github.com/advisories/GHSA-c942-mfmp-p4fh
https://huntr.dev/bounties/1624637557081-MrChuckomo/poddycast/
https://huntr.dev/bounties/1624637557081-MrChuckomo/poddycast/
https://github.com/OhHaiBrowser/Browser/issues/23
https://github.com/advisories?query=type:reviewed+ecosystem:npm
https://github.com/advisories?query=type:reviewed+ecosystem:npm
https://v8.dev/blog/javascript-code-coverage
https://github.com/acornjs/acorn
https://github.com/acornjs/acorn
https://browserbench.org/Speedometer2.0/
https://owasp.org/Top10/A03_2021-Injection/

SIGSAC Conference on Computer and Communications Security, pp. 1419–1430,
2015.

[120] M. Steffens, C. Rossow, M. Johns, and B. Stock, “Don’t trust the locals:
Investigating the prevalence of persistent client-side cross-site scripting in the
wild.,” in Proceedings of the 2019 Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2019.

[121] F. Xiao et al., “Abusing hidden properties to attack the node. js ecosystem,” in
Proceedings of the 30th USENIX Security Symposium (Security), Virtual
Conference, Aug. 2021.

[122] S. Li, M. Kang, J. Hou, and Y. Cao, “Mining node.js vulnerabilities via object
dependence graph and query,” in Proceedings of the 31st USENIX Security
Symposium (Security), Boston, MA, Aug. 2022.

[123] Owasp top ten 2017, https://owasp.org/www-project-top-ten/2017/Top 10.html.

[124] OWASP, Owasp top ten 2021, https://owasp.org/Top10/, 2021.

[125] M. H. M. Bhuiyan, A. S. Parthasarathy, N. Vasilakis, M. Pradel, and C.-A. Staicu,
“Secbench. js: An executable security benchmark suite for server-side javascript,”
in International Conference on Software Engineering (ICSE), 2023.

[126] Nvd - cve-2024-4367, https://nvd.nist.gov/vuln/detail/cve-2024-4367, 2024.

[127] H. Hu et al., “Enforcing unique code target property for control-flow integrity,”
in Proceedings of the 25th ACM Conference on Computer and Communications
Security (CCS), Toronto, ON, Canada, Oct. 2018.

[128] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolution of system-call
monitoring,” in Proceedings of the Annual Computer Security Applications
Conference (ACSAC), 2008.

[129] Evernote 2023 recap, [Accessed 2025-02-14], 2024.

[130] Pdf.js - home, [Accessed 2025-02-14].

[131] Find and fix problems in your javascript code - eslint - pluggable javascript linter,
[Accessed 2025-02-14].

[132] Express - node.js web application framework, [Accessed 2025-02-28].

[133] Microsoft, Visual studio code - code editing. redefined, [Accessed 2025-02-28],
Nov. 2021.

126

https://owasp.org/www-project-top-ten/2017/Top_10.html
https://owasp.org/Top10/
https://nvd.nist.gov/vuln/detail/cve-2024-4367

[134] Jetstream 2.2, [Accessed 2025-02-28].

[135] Proceedings of the 30th USENIX Security Symposium (Security), Virtual
Conference, Aug. 2021.

[136] Proceedings of the 22nd ACM Conference on Computer and Communications
Security (CCS), Denver, CO, Oct. 2015.

[137] Proceedings of the 31st USENIX Security Symposium (Security), Boston, MA, Aug.
2022.

[138] Proceedings of the 44th IEEE Symposium on Security and Privacy (S&P), San
Francisco, CA, May 2023.

[139] Proceedings of the 2018 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2018.

[140] Proceedings of the 28th USENIX Security Symposium (Security), Santa Clara, CA,
Aug. 2019.

[141] Proceedings of the 32nd USENIX Security Symposium (Security), Anaheim, CA,
Aug. 2023.

127

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Problem Statement
	Thesis Contributions

	2 | Literature Survey
	Web-based Social Engineering Attacks
	Code Injection Attacks In The Web Ecosystem

	3 | Trident: Towards detecting and mitigating web-based social engineering attacks
	Introduction
	A Motivating Example & Challenges
	Design
	Evaluation
	Discussions

	4 | CoInDef: A Comprehensive Code Injection Defense for the Electron Framework
	Introduction
	Background & Challenges
	Design
	Evaluation
	Discussions

	5 | CoInDx: Code Injection Diagnosis for JavaScript via Iterative Symbolic Analysis on Subprograms
	Introduction
	Background & Challenges
	Design
	Evaluation
	Discussion

	6 | Conclusion
	References

