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SUMMARY

The proliferation of binary-only program analysis techniques like fuzz testing and sym-

bolic analysis have lead to an acceleration in the number of publicly disclosed vulnerabil-

ities. Unfortunately, while bug finding has benefited from recent advances in automation

and a decreasing barrier to entry, bug remediation has received less attention. Consequently,

analysts are publicly disclosing bugs faster than developers and system administrators can

mitigate them. Hardware-supported processor tracing within commodity processors opens

new doors to observing low-level behaviors with efficiency, transparency, and integrity that

can close this automation gap. Unfortunately, several trade-offs in its design raise serious

technical challenges that have limited widespread adoption. Specifically, modern processor

traces only capture control flow behavior, yield high volumes of data that can incur over-

head to sift through, and generally introduce a semantic gap between low-level behavior

and security relevant events.

To solve the above challenges, I propose control-oriented record and replay, which

combines concrete traces with symbolic analysis to uncover vulnerabilities and exploits.

To demonstrate the efficacy and versatility of my approach, I first present a system called

ARCUS, which is capable of analyzing processor traces flagged by host-based monitors to

detect, localize, and provide preliminary patches to developers for memory corruption vul-

nerabilities. ARCUS has detected 27 previously known vulnerabilities alongside 4 novel

cases, leading to the issuance of several advisories and official developer patches. Next, I

present MARSARA, a system that protects the integrity of execution unit partitioning in

data provenance-based forensic analysis. MARSARA prevents several expertly crafted ex-

ploits from corrupting partitioned provenance graphs while incurring little overhead com-

pared to prior work. Finally, I present Bunkerbuster, which extends the ideas from ARCUS

and MARSARA into a system capable of proactively hunting for bugs across multiple end-

hosts simultaneously, resulting in the discovery and patching of 4 more novel bugs.

xv



CHAPTER 1

INTRODUCTION

Despite persistent efforts by the cybersecurity community to improve the security of com-

puter software with better vetting (e.g., fuzz testing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) and

prevention (e.g., control flow integrity [11, 12, 13, 14, 15, 16, 17]), the rate at which soft-

ware vulnerabilities are being discovered and exploited is accelerating. According to the

National Vulnerability Database (NVD) maintained by the National Institute of Standards

and Technology (NIST), the number of vulnerabilities publicly disclosed in 2020 was 6.1%

larger than that of the prior year and 396% larger than 2010. Recently discovered vulner-

abilities span a broad range of categories, from the classical memory corruption bugs that

have plagued software engineering for decades (e.g., buffer overflow [18]) to more novel

attacks exploiting newly introduced side-channels (e.g., Meltdown [19]).

One of the fundamental shifts driving this acceleration is the proliferation of binary-

only program analysis techniques like binary fuzz testing (a.k.a. “fuzzing”) and binary

symbolic analysis. For example, just within the past decade, researchers have released into

the public domain well documented open source tools like American Fuzzy Lop [20] and

angr [21], which have lowered the barrier to entry for applying advanced program analysis

techniques to real-world software. Since these tools can operate directly on program bina-

ries — without requiring source code or other intermediate developer artifacts — motivated

analysts can search for bugs without requiring the software developer’s consent or cooper-

ation. The result has been a cybersecurity gold rush, whereby actors ranging from students,

to researchers, to third-party enterprises and startups, hunt for and disclose software bugs

for fame and fortune.

In general, these events can be seen as a positive force that benefits society by raising

public awareness and applying pressure on negligent developers to prioritize the security of

1



their software and remediate outstanding issues. However, this interpretation is only valid

under the assumption that pressured developers and alert system administrators actually go

on to fix and mitigate the bugs that are being publicly disclosed. This vital last step cannot

be performed by the analyst reporting the bug because they are not as familiar with the

buggy program (or the systems that depend upon it) and may not have access to its source

code or distribution channels.

Unfortunately, the reality of the situation is not as clear-cut as researchers would like

to believe. In fact, I observe that there is an automation gap in the steps between bug

disclosure and bug remediation that is worsening, driving society towards a state where

serious vulnerabilities are publicly known — but are not being fixed in a timely manner

— presenting a window of opportunity to adversaries. As an example, of the 4,719 Linux

kernel bugs automatically reported by the open source fuzzing service Syzbot, 964 have not

been remediated (20.4%). The oldest open issue is almost 3 years old. One Linux developer

even wrote1 in a public thread, “We are drowning in [fuzzer] reports and just throwing them

at us doesn’t really help anyone here anymore.” In short, even in sophisticated software

projects and production environments, bugs are being reported faster than developers and

system administrators can fix them.

Based on these observations, I propose the need to close this gap by creating new sys-

tems and techniques for not just finding software bugs, but also automatically localizing and

preventing them. The new solutions that I am proposing must be able to keep pace with

automated discovery techniques like fuzzing so that developers and system administrators

can stay ahead of the curve and in control of their software security posture. This means

that traditional analysis techniques like address sanitation [22], built on heavyweight tech-

nologies like dynamic binary instrumentation [23, 24] that cannot be reasonably deployed

on production or end-user systems, are not sufficient.

Instead, the solutions that I propose make use of the advanced features available in

1https://lore.kernel.org/dri-devel/20200710103910.GD1203263@kroah.com/
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commodity processors to capture the telemetry from novel exploits and benign user ac-

tivity necessary to efficiently find, explain, and prevent future attacks. In particular, I take

advantage of the general availability of commodity hardware processor tracing (PT), which

makes it possible to observe low-level execution events in software with superior efficiency,

transparency, and integrity to previous instrumentation-based solutions like PIN and Dy-

namoRIO. Using PT, tracing can directly bypass processor caches to write directly to phys-

ical memory accessible only to the operating system (OS) kernel (or hypervisor, if present),

where it can then be securely forwarded for further analysis.

However, in order to make these solutions viable, several technical challenges arising

from the trade-offs in PT’s design have to be overcome. First, PT achieves its efficiency by

limiting recording to only low-level control events, such as whether an instruction branched

or not. Without additional information, such facts are insufficient to formulate informed

security decisions, such as whether the recorded trace reflects a memory corrupting buffer

overflow. Second, tracing captures the lowest possible level of program behavior, creating

a semantic gap that must be overcome to model, detect, and analyze prevalent software

vulnerabilities and exploit techniques. For example, analyzing UAF vulnerabilities requires

knowledge of the program’s heap memory layout and how it changes over time. It is not

immediately obvious how to recover such information from a trace of instruction level

control flow events. Third, the sheer volume of recorded data requires careful management

and filtering in order to preserve the low overhead of the hardware, which is necessary

to construct deployable systems. Specifically, while the underlying hardware can capture

traces with less than 2% runtime overhead, the subsequent buffering and decoding of that

data can raise the overhead to over 7% [25].

In this dissertation, I propose solutions to these technical challenges in the context of

finding software vulnerabilities and preventing exploitation of deployed software. Specifi-

cally, my solutions center around the novel concept of control-oriented record and replay,

whereby processor traces are contextualized with additional information (collected a priori

3



or alongside hardware tracing) to recover enough facts about the intermediate states in the

program’s execution to detect, localize, and remediate software vulnerabilities and attempts

to exploit them. This is in contrast to traditional data-oriented record and replay [26, 27]

that records inputs and outputs between components (e.g., system calls between the user

program and the kernel) to answer postmortem forensic questions.2

To demonstrate the efficacy and versatility of my approach, I first present a system

called ARCUS, which is designed to assist system administrators in understanding intru-

sion detection system (IDS) alerts by automatically detecting and localizing bugs contained

within recorded traces, yielding reports that can then be forwarded to developers for patch-

ing. ARCUS consists of an end-host kernel driver that snapshots a target process’ initial

program state and then records its execution using PT. Upon the process being flagged by

an IDS, for any reason, the snapshot and trace are forwarded to ARCUS’ analysis compo-

nent, which may reside in the same system or a different one, where intermediate program

states are reconstructed using symbolic execution. This linear sequence of symbolic states

encode all possible input values to the program that can lead down the path recorded by

PT. With these states in hand, ARCUS then uses an arsenal of bug-class-specific plugins to

check the states for symbolic indicators of memory corruption bugs — specifically, over-

flow, UAF, double free, and format string bugs — and upon detecting one, uses a series of

“what if” symbolic tests to localize the root cause, which can then be forwarded to devel-

opers as a human-readable report. My collaborators and I implemented ARCUS for Linux

and evaluated it on 20 user programs, where it detected and localized 27 previously known

vulnerabilities within our target bug classes. Surprisingly, ARCUS also discovered 4 novel

vulnerabilities, leading to the issuance of Common Vulnerability Enumeration (CVE) advi-

sors and official developer patches. ARCUS achieves this with a 7.21% recording overhead

on the SPEC CPU 2006 standard benchmark.

Next, to expand the scope of my approach to beyond traditional memory safety bugs,

2Example: “Which email infected the user’s system?”
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I present a system called MARSARA, which aims to protect EUP (used for system data

provenance in post-mortem forensics) from a novel class of attacks that I propose, called

execution repartitioning attacks. Data provenance is designed to analyze system audit logs

to determine how data flows between objects (e.g., files, sockets) and subjects (i.e., pro-

cesses), yielding a provenance graph for human analysts or downstream analysis systems.

However, long-running processes (e.g., HTTP servers) can accumulate many data depen-

dencies over their lifetime, which can cascade into what is referred to as the dependency

explosion problem [28], whereby an event is wrongly associated with many prior events

over which no data flow actually occurred. EUP addresses this by partitioning process

events into autonomous units of work, thereby partitioning data provenance graphs into

manageable subgraphs that more accurately reflect the true provenance. Unfortunately, I

discovered that due to implicit assumptions made by existing EUP designs, a knowledge-

able attacker can tweak their exploits to weaponize the EUP algorithm, arbitrarily control-

ling the partitioning of events to yield graphs designed to mislead and frustrate analysts.

However, EUP is critical in making data provenance practical for real-world systems, and

so I designed MARSARA, which uses additional data collected from PT and a novel pro-

gram model representation to validate the underlying assumptions of EUP, discarding par-

titions that cannot be validated against low-level execution behavior, to ensure the resulting

partitioned provenance graphs will capture the complete attack progression. MARSARA

achieves this with 8.7% overhead over traditional auditing frameworks and a 2.82% in-

crease in partitioned graph sizes, in the worst observed case.

Finally, I present a bug hunting and reporting framework called Bunkerbuster, which

extends the ideas from ARCUS and MARSARA in order to proactively find and localize

the root cause of software bugs — potentially before an attacker even has the opportu-

nity to attempt exploitation in the wild. Bunkerbuster represents a significant step forward

in generalizing my approach by preserving the concepts originally proposed in ARCUS

while adding the capability to operate on benign traces collected from multiple end-hosts.
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Finding bugs using only benign traces is significantly more challenging than analyzing

traces that have already been flagged by an IDS, as performed by ARCUS. Bunkerbuster

accomplishes this task by distributively filtering redundant information at each end-host,

on-the-fly, while also incorporating new techniques for exploring nearby paths not directly

executed in the traces. Bunkerbuster manages path explosion by conservatively pruning

paths that cannot give rise to the target bug classes. This enables Bunkerbuster to proac-

tively search for and localize overflow, UAF, double free, and format string bugs over

multiple paths, whereas ARCUS is limited to reactively responding to individual IDS alerts

flagging single paths. Compared to ARCUS on the same dataset, Bunkerbuster finds 4 ad-

ditional novel vulnerabilities, which have been confirmed and patched by developers using

Bunkerbuster’s reports. Beyond the comparison to ARCUS, Bunkerbuster has continued

to analyze traces of popular programs available on Debian, leading to the detection and

remediation of 18 unique 0-day vulnerabilities to date.
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CHAPTER 2

RELATED WORK

This chapter presents the related work to the proposed solutions, techniques, and target

applications. The first section summarizes the related work in control flow bending at-

tacks, which is the dominate methodology currently used by attackers to exploit software

vulnerabilities. Due to its prevalence, control flow bending is an underlying motivator for

ARCUS, MARSARA, and Bunkerbuster. The next section summarizes related work in

program analysis in the context of software security. Specifically, this section covers sym-

bolic analysis, which is utilized in all three systems, fuzz testing, which is another prevalent

technique and common point of comparison for ARCUS and Bunkerbuster, and root cause

analysis, which is an underlying theme across all three systems and an essential step in

closing the automation gap between bug finding and bug remediation. The last section cov-

ers attack reconstruction in the context of data provenance, which is vital to understanding

the problem scope for MARSARA.

2.1 Control Flow Bending Attacks

Control flow bending is the most prevalent way attackers exploit memory corruption vul-

nerabilities. From the attack perspective, we have seen a rise in sophistication from code

injection, to code reuse (e.g., ret2libc [29]), to what is now the predominate exploitation

technique: return-oriented programming (ROP) [30, 31, 32, 33, 34, 35]. For defenses, we

have seen proposals based on randomization, including address space layout randomiza-

tion (ASLR) [36], which have been successfully deployed in common systems. Unfortu-

nately, there is still an ongoing battle between circumvention [37] techniques and better

defenses [38, 39], motivating the need for systems like ARCUS, MARSARA, and Bunker-

buster that can help find, patch, and mitigate software vulnerabilities.
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One commonly discussed technique for preventing control flow bending is control flow

integrity (CFI) [40], which aims to ensure that the program adheres to a predetermined

control flow model, thereby reducing the attacker’s ability to exploit paths unintended by

the developer. Unfortunately, CFI has only seen limited adoption due to conflicts between

performance and security. Coarse-grained solutions [41, 42] are fast and compatible with

existing programs, but can be bypassed with careful bending [43]. Fine-grained approaches

reduce the attack surface [44, 45, 46], but can still be bypassed, require source code, or

rely on special hardware for performance [47]. In short, there is no ideal CFI solution to

date [48], which motivates the need for alternative approaches and solutions.

In the context of MARSARA, control flow bending is one means by which attackers

can conduct EUP attacks, but they can also utilize format string vulnerabilities and other

orthogonal classes of bugs. I am the first to propose that online exploitation can explicitly

target EUP to hinder forensic investigation. Prior work on bending may evade CFI, but

leave the provenance chain intact, posing no hindrance on the attack investigation. Even

when CFI is already deployed, MARSARA demonstrates an empirical benefit to defenders.

2.2 Program Security Analysis

There are many techniques for analyzing programs for security properties, depending on the

available artifacts, user’s specific security goals, and other factors. In the context of binary-

only program analysis, the dominate techniques for finding software bugs are symbolic

analysis and fuzzing. Complimentary to these techniques is root cause analysis, which is

a vital step to explaining discovered bugs and thwarted attacks to developers and system

administrators so future repeat attacks can be prevented.

2.2.1 Symbolic Analysis

The earliest work in symbolic analysis demonstrated how executing programs with sym-

bolic (as opposed to concrete) variables can aid in testing and debugging code [49]. As
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solvers became more efficient, literature emerged for how to use symbolic execution to re-

play protocols [50] and detect vulnerabilities [51, 52, 53, 54]. Symbolic execution was also

applied to side-channel research [55], firmware analysis [56], correctness of cryptography

software [57], emulator testing [4] and automatic binary patching [58].

Much of this work focused on a subset of symbolic analysis called concolic execution.

Specifically, rather than performing pure static analysis, which can get stuck on loops and

string parsing, concolic systems leverage real executions for guidance [59, 60, 21], explor-

ing outwards from the concrete executions to examine as many paths as possible [61, 62].

However, this can still lead to path explosion, especially as the analysis deviates further

from the concrete execution. This motivated proposals for hybrid approaches [63, 64],

which alternate between fuzzing and symbolic exploration to manage path explosion.

Although Bunkerbuster also explores nearby paths with guidance from concrete data to

discover vulnerabilities [61], Bunkerbuster takes a unique approach to avoiding path explo-

sion. Namely, rather than turning to hybrid techniques that incorporate fuzzing [63, 64, 65,

66], source code [62], or prior crashes [67] to find more inputs (that can still lead to path

explosion during symbolic analysis), Bunkerbuster leverages execution traces. Bunker-

buster’s symbolic states enable it to detect a wide range of vulnerabilities (overflows, UAF,

double free (DF), format string (FS)) whereas prior approaches are limited to a specific

class, such as heap overflow [68]. Also, whereas many prior concolic systems have to

operate in lockstep with the concrete environment [69, 68], Bunkerbuster’s tracing is com-

pletely decoupled from analysis, granting low overhead and a solution that can be deployed

on production systems.

A less explored direction is single path concolic execution, which has proven useful

in automatically generating exploits [70, 61, 71] and reverse engineering. The advantage

of the single path approach is it sidesteps the issue of path explosion. Conversely, since

only one path is analyzed at a time, it also relies heavily on receiving concrete executions

that cover interesting program behaviors. ARCUS makes use of single path analysis, but
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distinguishes itself by the way it leverages executed instructions and in its ability to derive

root cause reports for developers and system administrators.

There is also work on specialized techniques for symbolic analysis, such as loop-

extended symbolic execution (LESE) [52], that aim to achieve better coverage of the target

program. Bunkerbuster shares the same technical challenge of improving code coverage by

overcoming path explosion, but does so by making novel use of concrete data rather than

relying on a novel type of symbolic lattice or grammar. Consequently, whereas approaches

like LESE have only been evaluated on small CLI programs like Sendmail to uncover over-

flows, Bunkerbuster can handle large plugin-based GUI tools like GIMP and also finds

instances of UAF, DF, and FS, which are outside the scope of related work. LESE cannot

be extended to discover these classes because efficiently exploring loops is an orthogonal

problem to detecting UAF, DF, and FS.

2.2.2 Fuzz Testing

An alternative approach to program analysis is fuzzing [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], which

instead enumerates possible inputs to a program or API and checks for crashes as an in-

dicator of buggy behavior. Some of the challenges with fuzzing are acquiring good seed

inputs, reaching deep APIs, and identifying the nature of the bug when a crash occurs. The

latter typically requires using additional tools like address sanitizers, which are slow and

can only be applied in an offline context. Although Bunkerbuster does not rely on fuzzing,

it addresses the same usability challenges. As a side note, although a key novelty of AR-

CUS, MARSARA, and Bunkerbuster is their ability to record traces with low overhead on

production systems, there is no technical barrier to having them also analyze inputs derived

via fuzzing, should the user not have access to real end-hosts.

In recent years, researchers have recognized the inability of fuzzers to handle large

complex programs that are slow to initialize or require GUI interaction. Several proposals

have emerged to automatically generate fuzzer harnesses using source code [72, 73]. Un-
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fortunately, these solutions still leave commercial off-the-shelf (COTS) and legacy binaries

unaddressed. In response, a system called Winnie [74] was proposed, which uses execution

traces (rather than source code) to automatically generate harnesses for Windows binaries.

While this relates to how Bunkerbuster uses snapshots to decompose large programs into

manageable components, 5% of Winnie’s harnesses had to be manually fixed to account

for complex structures and callbacks while a large portion of the remaining 95% required

minor manual tweaks. Bunkerbuster does not incur these shortcomings.

2.2.3 Root Cause Analysis

One of the earliest techniques for root cause analysis, delta debugging [75, 76], compares

program states between successful and failing inputs to narrow down the set of relevant

variables. Another popular approach is to use program slicing to extract only the code that

contributes to the failure condition [77]. Delta debugging struggles to generate enough

inputs in both classes to be effective while slicing requires tainting or lightweight replay to

keep slices small and concise.

There is also failure sketching, which can handle security bugs like overflows [78],

however most proposals based on this technique focus on race conditions because they are

harder to reproduce [79]. Although races have serious security implications, they are not

the focus of my proposed solutions, nor are they the only class hindering modern programs.

There is also work on application layer root cause, including analysis of browser warnings

and websites, trace-based pinpointing of insecure keys, and bug finding using written re-

ports, which is orthogonal to ARCUS, MARSARA, and Bunkerbuster.

It is also possible to produce root cause explanations by triaging the many crashes

produced by tools like fuzzers into buckets of related cases. Bucketing can be done sym-

bolically [80], semantically with program transformations [81], or statistically [82]. These

lines of research are spiritual successors to delta debugging and carry similar limitations.

Namely, they can only analyze bugs that result in a crash and require multiple crashing
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and non-crashing inputs to yield good explanations. The solutions I propose avoid this

shortcoming.

Another direction is crash dump analysis [83], which aims to locate the cause of soft-

ware crashes. However, while the motivations overlap with ARCUS and Bunkerbuster,

the assumptions and scope do not. Crash dump analysis assumes bugs will manifest into

crashes, but ARCUS and Bunkerbuster can detect non-crashing bugs. Crash dumps yield

partial stack and memory information whereas my solutions use PT traces and snapshots.

Data in crash dumps can be corrupt whereas the integrity of PT is protected by the kernel

and hardware. These factors make the solutions I propose unique to those proposed in the

context of analyzing crash dumps.

2.3 Attack Reconstruction

MARSARA is the first system to analyze binary events during system-level provenance

collection and solve the challenges associated with protecting the integrity of EUP sig-

nature matches. A lot of work has been done to leverage provenance for forensic anal-

ysis [84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95], network debugging, auditing and

troubleshooting [96, 97, 98, 99, 100], alert triage [101, 92], and intrusion detection and ac-

cess control [102, 103, 104]. MARSARA complements all these systems by offering more

secure EUP. MARSARA also complements the existing EUP systems such as BEEP [85],

MPI [88], and MCI [84], which improve postmortem analysis by solving the problem of

dependency explosion.

A large amount of research effort has focused on the generation and use of system call

logs in forensic analysis, investigation, and recovery [105, 106, 107, 108, 109, 110]. How-

ever, none of the existing work focuses on defending postmortem analysis against execution

repartitioning attacks. Provenance visualization techniques [111, 112] are also proposed to

facilitate causality analysis. MARSARA can leverage these techniques to provide prove-

nance graph summaries to system administrators, accelerating threat investigations.

12



Several systems [113, 114] have been proposed to detect the tampering of audit logs.

Both Custos and SGX-Log use protocols that leverage Intel SGX and cryptographic data

structures to protect audit log integrity. Several formats have also been proposed in the

literature for storing data in a tamper-evident fashion, such as history trees [115, 116] and

hash treaps [116]. These tamper-evident systems only detect if certain entries in the audit

log are modified after being committed, which is orthogonal to the online threat addressed

by MARSARA.

2.3.1 Data Provenance Log Reduction

The solution presented in MARSARA is orthogonal to provenance graph compression and

deduplication techniques [117, 118, 119], since they compress the provenance graph in-

stead of defending against EUP attacks. Many approaches [120, 117, 121, 86, 102, 93,

119, 122, 123, 87, 124, 125] are proposed to reduce the size of the audit log for long-term

storage and to speed up after-the-fact forensic analysis. MARSARA can leverage those

techniques to reduce its storage overhead.

LogGC [126] provides offline techniques to garbage collect redundant events that have

no forensic value. Similarly, Winnower [124] and Process-centric Causality Approxima-

tion [127] both reduce log size by over-approximating causal relations. These techniques

can be applied alongside MARSARA to decrease storage overhead. MARSARA can also

leverage these approaches to speed up its analysis, which is left to future work.
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CHAPTER 3

ARCUS: SYMBOLIC ROOT CAUSE ANALYSIS OF EXPLOITS

In this chapter, my collaborators and I present ARCUS, a system designed to detect and lo-

calize memory corruption bugs occurring in executions flagged by end-host IDS monitors,

yielding a human-readable report that can then be forwarded to developers for remediation.

3.1 Introduction

End-host runtime monitors are designed to enforce security properties like CFI [47, 25, 11,

12, 13, 14, 128, 15, 16, 17] or detect anomalous events (system calls [129], segmentation

faults [130, 131, 132, 133]). They can effectively halt attacks that rely on binary exploits

and are seeing real-world deployment [134, 135]. However, these systems are designed

to react to the symptoms of an attack, not the root cause. A CFI monitor responds to an

invalid control flow transfer, not the buggy code that allowed the code pointer to become

corrupted in the first place. A host-based IDS responds to an unusual sequence of system

calls, without concern for how the program was able to deviate from the expected behavior

model.

Traditionally, symptoms of an attack are easier to detect than root causes. Namely, it

is easier to detect that the current state has violated a property than to diagnose what lead

to that violation. Unfortunately, this has led security professionals to adopt brittle stopgaps

(e.g., input filters [136, 137, 138, 139] or selective function hardening [140]), which can

be incomplete or incur side effects (e.g., heavyweight instrumentation [23]). Ideally, the

developers that maintain the vulnerable program must fix the code and release a patch, but

this creates a conundrum: where is the bug that led to the detected attack?

Unfortunately, the journey from a detected attack to a patch is rarely easy. Typical

attack artifacts, like crash dumps [141] or logs [142, 143, 101, 144, 145, 94, 146, 147, 148,

14



95, 149], contain partial, corruptible data [150, 151, 152, 153, 154, 155, 156] with only the

detection point marked. Concrete inputs may reproduce the symptoms in the production

environment, but raise privacy concerns [141] and rarely work for developers [157, 158].

Worse still, developers are known to undervalue a bug’s severity [159] or prioritize other

(better understood) issues [160].

Seeking a better solution, we propose a root cause analysis that considers “what if”

questions to test the impact of particular inputs on the satisfiability of vulnerable states.

The tests are vulnerability-class-specific (e.g., buffer overflows) and enable the analysis to

localize vulnerabilities and recommend new enforceable constraints to prevent them, essen-

tially suggesting a patch to developers. Analysis is conducted over the control flow trace

of the program flagged by the end-host monitors, testing at each state “what if” any of the

vulnerability tests could be satisfied. Notice that this is a divergence from the traditional

mindset of replaying [24, 161, 162] or tainting [163, 139]. For example, instead of taint-

ing a string that caused a stack overflow, the developers would most directly benefit from

knowing which code block caused the corruption and what additional constraints need to

be enforced upon it.1

Armed with vulnerability-class-specific satisfiability tests, we turn our attention to ef-

ficiently collecting control flow traces in production end-hosts, which is challenging due

to strict performance expectations. Interestingly, we find that readily available, hardware-

supported, PT2 offers a novel avenue towards efficient recording. Specifically, we leverage

the capability of Intel PT to design a kernel module that can efficiently capture the control

flow of user programs, storing and forwarding it to an analysis system if the end-host run-

time monitor flags the process. Notably, this avoids recording concrete data or attempting

to re-execute the program.

We have implemented a system called ARCUS3 — an automated framework for local-

1Such analysis could also merge redundant alerts stemming from the same bug producing varying symp-
toms, improving alert fatigue [164, 165, 166].

2Available in Intel®, AMD®, and ARM® processors.
3Analyzing Root Cause Using Symbex.
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izing the root cause of vulnerabilities in executions flagged by end-host runtime monitors.

We have evaluated our ARCUS prototype using 27 exploits targeting real-world vulner-

abilities, covering stack and heap overflows, integer overflows, allocation bugs like UAF

and double free, and format string bugs, across 20 different commodity programs. Surpris-

ingly, ARCUS also discovered 4 new 0-day vulnerabilities that have been issued 3 CVEs,

demonstrating an ability to find neighboring programming flaws.4 ARCUS demonstrates

impressive scalability, handling traces averaging 4,000,000 basic blocks from complicated

programs and important web services (GIMP, Redis, Nginx, FTP, PHP), compiled from

upwards of 810,000 source lines of C/C++ code. It also achieves 0 false positives and neg-

atives in analyzing traces taken of the over 9,000 test cases provided by the Juliet and RIPE

benchmarks for our implemented classes. We show that tracing incurs 7.21% performance

overhead on the SPEC CPU 2006 benchmark with a reasonable storage requirement. To

promote future work, we have open source ARCUS and our evaluation data.5

3.2 Overview

ARCUS’ analysis begins when an end-host runtime monitor flags a running process for

executing some disallowed or anomalous operation. Three classes of such systems are

widely deployed today: CFI monitoring [47, 25, 11, 12, 13, 14, 128, 15, 16, 17], system

call/event anomaly detection [129], and segmentation fault/crash reporting [130, 131, 132,

133]). However, ARCUS is not dependant on how or why the process was flagged, only that

it was flagged. Notice that ARCUS must handle the fact that these systems detect attacks

at their symptom and not their onset or root cause. In our evaluation, we tested alongside a

CFI monitor [47] and segmentation fault handler, both of which provide delayed detection.

ARCUS can easily be extended to accept triggers from any end-host runtime monitor.

4We reported new vulnerabilities to MITRE for responsible disclosure.
5https://github.com/carter-yagemann/ARCUS
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1 i n t o p e n h o s t ( c o n s t char *hname , . . . ) {
2 char * cp ;
3 char name [ 2 5 6 ] ;
4
5 cp = hname ;
6 i f (* cp == ’ [ ’ ) {
7 cp ++;
8 f o r ( i = 0 ; * cp && * cp != ’ ] ’ ; cp ++ , i ++)
9 name [ i ] = * cp ; / / b u f f e r o v e r f l o w

10 i f (* cp == ’ ] ’ ) {
11 name [ i ] = ’ \0 ’ ;
12 hname = name ;
13 } e l s e re turn 0 ;
14 / * [ . . . ] * /

Figure 3.1: CVE-2018-12327 in ntpq. A stack overflow occurs if there is no ‘]’ within
the first 257 characters of hname.
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Figure 3.2: ARCUS architecture. The user program executes in the end-host while the
ARCUS kernel module snapshots and traces it using Intel PT. When a runtime monitor
flags a violation or anomaly, the data is sent to the analysis environment where symbolic
states are reconstructed, over which the modules detect, localize, and report vulnerabilities.
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3.2.1 Real-World Example

We will briefly walk through how to apply our proposed solution to a real vulnerability:

CVE-2018-12327. We pick this example because the bug is concise and straightforward

to exploit. Conversely, a case study containing thousands of intermediate function calls is

presented in subsection 3.4.5. We will stay at a high level for this subsection and revisit the

same example in greater detail in subsection 3.3.2.

CVE-2018-12327 is a stack overflow bug exploitable in ntpq to achieve arbitrary code

execution. The vulnerability exists because there is no check for the length of the relevant

command line argument. We will follow the source code in Figure 3.1 for simplicity, but

the actual analysis is on binaries.

Assume the attacker can manipulate the arguments passed to ntpq, allowing him to

overwrite the stack with a chain of return addresses that will start a reverse shell — a typical

example of ROP. When ntpq starts, the ARCUS kernel module snapshots the program’s

initial state and configures PT. The malicious input triggers the bug, and a shell is created.

A runtime monitor determines that the shell spawning is anomalous and flags the program,

causing the kernel module to send the snapshot and trace for analysis.

The analysis sequentially reconstructs a symbolic program state for each executed basic

block. All inputs, including command line arguments, are symbolized. As the states are

stepped through, a plugin for each implemented bug class checks for memory violations

(subsection 3.3.3). Since the attacker’s input is symbolic, when the buggy code corrupts the

stack, the return pointer will also become symbolic. The return causes the program counter

to become symbolic, which is detected by the stack overflow module as a vulnerability.

ARCUS now switches to localizing the root cause. It identifies the symbolic instruc-

tion pointer in memory and finds the prior state that made it become symbolic (compiled

from line 9). By examining the control dependencies of this state, ARCUS automatically

identifies the guardian basic block that decides when the relevant loop will exit (compiled

from line 8). ARCUS determines the loop could have exited sooner and checks what would
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happen if it did (the “what if” question, elaborated on in subsection 3.3.2). ARCUS verifies

that this alternative state does not have a symbolic return pointer, compares the resulting

data constraints to those in the compromised program state, and spots the contradiction —

a special delimiter character at a particular offset of an input string. It uses this to automat-

ically recommend a new constraint to enforce at the guardian to fix the overflow.

As output, the human analyst automatically receives a report containing: 1) the basic

block that corrupted memory, 2) the guardian that failed to protect against the exploit, and

3) a recommended fix for the guardian.

3.2.2 Threat Model

We consider attacks against user programs and assume that the kernel and hardware in the

production system are trustworthy, which is reasonable given that Intel PT is a hardware

feature that writes directly to physical memory, bypassing all CPU caches, configurable

only in the privileged CPU mode. This is consistent with prior security work relying on

Intel PT [25, 167, 47, 168]. We do not alter user space programs in any way. The kernel

module also provides a secure way to store and forward recorded data to an analysis system,

which may be a separate server for extra isolation.

We expect attackers to target the production system’s programs, but not have direct

access to the analysis. We focus on program binaries without assuming access to source

code or debug symbols.6 Consequently, our approach cannot handle all data-only attacks

(e.g., selectively corrupting a flag), which may require accurate type information. However,

ARCUS can be extended in future work to incorporate this.

3.3 Design

ARCUS consists of two general components, shown in Figure 3.2. A kernel module snap-

shots the initial state of the monitored program and collects its subsequent control flow via
6However, we reference source code in our explanations and figures whenever possible for brevity and

clarity.
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 1. int openhost(const char *hname, ...) {

 2.   char *cp;

 3.   char name[256];

 4.

 5.   cp = hname;

 6.   if (*cp == '[') {

 7.     cp++;

 8.     for (i = 0; *cp && *cp != ']'; cp++, i++)

 9.       name[i] = *cp;

10.       if (*cp == ']') {

11.         name[i] = '\0';

12.         hname = name;

13.       } else return 0;

14.   /* [...] */

hname := ['[','A',...,']']hname   := [s1,s2,...]

name    := []

cp      := {}

ret_ptr := {c1}

hname   := ['[',s2,...]

name    := []

cp      := hname+0

ret_ptr := {c1}

hname   := ['[',s2,...]

name    := [s2]

cp      := hname+1

ret_ptr := {c1}

hname   := ['[',s2,...]

name    := [s2,s3]

cp      := hname+311

ret_ptr := {s258}

hname   := ['[',s2,...,']']

name    := [s2,s3,...]

cp      := hname+312

ret_ptr := {s258}

hname   := ['[',s2,...,']']

name    := [s2,s3,...,]

cp      := hname+257

ret_ptr := {c1}

PT: Taken

PT: Taken  x312

Snapshot

PT Trace

Symbolic States

...
"w

h
a
t if"

contradicts

Figure 3.3: Revisiting CVE-2018-12327 in more detail. Part of the snapshot and constraints
tracked by ARCUS are shown on the right with registers and addresses substituted with
variable names for clarity. PT is on the left.

PT (subsection 3.3.4). The data is recorded to secure storage reserved by the kernel module

and if an alarm is raised by a runtime monitor, it is transmitted to the analysis system, which

may reside in a separate server. ARCUS is compatible with any end-host runtime monitor

that can flag a process ID. We use an asynchronous CFI monitor [47] and a segmentation

fault handler in our evaluation for demonstration.

The analysis is facilitated using symbolic execution with pluggable modules for differ-

ent classes of bugs (subsection 3.3.3). This serves to reconstruct the possible data flows for

a single path, which enables the system to spot vulnerable conditions (e.g., a large input

integer causing a register to overflow) and consider “what if” questions to automatically

find contradictory constraints that prune the vulnerable state (subsection 3.3.2). ARCUS

then automatically recommends places in the binary to enforce these constraints so that

developers can quickly understand and patch the root cause.

3.3.1 Symbolic Execution Along Traced Paths

Once an alarm is raised by a monitor, ARCUS will construct symbolic program states from

the data sent by the kernel module. Our insight is to use symbolic analysis, but with special

consideration to avoid its greatest shortcoming: state explosion. Put briefly, symbolic anal-
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ysis treats data as a combination of concrete (one possible value) and symbolic (multiple

possible values) data. As the analysis explores different paths in the program, it places

constraints on the symbolic data, altering their set of values. In this way, symbolic analysis

tracks the possible data values that can reach a program state.

We use symbolic analysis not to statically explore all possible paths, as is the typical use

case, but to instead consider all possible data flows over one particular path. To do this, we

symbolize all input data that could be controlled by the attacker (command line arguments,

environment variables, files, sockets, and other standard I/O) and only build constraints for

the path that was traced. This sidesteps the biggest problem with performing analysis in a

vacuum — state explosion — by leveraging the execution trace leading up to the end-host

runtime monitor’s alert.

3.3.2 “What If” Questions

Reasoning over symbolic data also enables ARCUS to consider “what if” questions, which

is a key novelty in our root cause analysis. We now revisit CVE-2018-12327 (introduced

in subsection 3.2.1) to show how ARCUS uses “what if” questions in detail. In Figure 3.3,

part of the snapshot (orange box) and constraints tracked by ARCUS (grey boxes) are

shown on the right. We substitute registers and memory addresses with variable names for

clarity, but keep in mind that ARCUS operates on binaries without needing debug symbols

or source code. A part of the PT trace (yellow boxes) is shown on the left with the source

code in the center. We use square brackets to denote array contents and curly to list the

possible values for a variable. The notation si is for unconstrained symbolic data and ci is

for concrete constants. ret ptr is the return pointer.

ARCUS starts by replacing the attacker-controlled data in the snapshot with symbolic

variables. hname points to a command line argument, which is why its contents become

symbolic. As ARCUS symbolically executes the program, it follows the PT trace, which

says to take the branch at line 6 and to repeat the loop 312 times. As the loop iterates,
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cp increments, and name is filled with symbolic values copied from hname. By the time

line 14 is reached, the return pointer has been overwritten with an unconstrained symbolic

value. When the function returns, the program counter becomes symbolic, which means

the attacker is capable of directly controlling the program’s execution via crafted command

line arguments. This is a vulnerability that triggers the stack overflow module in ARCUS

to begin root cause analysis.

The full algorithm for this vulnerability class is presented in subsection 3.3.3, so for

brevity we will focus on the “what if” question, which comes into play after ARCUS has

located the symbolic state prior to ret ptr being corrupted. ARCUS revisits this state

and discovers there is another possible path where the loop exits sooner, which requires cp

≤ hname+257 and the 257th character in hname to be ‘]’.

What if this path were to be taken by the program? The resulting constraints would

contradict the ones that led to the corrupted state, which requires ‘]’ to occur in hname no

sooner than offset 258. Thus, by solving the “what if” question, ARCUS has automatically

uncovered a fix for the vulnerability. In subsection 3.3.3, we cover how the module then

determines where to enforce the new data constraints to make the recommendation more

concise and practical. Note that even after applying the recommended fix, line 14 of the

program is still reachable. However, because the newly enforced constraints contradict the

compromised state, the code can no longer be executed in the context that would give rise

to the observed overflow.

3.3.3 Analysis Modules

In this subsection, we expand on our methodology from subsection 3.3.1 and subsec-

tion 3.3.2 to describe how serious and prevalent classes of vulnerabilities can be analyzed

using ARCUS. Each class has a refined analysis strategy and definition of root cause based

on our domain expertise. In our prototype, each technique is implemented as a pluggable

module, summarized in Table 3.1. Each module description concludes with a list of con-
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Table 3.1: ARCUS Modules Summary

Module Locating Strategy Root Cause
Stack Overflow Symbolic IP Control Dep.
Heap Overflow Symbolic IP Control Dep.
Integer Overflow Overflowed Reg/Mem Overflow Site
UAF R/W Freed Address Control Dep.
Double Free Track Frees Control Dep.
Format String Symbolic Arguments Data Dep.

tents generated by ARCUS in its reports.

Stack & Heap Overflow The stack and heap overflow module focuses on analyzing con-

trol flow hijacking (recall that data-only attacks are out of scope, subsection 3.2.2), which

requires the adversary to gain control over the program counter. As ARCUS reconstructs

all the intermediate states along the executed path, the module checks whether the program

counter has become symbolic. If it has, this means data from outside the program can

exert direct control over which code the program executes, which is indicative of control

hijacking.

From this point, the module looks at the previous state to determine what caused sym-

bolic data to enter the program counter. Since hijacking can only occur at indirect control

flow transfers, this previous state must have executed a basic block ending in a return, in-

direct call, or indirect jump. The steps we define for root cause analysis are: 1) identify

the code pointer that became symbolic, 2) identify the basic block that wrote it, 3) find

basic blocks that control the execution of the write block, and 4) test whether additional

constraints at these blocks could have diverted the program away from the buggy behavior

(i.e., by introducing a constraint that would contradict the buggy state).

To accomplish the first task, the module uses backward tainting over the previously

executed basic block, lifted into an intermediate representation (IR), to identify the regis-

ters and then the memory address used to calculate the code pointer. The implementation

details are in subsection 3.3.7. Once identified, the module iterates backwards through the

previously reconstructed states to find the one where the data contained at the identified
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1. TIFFFetchData(TIFF* tif, TIFFDirEntry* dir, char* cp) {

2.   int w = TIFFDataWidth(dir->tdir_type);

3.   tsize_t cc = dir->tdir_count * w;

4.

5.   if (!isMapped(tif)) {

6.     /* [...] */

7.     if (!ReadOK(tif, cp, cc))

8.       goto bad;

9.   /* [...] */

tdir_count := {s1}

w          := {0,1,2,4,8}
cc         := {}

tdir_count := {s1}

w          := {0,1,2,4,8}

cc         := {0,...,232-1}
cc < w * tdir_count

tdir_count := {0,...,536870911}
w          := {0,1,2,4,8}

cc         := {0,...,232-1}

not(cc < w * tdir_count)

"w
h

a
t if"

Figure 3.4: CVE-2006-2025. Attacker controls the TIFF image and thus tdir count,
which can be used to overflow cc. ARCUS automatically finds a new constraint to prevent
it.

address changes, which reveals the state that corrupted the pointer. We coin this the blame

state.

The next step is to identify the basic blocks that control it, which we refer to as guardians.

The module uses forward analysis over the reconstructed states to generate a control depen-

dency graph (CDG) and find them.7 If there are guardians for the blame state, the closest

one is picked in terms of shortest path, and the prior state to execute this code is revisited to

see if there exists another branch whose constraints contradict the blame state (solving the

“what if” question from subsection 3.3.2). If contradicting constraints are found, ARCUS

recommends enforcing them at the guardian. Otherwise, only the blame state is reported

because an entirely new guardian is required.

For heap overflows, ARCUS needs to ensure that the heap objects are allocated exactly

as they were in the flagged execution, which requires careful designing. We elaborate on

the details in subsection 3.3.5.

Report: Blame state and, if found, the guardian to modify and new constraints to

enforce.
7These graph algorithms are readily available in projects like angr.
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Integer Overflow & Underflow. The two key challenges with detecting integer over-

flows and underflows (referred to collectively as overflows for brevity) are: 1) inferring

the signedness of register and memory values in the absence of type information and 2)

avoiding false positives due to intentional overflowing by developers and compilers.

To conservatively infer signedness, the module uses hints provided by instruction se-

mantics (e.g., zero vs. signed extending [169]), and type information for arguments to

known standard library functions (“type-sinking” [170]). If the signedness is still ambigu-

ous for an operand, the arithmetic operation is skipped to err on the side of false negatives.

If an operation can overflow, according to the accumulated data constraints, the result

register is flagged and subsequent stores and loads are tracked by the module. However,

this is not immediately reported as a bug because the overflow may be intentional (second

challenge). Instead, a bug is only reported if flagged data is passed to another function

(i.e., following a call or ret instruction). The intuition is that when data crosses a

function boundary, it is likely that the receiver did not consider the possibility of receiving

overflowed integers, leading to violated assumptions and bugs. Prior work has measured

this phenomenon [171].

Figure 3.4 illustrates how the module handles CVE-2006-2025, showing source code

for clarity. In this case, an adversary can craft a TIFF image to overflow the register holding

cc (defined at line 3) and pass it to ReadOK at line 7. Since cc is the product of two

unsigned values, cc < w ∗ tdir count should not be possible, yet at line 4 the module

discovers it is satisfiable, indicating cc can overflow. When cc is then passed to ReadOK,

the module flags the bug.

To recommend a fix, the module solves the “what if” question: what if the prior con-

straint was not satisfiable? This requires an additional data constraint to be placed on

tdir count. The module includes this in its report along with the basic block that over-

flowed cc and the basic block that passed cc to ReadOK.

Report: Basic block and IR statement that overflowed the variable, recommended con-
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straints, and basic block that passed the overflowed variable to another function.

Use After Free & Double Free. The UAF and double free modules monitor all calls

to allocation and free functions, which we assume to know the semantics of in advance.

When an allocation call is reached, the size argument is extracted and the returned pointer

is evaluated to a concrete value to maintain a list of currently allocated buffers. When a

free is reached, the corresponding entry is moved from the allocation list to a freed buffers

list. Subsequent allocations can move freed entries back to the allocation list, maintaining

mutually exclusive sets. For each state, addresses accessed by memory operations are

checked against the freed list to detect the occurrence of UAF, upon which the module

reports the starting address, size, and accessed offset. Similarly, the double free module

detects freeing of entries already in the freed list. A CDG from the free site to the violating

block determines and reports negligent guardians.

Report: Address, size, and offset (if applicable) of the violated buffer. The freeing and

violating basic blocks, along with a partial CDG for the path between them.

Format String. Programming best-practice is to always create format strings as constant

values in read-only memory. Unfortunately, buggy programs still exist that allow an at-

tacker to control a format string and achieve arbitrary reads or writes. As the analysis

reconstructs program states, this module checks for states entering known format string

functions (e.g., printf) and verifies that: 1) the pointer to the format string is concrete,

as it should be if it resides in read-only memory, 2) the string’s contents are completely

concrete, and 3) all the additional arguments point to mapped memory addresses. If any

of these criteria are violated, the module knows data from outside the program can directly

influence the format string function, which is a vulnerability.

Once located, the module locates the violating symbolic data in memory and examines

prior states to find the one that wrote it. This is the blame state for this category of vulner-

ability. Since format strings should not be writable in the first place, no further analysis is
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necessary.

Report: Contents of the symbolic string, the basic block that wrote it, and where it was

passed to a format function.

3.3.4 Capturing the Executed Path

Analyzing the execution flagged by an end-host runtime monitor, which may reside in

a different system, requires an efficient way of tracing the program without relying on

instrumentation or binary modifications that could degrade performance or be targeted by

the attacker. Our solution is to employ a kernel module to manage PT. For simplicity,

we will focus on Intel PT, but other modern processors come with their own hardware

implementations.

A trace captures the sequence of instructions executed by the CPU, which is large given

that modern processors execute millions of instructions per second. To be efficient, Intel

PT assumes that the auditor knows the memory layout of the audited program, which our

kernel module prepends to the trace as a snapshot, shown on the left side of Figure 3.5

as grey packets. The kernel module also captures and inserts dynamically generated code

pages between PT data, allowing complex behaviors like just-in-time (JIT) compilation to

be followed. With this, all the auditor needs from the PT hardware is which path to follow

when a branch is encountered, shown on the left in blue. For conditional branches, a single

taken-not-taken bit is recorded. For indirect control flow transfers (return, indirect call,

and indirect jump) and asynchronous events (e.g., interrupts, exceptions), the destination is

recorded.

Intel PT is configured using model-specific registers (MSRs) that can only be written

and read while the CPU is in privileged mode. Since only the kernel executes in this mode,

only it can configure Intel PT. The trace is written directly into memory at physical ad-

dresses specified during configuration, meaning the kernel can make this data inaccessible

to all other processes. Intel PT bypasses all caches and memory translation, which mini-
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0x27ab push %rbp
0x284e jmp 0x2898

…
0x2850 mov $1 %esi

…
0x287e test %rax %rax
0x2881 jne 0x2894
0x2883 lea 0xf05f %rdi

…
0x288f call %rax

…
0x2898 cmp $0x19 %rax
0x289c jle 0x2850

0xfeff push %rbp
…

T

NT

TIP

Snapshot

0x2000
-

0x3000

T

NT

TIP 0xfeff

Snapshot

0xf000
-

0xffff

Trace Disassembler

START

Figure 3.5: Using the trace (left), with snapshot and PT packets, to recover the executed
sequence of instructions (right).
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Table 3.2: Symbolically Executing CISC Repeat Instructions

Type Common Usage Strategy
rep movs String Copy Maximize Iterations
rep stos Memory Initialization Maximize Iterations
rep cmps String Search (presence) Symbolize Register
rep scas String Search (offset) Symbolize Register

mizes its impact on the traced program. When the buffer allocated for tracing is filled, the

CPU raises a non-maskable interrupt (NMI), which the kernel module handles immediately

so no data is lost.

Challenges with PT & Symbolic Execution. Intel PT tries to be as efficient as possible

in recording the executed control flow. As a result, only instructions that produce branching

paths yield trace packets, which excludes instructions for repeat string operations — used

to speed up common tasks. For example, rep mov sequentially copies bytes from one

memory location to another until a condition is met and repnz scas can be used as a

replacement for strlen. These instructions encode an entire traditional loop into a single

statement.

When memory is concrete, these complex instructions are deterministic, so Intel PT

does not record how many times they “repeat.” This creates a problem for symbolic execu-

tion because if these instructions encounter symbolic data in memory or registers, the state

will split and the trace will not have information on which successor to follow.

Our solution is to take the path that will most likely lead to a vulnerability, which

depends on the type of repeat instruction, shown in Table 3.2. Three repeat types are

excluded (ins, outs and lods) because they are typically used by kernel drivers and

not user space programs. For move (movs) and store (stos), the analysis follows the

maximum possible iterations given the symbolic constraints to check for overflow bugs.

For comparison (cmps) and scanning (scas), the analysis skips to the next instruction

(i.e., it executes zero iterations) and symbolizes the result register. The constraints for this

register depend on the instruction. For example, repnz scasb in 64-bit mode scans
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memory, decreasing RCX by 1 for each scanned byte, until either RCX becomes 0 or the

value stored in AL is encountered. The analysis therefore constrains RCX to be between 0

and its starting value.

3.3.5 Snapshots & Memory Consistency

Symbolic execution requires an initial memory state to start its analysis from, which can be

created with a custom loader or from a snapshot. The distinction is usually minor, but ends

up being vital for ARCUS because it has to follow the path recorded by PT, as opposed

to generally exploring the program. We discover that snapshots are essential to ARCUS

because native loaders have complicated undocumented behaviors that the custom loaders

are likely to contradict, creating inconsistencies in memory.

One such discrepancy is in how they resolve weak symbols, which can be resolved to

one of several possible locations depending on the execution environment. For example,

libc contains a weak symbol for memcpy, which is resolved to point at the most efficient

implementation for the processor model. By our count, out of the 2,211 function symbols

in glibc version 2.28, 30% are weak symbols. Additionally, shared objects can choose

to implement their own resolver functions, invoked by the loader, to decide values.8

Our solution is for the kernel module to save a concrete snapshot of the program’s user

space at its entry point — after the initial dynamic loading is complete — and whenever a

new thread or process is created. This captures the environment variables, command line

arguments, and current program break pointer, the latter of which is important for heap

placement.

Allocation Consistency. Analyzing attacks requires special care with replicating the spac-

ing and absolute position of dynamically allocated buffers. Inconsistencies could cause

overflows between objects or exploited writes to not be reproducible in the analysis.

8Example: https://sourceware.org/glibc/wiki/GNU IFUNC.
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The solution is to capture the program break (brk) pointer in the snapshot, which

marks the end of the program’s data segment. When functions like malloc do not have

enough space to allocate a new buffer, they make a system call to move the break. Con-

sequently, all dynamically allocated objects are placed relative to the starting position of

the break. Therefore, by starting with the same break and following the trace, ARCUS can

ensure a consistent layout.

3.3.6 Performance Constraints

We prioritize performance in our design, but acknowledge that storage is also a concern

for long running programs, to which we create two policies. For task-oriented workers,

snapshots are taken as the kernel creates them and the oldest snapshots are discarded if a

user defined threshold is exceeded. If a long living thread exceeds the threshold, a snapshot

is retaken and the oldest data is discarded. This introduces potential false negatives due to

truncation, but we demonstrate useful results with practical thresholds in section 3.4 and

leave improvements to future work.

Since the analysis is performed offline only after an alarm is raised, we relax the perfor-

mance requirements of the analysis system. Our evaluation shows real vulnerabilities are

analyzed in minutes, which is sufficient for practical use.

3.3.7 Vex IR Tainting

The code in algorithm 1 shows how we perform backwards tainting on VEX IR lifted

from binary code to identify the registers and memory addresses used to calculate a chosen

temporary variable. We start by tainting the chosen variable and iterate backwards over

the prior statements. Any registers used to store tainted variables (Put) become tainted.

Whenever tainted variables are assigned a value (WrTmp), any registers, memory, or addi-

tional variables used to produce the value (i.e., operands) also become tainted. EvalTmp

uses the symbolic execution engine to resolve memory address pointers. To taint multiple
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basic blocks, we clear T between blocks while persisting A and R.

Input: VEX IR statements S starting from last executed.
Tmp n to taint initially.
Result: Addresses A and registers R used to calculate n.
A← ∅
R← ∅
T ← {n}
foreach s in S do

if Type(s) is Put and Type(s.data) is RdTmp then
if s.data.tmp ∈ T then

R← R ∪ {s.register}
end

end
if Type(s) is WrTmp and s.tmp ∈ T then

foreach a in s.data.args do
if Type(a) is Get then

R← R ∪ {a.register}
end
if Type(a) is RdTmp then

T ← T ∪ {a.tmp}
end
if Type(a) is Load then

A← A ∪ EvalTmp(a.address)
end

end
end

end
Algorithm 1: Tainting algorithm to obtain the registers and addresses used to calculate
a VEX IR temporary variable.

3.4 Evaluation

We aim to answer the following questions in our evaluation:

1. Is ARCUS accurate at detecting bugs within our covered classes? We perform sev-

eral micro-benchmarks with a ground truth set of over 9,000 test cases from the

RIPE [172] and Juliet [173] suites. This ground truth allows us to verify that ARCUS

can find root causes for vulnerabilities with 0 false positives and negatives (subsec-

tion 3.4.1).

32



2. Can ARCUS locate and analyse real-world exploits? We craft, trace, and have AR-

CUS analyze exploits for known CVEs and Exploit Database (EDB) vulnerabilities

in real programs. ARCUS successfully handles 27 exploits and even discovers 4 new

0-day vulnerabilities, which we examine in additional case studies (subsection 3.4.2

and subsection 3.4.5).

3. Are ARCUS’ root cause reports consistent with real-world advisories and patches?

We manually verify that ARCUS’ root cause reports are consistent with public dis-

closures and, where available, official patches (subsection 3.4.3).

4. Is ARCUS feasible to deploy in terms of runtime and storage overhead? We measure

the performance and storage overheads of tracing programs using the SPEC CPU

2006 benchmark and Nginx (subsection 3.4.4).

Experimental Setup & Runtime Monitor Selection. We use 2 distinct servers to rep-

resent the production and analysis systems, each running Debian Buster and containing an

Intel® Core™ i7-7740X processor, 32GB of memory, and solid state storage. To serve as

end-host runtime monitors, we use an open source CFI system [47] and our own segmenta-

tion fault handler. The former is used for the exploits that leverage code reuse attacks and

the latter for crashes. We pick this particular CFI monitor because it is asynchronous and

only guarantees detection of control flow violations by the next system call, which requires

ARCUS to handle traces containing activity past the initial exploit.

3.4.1 Accuracy on Micro-Benchmarks

Before deploying ARCUS on real-world programs, we evaluate on benchmark test cases

where there is known ground truth for the location and behavior of every bug. This is

necessary in order to measure false negatives (i.e., executions where a bug is triggered
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Table 3.3: RIPE and Juliet Test Cases

Overall Results (Detection by ≥ 1 Strategies)
RIPE TP TN FP FN Acc.
BSS 170 170 0 0 100%
Data 190 190 0 0 100%
Heap 190 190 0 0 100%
Stack 260 260 0 0 100%
Juliet TP TN FP FN Acc.
CWE-134 1,200 2,600 0 0 100%
CWE-415 818 2,212 0 0 100%
CWE-416 393 1,222 0 0 100%

By Locating Strategy (RIPE)
Symbolic IP TP TN FP FN Acc.
BSS 154 170 0 16 95.3%
Data 171 190 0 19 95.0%
Heap 154 190 0 36 90.5%
Stack 211 260 0 49 90.6%
Int Overflow TP TN FP FN Acc.
BSS 60 170 0 110 67.6%
Data 60 190 0 130 65.8%
Heap 60 190 0 130 65.8%
Stack 150 260 0 110 78.8%

By Locating Strategy (Juliet)
Symbolic Args. TP TN FP FN Acc.
CWE-134 1,200 2,600 0 0 100%
Track Frees TP TN FP FN Acc.
CWE-415 818 2,212 0 0 100%
R/W Freed Addrs. TP TN FP FN Acc.
CWE-416 393 1,222 0 0 100%
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but ARCUS yields no report), which cannot be known for real-world programs.9 False

positives are measurable by manually reviewing reports.

Dataset & Selection Criteria For the overflow modules (stack, heap, and integer), we

use the complete RIPE [172] benchmark, which systematically exploits the provided test

binary with different bugs (memcpy, strlen, etc.), strategies (ROP, code injection, etc.),

and memory locations (stack, heap, etc.). We port the benchmark to 64-bit and manually

create a second patched (bug-free) version of the test binary to measure false positives

(FPs), false negatives (FNs), true positives (TPs) and true negatives (TNs). RIPE yields

810 working exploits in our environment.

RIPE does not contain tests for UAF, double free, or format string bugs. We address

this shortcoming with the NIST C/C++ Juliet 1.3 suite [173], which contains 2,411 buggy

and 6,034 bug-free binaries for CWE-416 (UAF), CWE-415 (double free), and CWE-134

(format string). These are all the test cases provided by Juliet for these CWEs.

Results As presented at the top of Table 3.3, ARCUS correctly analyzes all the test cases

across all suites with no FPs or FNs. That is, each TP is detected by at least 1 module

and TN by none. We manually verify that the root cause reports for the TP cases correctly

identify the buggy functions and the recommendations prevent the memory corruptions.

On closer investigation, we realize that ARCUS is so accurate on the RIPE cases be-

cause there are multiple opportunities for detecting overflows. For example, an integer

overflow that corrupts a return pointer can be detected either by the integer overflow mod-

ule when the register wraps around or by the stack overflow module when the pointer is

overwritten. Detecting either behavior (or both) yields an accurate report. Based on this

observation, we present the middle and bottom portions of Table 3.3, which separates the

RIPE and Juliet results by the locating strategies from Table 3.1. For the modules tested

9If we knew the location and behavior of every bug in a real-world program, we could produce a new
version that is guaranteed to be bug-free, which is obviously not possible with existing techniques.
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by the Juliet cases, their capabilities do not overlap and yield the same numbers as in the

overall table. For the strategies relevant to RIPE, we discover that the symbolic instruction

pointer (IP) detection is 92.9% accurate, on average, whereas the integer overflow detec-

tion is 69.5%. The latter is expected given the challenges described in subsection 3.3.3, like

inferring signedness in binaries. We observe that the accuracy is consistent across exploit

locations for symbolic IP (4.8% variation), but less so for integer overflow (13%) where

it performs better on stack-based tests. Since each strategy yields 0 FPs, their capabili-

ties compliment each other, covering their individual weaknesses and enabling ARCUS to

operate effectively.

3.4.2 Locating Real-World Exploits

With ARCUS verified to be working accurately on the micro-benchmarks, we turn our

attention to real-world exploits.

Dataset & Selection Criteria We select our vulnerabilities starting with a corpus of

proof of compromises (PoCs) gathered from the LinuxFlaw [191] repository and Exploit-

DB [192], distilled using the following selection procedure:

1. First, we filter PoCs pertaining to bug classes not covered by our modules (subsec-

tion 3.3.3).

2. Next, we filter PoCs that fail to trigger in our evaluation environment.

3. Finally, for PoCs targeting libraries (e.g., libpng), we select a large real-world

program that utilizes the vulnerable functionality (e.g., GIMP) for evaluation.

In total, we consider 34 PoCs pertaining to our covered bug classes (Step 1). Of these,

7 failed to trigger and were filtered (Step 2). The primary cause of failure is older PoCs

written for 32-bit that cannot be converted to 64-bit. We decide to use GIMP for evaluating
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image library CVEs, GOOSE Publisher for CVE-2018-18957, exif for CVE-2007-2645,

and PHP for CVE-2017-12858 (Step 3).10

This yields PoCs targeting 27 unique vulnerabilities across 20 programs, covering a

diverse range of multimedia libraries, client applications, parsers, and web services. Some

are commonly evaluated in related work (e.g., libexif [62]), whereas others align with our

motivation of protecting production servers (e.g., Nginx, FTP) and require ARCUS to han-

dle more complex behaviors like multi-threading, inter-process communication, and GUIs

(e.g., GIMP). For vulnerabilities that lead to arbitrary code execution, we develop the PoCs

into exploits that use code reuse attacks like ROP. We create crashing exploits only as a

last resort.

Results Table 3.4 shows that our system is able to successfully localize all 27 exploited

vulnerabilities. Surprisingly, ARCUS also uncovers 4 new 0-day vulnerabilities — 3 issued

CVEs — that are possible to invoke along the same control flow path, bringing the total

count to 31. An example of how this occurs is presented in subsection 3.4.5. For exploited

libraries evaluated in the context of a larger program (e.g., CVE-2004-0597), we show the

traced program’s name alongside the library.

Table 3.4 includes the number of basic blocks recorded in each trace (“# BBs” column)

and size in megabytes (“Size (MB)” column). Traces range from 53,000 basic blocks to

over 78,000,000. Sizes are from 600 KB to 56 MB. The larger sizes correlate with programs

containing GUIs and complex plug-in frameworks.

The “∆Root Cause” column lists how many basic blocks were executed between the

state where ARCUS first identifies the vulnerability and its determined root cause point.

The numbers vary substantially by class, with heap and stack overflows having distances

upwards of 120,000 basic blocks whereas integer overflows and format strings are usually

1.
10We could not find larger programs in the Debian repositories that trigger CVE-2007-2645 or CVE-2018-

18957.
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“∆Alert” reports the number of blocks between where the runtime monitor flagged the

execution and where ARCUS first detected the bug during analysis. In other words, the

distance between the monitor alert and the ultimate root cause determined by ARCUS is

the sum of “∆Root Cause” and “∆Alert.” Distances vary depending on which monitor was

triggered and the overall program complexity. Some executions were not halted until over

700,000 blocks past the bug’s initial symptoms. 0-days found by ARCUS have no reported

value since they were not detected by a monitor.

3.4.3 Consistency to Advisories & Patches

We evaluate the quality of reports for the real-world exploits by manually comparing them

against public vulnerability advisories. For example, in CVE-2017-9167, the advisory

states that AutoTrace 0.31.1 has a heap-based buffer overflow in the ReadImage function

defined in input-bmp.c on line 337. Accordingly, we expect ARCUS’s root cause report

to include the code compiled from this line.

When ARCUS provides a recommendation for extra constraints, we also manually ver-

ify that the reported guardian does in fact control the execution of the vulnerable code and

that the recommended constraints would prevent the exploit. For example, the ARCUS

report for CVE-2018-12327 recommends enforcing at the inner most loop in Figure 3.1

that a ‘]’ character occurs within the first 257 characters of hname, as explained in de-

tail in subsection 3.3.2. This does prevent the exploit from succeeding, making the report

satisfactory.

Some of the evaluated vulnerabilities have already been fixed in newer versions of the

targeted programs. In these cases, we use the patch to further verify the quality of ARCUS’s

reports by manually confirming that they identify the same code.

Results The results are shown in the “Located,” “Has Patch,” and “Match” columns of

Table 3.4. All 31 reports correctly identify the exploited vulnerable code. There are patches
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Figure 3.6: Performance overhead and storage size of tracing the SPEC CPU benchmark.
The average overhead is 7.21% and the geometric mean is 3.81%. The average trace size
is 110 MB and the geometric mean is 38.2 MB.

0.1 0.5 1.0 10.0 100.0
0%

1%

2%

0.0

0.5

1.0

1.5

2.0

Overhead Storage Per Request (MB)

Request File Size (MB)

Figure 3.7: Performance overhead and storage required to trace Nginx. The performance
overhead is under 2% and the maximum storage is 1.6 MB per request.

available at the time of evaluation for 5 of the 8 heap overflows, 4 of the 8 stack overflows,

4 of the 7 integer overflows, 3 of the 4 use after frees, 1 of the 2 double frees, and all 2

format string vulnerabilities. In all but 1 of the 19 official patches available for our tested

vulnerabilities, the report generated by ARCUS is consistent with the applied patch. CVE-

2004-0597 is a special case where a parent function calls a child using unsafe parameters,

causing the child to overflow a heap buffer. ARCUS correctly identifies the vulnerable

code, however the developers chose to patch the parent function, whereas ARCUS suggests

adding checks inside the child. Both fixes are correct, so this report is satisfactory despite

being slightly different from the official patch. 12 of the evaluated vulnerabilities are not

officially patched at the time of evaluation.
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3.4.4 Runtime & Storage Overheads

Dataset & Selection Criteria To evaluate the performance and storage overheads of AR-

CUS, we start with the SPEC CPU 2006 benchmark and a storage threshold of 100 GB.

We pick this suite because it is commonly used and intentionally designed to stress CPU

performance. Since our design requires control flow tracing, CPU intensive tasks are the

most costly to trace. I/O tasks by comparison incur significantly less overhead due to block-

ing, which we demonstrate using Nginx with PHP. Consequently, we consider the SPEC

workloads to represent realistic worst case scenarios for ARCUS.

To simulate long-running services and heavy workloads, we stress Nginx and PHP with

default settings using ApacheBench (ab) to generate 50,000 requests for files ranging from

100 KB to 100 MB. This experiment also uses a 100 GB storage threshold.

Results Figure 3.6 shows the performance and storage overheads of tracing the SPEC

workloads without the runtime monitors. The average overhead is 7.21% with a geometric

mean of 3.81%, which is consistent with other Intel PT systems [47, 25]. A few workloads

have overheads upward of 25%, which is also consistent with prior work and is caused by

programs with frequent indirect calls and jumps. A workload yields 110 MB of data on

average, which at our chosen storage threshold allows us to store 930 invocations of the

program before old data is deleted. In the worst case, we can store 83 invocations.

For the Nginx with PHP stress test, shown in Figure 3.7, performance overhead is

negligible at under 2%. ARCUS generates at most 1.6 MB of data per request, allowing us

to store the past 64,000 requests given our 100 GB storage quota. We observe that file size

has little influence over storage requirements, with the smallest file producing 1.2 MB of

data per request and the largest producing 1.6 MB.
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3.4.5 Case Studies

Discovering Nearby 0-Days ARCUS discovers that version 1.2.0 of libzip has a

known vulnerability that can be altered into a new, previously undiscovered, 0-day.11 Specif-

ically, there is a buggy memory freeing function that maintains a flag in a parent structure to

track whether a substructure has already been freed. Calling the freeing function twice on

the same structure, without checking the flag, results in a double free (CVE-2017-12858),

exploitable via a malformed input.

However, what was not previously known, but uncovered by ARCUS, is that further

corrupting the malformed input can trigger a UAF, which has been assigned CVE-2019-

17582. Specifically, after freeing the parent structure, invoking the freeing function again

can cause it to access a flag that is no longer properly allocated.

Although both bugs reside in the same function, they are distinct — the known CVE

double frees the child structure while the new bug inappropriately accesses the parent struc-

ture’s flag. A developer fixing the prior by more carefully checking the flag will not reme-

diate the latter. ARCUS is able to find this new CVE because it considers all data flows

over the executed path.

Vulnerabilities Cascading Into 0-Days An interesting example in autotrace demon-

strates how a patch can address one bug, but fail to fix related “downstream” bugs, which

gives ARCUS the opportunity to uncover new vulnerabilities. Version 0.31.1 contains a

UAF vulnerability exploitable via a malformed input bitmap image header (CVE-2017-

9182). Ultimately, ARCUS discovers two additional downstream vulnerabilities: an integer

overflow (CVE-2019-19004) and a double free (CVE-2019-19005).

They all stem from a lack of input file validation. When the value of the bits per pixel

field of the image header is invalid, after the known UAF, a previously unreported integer

11Post-evaluation, we discovered that this vulnerability had been described in a previous bug report, how-
ever it was never issued a CVE and so we were unaware of it while evaluating ARCUS. Consequently, we
were the first to report it to a CVE authority, resulting in the issuance of CVE-2019-17582.
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overflow can occur as autotrace attempts to calculate the number of bytes per row in

the input bmp reader function. ARCUS then discovers an additional double free that

releases the same freed buffer the UAF accesses. In short, all 3 vulnerabilities are triggered

by the same malformed header field, but each resides in a different code block, meaning a

developer fixing one may overlook the others.

Vulnerabilities Over Large Distances Version 0.15 of the program PDFResurrect

has a buffer overflow vulnerability (CVE-2019-14267) that can be exploited via a mal-

formed PDF to achieve arbitrary code execution. When the function encounters a ‘%%EOF’

in the PDF, it scans backwards looking for an ‘f’ character, which is supposed to represent

the end of ‘startxref’. As it scans, a register representing pos count is incremented.

An attacker can create a malformed PDF without a ‘startxref,’ causing pos count

to exceed 256 and overflow buf. This bug can be exploited to overwrite the stack and

achieve arbitrary code execution.

What is interesting about this example is the vulnerable function loads all cross refer-

ences before returning, any one of which could trigger the described overflow. This means

thousands of references can be loaded between the corruption point and the return that

starts the arbitrary code execution. In our crafted exploit, this distance is over 83,000 ba-

sic blocks (see Table 3.4) and includes almost 17,000 function calls. ARCUS successfully

identifies the root cause of the vulnerability despite this distance.

3.5 Discussion & Limitations

False Negatives & Positives Prior work enumerates the possible sources of error in sym-

bolic analysis [193], which are not special to ARCUS. ARCUS is a root cause analysis

framework invoked in response to an end-host monitor’s alert, so it relies on the monitor

to detect attack symptoms [194]. As described in subsection 3.3.3, some of the modules

implemented in ARCUS can incur false negatives.
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Only the integer overflow module can yield false positives, due to its combination of

forward analysis and heuristics. The sole case we have encountered occurs in libpng,

where an overflowed value is passed to another function, triggering a detection by ARCUS,

but then the receiving function performs additional checks, preventing exploitation. Such

patterns of checking for overflows in the receiving function (as opposed to the sending) are

atypical [171].

Robustness Recommendations made by ARCUS are based on constraints built from a

single execution path, meaning completeness cannot be guaranteed. Human developers

are expected to implement the official patch using ARCUS’ recommendation as a starting

point. Like most solutions that incorporate symbolic analysis, ARCUS is not well suited to

building constraints within cryptography procedures, making the current prototype poorly

suited for handling bugs within libraries like OpenSSL (e.g., CVE-2010-2939). However,

this does not prevent ARCUS from analyzing programs that import such libraries — be-

cause the APIs can be modeled — and there are tailored analysis techniques [195] that

ARCUS can adopt in future work. Similarly, we do not expect the current ARCUS pro-

totype to perform well on heavily obfuscated binaries or virtual machines like the Java

virtual machine (JVM). The kernel module can trace programs that dynamically generate

code, including JIT compilation, however additional API modeling is required for angr to

support web browsers. Conversely, ARCUS already successfully handles some complex

programs (e.g., GIMP, 810,000 source lines of C/C++), demonstrating potential for future

improvement.

Cross-Platform Support The current implementation of ARCUS is for x86-64 Linux,

but with engineering effort it can support other platforms. Currently, the analysis uses VEX

IR semantics, which is machine independent, and angr can lift several hardware architec-

tures. Our “what-if” approach is also machine independent. The integer overflow module

leverages some x86-specific semantics to help infer signedness, but it also contains general
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techniques and can be extended in future work. The memory allocation and format string

modules require the semantics for allocation and format string functions (e.g., printf,

malloc). The current prototype supports typical libraries like libc and jemalloc and

prior work proposes techniques for custom functions [196], which can be incorporated in

future work.

The largest task is the tracing functionality, which requires an OS module. Although

Windows® 10 has an Intel PT driver for tracing applications [197], it is not intended for

third-party use and Microsoft® has not released any documentation. While it would be easy

for Microsoft to implement ARCUS for Windows, for anyone else, it would require reverse

engineering Microsoft’s driver [198].

3.6 Conclusion

This work presents ARCUS, a system for performing concise root cause analysis over

traces flagged by end-host runtime monitors in production systems. Using a novel “what

if” approach, ARCUS automatically pinpoints a concise root cause and recommends new

constraints that demonstrably block uncovered vulnerabilities, enabling system adminis-

trators to better inform developers about the issue. Leveraging hardware-supported PT,

ARCUS decouples the cost of analysis from end-host performance.

We demonstrate that our approach can construct symbolic program states and analyze

several classes of serious and prevalent software vulnerabilities. Our evaluation against 27

vulnerabilities and over 9,000 Juliet and RIPE test cases shows ARCUS can automatically

identify the root cause of all tested exploits, uncovering 4 new vulnerabilities in the process,

with 0 false positives and negatives. ARCUS incurs a 7.21% performance overhead on the

SPEC 2006 CPU benchmark and scales to large programs compiled from over 810,000

lines of C/C++ code.
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CHAPTER 4

MARSARA: PREVENTING EXECUTION REPARTITIONING ATTACKS

In this chapter, my collaborators and I present MARSARA, a system designed to protect

the integrity of EUP for data provenance against a novel class of attacks called execution

repartitioning attacks.

4.1 Introduction

The complexity of interactions within modern computers makes it difficult to detect, pre-

vent, and reverse unwanted system changes, such as in the case of an intrusion. A promising

method of understanding suspicious events is causal analysis, in which system audit logs

are transformed into a data provenance graph that encodes causal dependencies and histor-

ical relationships between subjects (processes) and objects (files, sockets, etc.) [108, 109,

90, 124, 199, 91, 105]. The resulting provenance graph can then be used by human analysts

or monitoring tools for intrusion detection [102, 103, 104], forensic investigation [86, 87,

89, 90, 91, 92, 94, 95], and more [92, 96, 97, 98, 99, 100].

However, due to the noisey and complex nature of system interactions, provenance

graphs are not always sufficient for investigating suspicious activity. Specifically, long-

running processes can accumulate causal dependencies over time that become increasingly

difficult to unravel; referred to as the dependency explosion problem [28] (a.k.a. false

provenance). For example, consider a web server handling many requests in parallel. Due

to the interwoven system calls invoked by multiple threads, data provenance will falsely

conclude that all the files read during a request are causally related to all the currently

connected remote IP addresses, which is excessive. However, multi-threading is not the

only source of false provenance. Even in a single-threaded web server, a request response

will link back to all previously handled requests, even though no actual data flow between
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the most recent request and prior responses occurred.

To address dependency explosion, the research community has proposed execution unit

partitioning (EUP) [200, 201, 84, 85, 86, 87, 88]. In EUP, audit log events are grouped

at the sub-process level, subdividing a monolithic long-running process into autonomous

units of work that are easier to trace in the graph. Signatures for identifying where to place

partitions are typically generated during an offline profiling phase and may be encoded in

several ways, such as a state machine of regular expressions to be matched against the audit

log [84]. Continuing the web server example, a unit would be the code that processes a sin-

gle request-reponse pair and the signature is the sequence of system calls and/or application

level logs that the code emits. For example, the code might be expected to open a socket

and record an access log entry with the source IP address, time, and requested URL at the

start of its handling routine. Once a system call closes the socket, this marks the end of that

unit. In this way, the data provenance system can distinguish between requests, correctly

identifying which objects were accessed or modified on their behalf. In short, EUP is what

makes data provenance viable for auditing real-world production systems.

However, all existing EUP solutions [200, 201, 84, 85, 86, 87, 88] make a dangerous

implicit assumption, which we are the first to point out. Namely, they assume that if the

audit log events match the expected signatures, the underlying application must be per-

forming the expected execution. Ensuring this in real-world settings requires complete user

program integrity, otherwise a low level bug (e.g., overflow, use-after-free) giving rise to

emergent execution [33, 34, 30] or out-of-bounds writes [202] can produce erroneous signa-

ture matches. This in turn can add and remove partitions, reintroducing false dependencies

and severing legitimate ones. Potentially, this would make it possible for the attacker to

hide their steps from investigators while also framing innocent parties.

Would real-world adversaries be motivated to perform such an attack on EUP-enabled

systems? Unsurprisingly, attackers already tamper with audit logs to cover their tracks [203,

204, 205, 206, 207]. Tampering is so prevalent that 72% of incident responders have en-
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countered it during real investigations [208, 209], to which numerous log integrity defenses

have been proposed [150, 151, 152, 153, 210, 154, 155, 156, 211, 115, 116, 114, 113, 212,

213, 214]. However, to our knowledge, all past solutions focus solely on an offline threat

model, with tampering occurring after events are written to the log and are resting on a stor-

age device. This is a distinctly different threat to what we just described, where changes to

the user application’s online execution yields frustratingly incorrect analysis results.

In this work, we are the first to present two avenues for online tampering designed to

frustrate provenance analysis without violating traditional notions of log integrity. At a high

level, the first technique, spoofing, attempts to inject fake log events into the runtime by

either maliciously invoking event-emitting code or by tampering with write buffers via an

arbitrary write primitive (e.g., format string vulnerability). The second technique, delaying,

introduces memory corruptions with deferred repercussions, allowing the current unit to

finish normally, whereas a subsequent unit (with no discernible causal relationship to the

prior) resumes the attack. To demonstrate practicality, we show how to create working

examples starting from real-world CVE vulnerabilities.

In response to this new threat, the obvious solution would seem to be the deployment

of known CFI techniques. However, we surprisingly discover that CFI can only prevent

a subset of EUP-targeted attacks, specifically those built on control hijacking. Even then,

depending on how subtle the hijack is (e.g., overwriting a code pointer to an arbitrary

address versus another valid function), the overhead of enforcing sufficiently fine-grained

CFI can be upwards of 47% [47]. Conversely, when data-only exploits are leveraged,

prevention exceeds CFI’s scope [202].

Seeking a different solution, we propose a new defense to validate the placement of

partitions. Specifically, given knowledge about the kinds of events certain parts of the code

should yield (data flow), and their expected orderings (control flow), our solution compares

runtime execution traces to audit logs to ensure consistency. If the attacker tries to change

the ordering with control flow bending, or inject fake event data from another part of the
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program, our defense will detect the discrepancy, disregarding the resulting events during

partitioning to preserve the integrity of the provenance graph.

However, designing a solution around this idea raises several technical challenges.

First, our system has to accurately determine which event sequence to expect for a given

execution. Fortunately, rather than having to consider all possible executions, our system

can focus on just the ones used offline to generate EUP signatures. Any program paths

outside this scope were not intended by the EUP algorithm to yield partitions in the first

place. To accomplish this, we propose a binary analysis that combines concrete execution

traces with symbolic analysis.

Next, our solution has to collect the necessary additional runtime information to per-

form validation while minimizing additional overhead compared to prior (insecure) work.

To this end, we propose a design that is compatible with the hardware PT available in

commodity processors, which a kernel driver can securely control. We then overcome the

challenge of connecting low level instruction sequences collected with PT to high level

audit log events to accurately perform validation.

To evaluate our design, we implement a prototype for Linux, MARSARA1, and exten-

sively evaluate it on 14 real-world programs using expertly crafted exploits. MARSARA

accurately partitions all the attack provenances while only reintroducing 2.82% of false

dependencies, in the worst case, with an average performance overhead of 8.7% over tra-

ditional auditing frameworks. We also create a new metric for measuring the vulnerabil-

ity of user programs to EUP attacks, Partitioning Attack Surface (PAS), and show that

MARSARA removes 47,642 more gadgets than CFI on our real-world programs, on aver-

age per program. To promote further exploration of solutions to the new online log integrity

problem, we have open sourced our code and data.2

1Monitor Application Runtimes, Stop Arbitrary Repartitioning Attacks.
2https://github.com/carter-yagemann/MARSARA
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Figure 4.1: Motivating example. The attacker sends a request 1 that produces a seemingly
normal response 2 . However, it has actually employed a delay to trigger the payload 5
during a benign request 3 to exfiltrate a sensitive file 6 , which is further obfuscated using
spoofed log messages.

4.2 Background & Motivation

Consider an Nginx web server with several worker processes, hosting a music website that

the attacker aims to steal from. He starts by triggering CVE-2013-2028 using a maliciously

crafted HTTP request, originating from the IP address x.x.x.x in Figure 4.1. This causes

a buffer overflow within one of the worker processes, allowing him to inject shellcode and

corrupt a code pointer. However, instead of corrupting any code pointer arbitrarily to point

at the shellcode, he cleverly overwrites a particular event handler3 that he knows the worker

will not use to complete his request. Consequently, his HTTP request completes with no

anomalous system calls or application messages. We call this novel setup a delay attack,

which we elaborate on in section 4.3.

Later, a request from a benign IP, y.y.y.y, is received, causing the worker to access

the corrupted code pointer and execute the shellcode. It starts by reading sensitive local files

into a buffer. However, instead of immediately transmitting the data back to the attacker’s

server, it first writes several forged log entries into Nginx’s access and debug logs to make

it look like the current request has ended. This is another novel attack technique, which

3ngx http process request line
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we coin spoofing and also elaborate on in section 4.3. With the spoofed messages inserted,

the shellcode transmits the buffer of sensitive data back to the attacker and then the worker

resumes normal operation.

4.2.1 Existing Defenses & Limitations

Intrusion Detection & Prevention Several aspects of the motivating attack make it dif-

ficult to detect or prevent at the onset. First, the initial exploit does not emit any anomalous

system calls or application-layer events, rendering host-based defenses reliant on them in-

effective. Obfuscation makes it impractical to detect the payloads on the network, and the

shellcode may no longer be in memory by the time a symptom of the attack is observed.

The corrupted code pointer requires fine-grained CFI to detect because its legitimate value

is calculated dynamically during runtime and the necessary instrumentation can yield up-

wards of 47% execution overhead [47].

Whole-System Provenance Analysis Whole-system provenance tools [108, 109, 90,

124, 199, 91, 105] record system call level events to establish causal dependencies between

objects and subjects, resulting in a provenance graph. Figure 4.1(a) shows the provenance

graph for our motivating attack scenario without EUP. While the attacker’s IP address is

contained in the provenance graph, we also see the false dependency problem described in

section 4.1, where every open socket is associated with the exfiltrated data, making it incon-

clusive which connection instigated the attack and which request delivered the exploit and

payload. At the same time, every file Nginx touched since its startup (e.g., configurations,

temporary files) is also linked to the attack, making it inconclusive what was exfiltrated.

In short, human analysts and automated systems do not have a clear picture for answering

their forensic questions.

Unit-based Provenance Analysis EUP [126, 93, 84, 200, 88, 86] attempts to solve this

dependency explosion problem by partitioning the execution of a long-running process into
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autonomous execution units in order to provide more precise causal dependency graphs.

While EUP is very useful when the adversary is oblivious to how it works, the delay and

the spoofing attacks in our motivating example exploit it to further obfuscate what occurred.

Figure 4.1(b) shows the result. The delay attack successfully partitions away the request

from the attacker (x.x.x.x), causing y.y.y.y to appear as the origin point of the attack.

Additionally, the spoofing employed by the shellcode causes the reading of sensitive files to

be partitioned separately from its transmission, obfuscating what was actually exfiltrated.

It may be tempting to argue that if the corrupted worker could be identified, then all

these problems would be solved, however this is not the case. Since Nginx reuses workers

across requests, simply following its PID will wrongly associate unrelated events from

prior and future requests, reintroducing false dependencies.

4.2.2 Insights & Lessons Learned

From the above discussion of the motivating example, we observe that data provenance

systems that only analyze traditional audit log events will never be able to verify that the

recorded, seemingly normal, patterns were emitted by normal program execution, and not

by delay or spoofing attacks. Conversely, systems like CFI that rely purely on low level

control flow will never be able to answer forensic questions that consider the data contents

of reads and writes. Furthermore, we demonstrate in paragraph 4.3.3 that data-only attacks

can also leverage delays and spoofing, which is outside CFI’s scope to handle.

Instead, our solution is to leverage execution tracing and knowledge gathered during the

offline profiling for EUP to recognize the manipulative events introduced by the attacker.

In this example, knowing that the worker processing requests executed a program path

(due to the delay attack) that was never seen during profiling indicates that it should not

be isolated into its own partition. Subsequently, recognizing that several log messages

originated from a previously unknown code location (the shellcode), indicates that they

should not be considered during partitioning, preventing the attack from separating the
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Figure 4.2: High level example of augmenting an exploit with spoofing to thwart data
provenance. By adding a close socket system call, the call to execute Bash is partitioned
into a different unit, isolating it from the attacker’s exploit.

sensitive file reads from network sends.

In section 4.3, we elaborate on how these novel delay and spoofing techniques can

empower existing exploits to hinder provenance analysis. In section 4.4, we formalize the

threat model based on our attack techniques and then our proposed defense is presented in

section 4.5.

4.3 Execution Repartitioning Attacks

We propose a novel set of techniques for augmenting existing exploits to hinder defenses

and forensic tools reliant on data provenance. Our techniques enable exploits to achieve

their original goal while simultaneously obfuscating the true sequence of attack events from

defenders, making it harder to determine where the attack originated from and what was

done to the victim system. The techniques can be divided into two categories, spoofing

and delays, which manipulate the audit events emitted from the target application prior to

them being recorded by the auditing framework. Consequently, these techniques cannot be

detected with traditional log integrity defenses [150, 151, 152, 153, 210, 154, 155, 156,

211, 115, 116, 114, 113, 212, 213, 214], which only detect changes after the logs are

committed to storage.

53



4.3.1 Spoofing Attacks

Spoofing entails generating artificial system calls and application log messages in order to

forge the necessary audit log events to satisfy an EUP signature. Typically, the attacker’s

exploit begins in the middle of an execution unit, with events linking the unit back to an

ingress point. Figure 4.2 shows this for a web server example, with an open socket system

call linking the current unit to the attacker’s IP address.

Suppose the payload for the exploit is designed to start a reverse shell connected to a

remote machine controlled by the attacker, thereby granting them access into the system.

If the payload were triggered immediately, data provenance would trivially associate the

resulting execute and open socket system calls to the current execution unit. Consequently,

a system or human analyst wanting to investigate any of these events can recover the en-

tire sequence using data provenance. For example, if the Netcat process is examined, a

backward provenance query will reveal the attacker’s IP address and the request used to

compromise the web server. Similarly, a forward query will reveal the remote server used

to issue commands and any data it exfiltrated.

What would happen if the payload closed the initial socket before invoking the execute

system call? As it turns out, most existing EUP algorithms for data provenance will mark

this as the end of the current execution unit and partition all subsequent audit log events

into a new unit, as reflected in Figure 4.2.4 With the call to execute Bash now in a new unit,

the previously described data provenance query will not include the attacker’s IP address,

nor contain the request carrying the exploit and payload. In summary, with just one added

system call, the attacker has thwarted the ability for data provenance to recover the full

attack sequence.

While spoofing is conceptually straightforward, signatures can require many events,

all of which have to be spoofed in the correct order to successfully match a signature.

4The only exception we know of is BEEP [85] because it instruments programs with an explicit “end-of-
unit” event, however this can also be spoofed to perform the attack.
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Figure 4.3: High level example of augmenting an exploit with delaying to thwart data
provenance. By corrupting a code pointer, rather than directly executing the payload, a
different unit can be exploited into triggering the next stage.

Continuing the previous example, for a real server like Nginx, simply closing a socket is

not sufficient. There are also dozens of debug messages that have to be spoofed to create

a valid signature. In section 4.6, we evaluate an exploit that uses CVE-2009-4769 to target

httpd’s tolog method to conduct a successful attack.

Format string bugs warrant special mention, as they are particularly powerful for spoof-

ing. For example, CVE-2012-0809 in sudo can be exploited to yield any string starting

with the prefix “sudo: ”, making it very flexible for matching signatures. Interpreters that

allow scripts to specify format strings (PHP: CVE-2015-8617, CVE-2016-4071) are also

ripe for abuse in this manner.

4.3.2 Delay Attacks

Rather than forging fake events to create a partition, the attacker can alternatively augment

their exploit to intentionally delay the manifestation of certain actions to later execution

units, covertly spanning partitions in a way that will not be reflected in the data provenance.

Figure 4.3 visualizes this at a high level, reusing the web server as an example. Rather than

directly executing the payload, which would causally link the attacker’s IP address and

request to the resulting reverse shell, the exploit instead corrupts a code pointer to point

to the payload and then exits normally. When a subsequent (benign) request causes the

corrupted pointer to be dereferenced, it will inadvertently trigger the next stage of the attack

with no audit log events linking it back to the attacker’s request. This not only decouples
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the attacker from the payload, but also frames a benign IP address as being the ingress

point.

However, delays do not always require a memory safety violation. For example, event

handling loops in many programs can encounter situations where a task must be deferred

and rescheduled for handling at a later time (e.g., because a necessary resource is not yet

available). Offline analysis can miss these alternate code paths during profiling, creating

unintended delay attack primitives.

4.3.3 Crafting Real-World Exploits

Based on our techniques of spoofing and delaying, we present 3 working exploits against

real-world programs to encompass the techniques an adversary can use to exploit reparti-

tioning attacks. Our exploits are based on known CVEs, extended using our attack tech-

niques to invoke erroneous data provenance results.

CVE-2013-2028 This CVE stems from a bug in Nginx’s handling of chunked HTTP re-

quests and can be exploited to cause an out-of-bounds write. We use this to target Nginx

with the delay technique. Specifically, we exploit the original stack overflow to change two

local variables that are then used by the buggy function to perform a write, creating an ar-

bitrary write primitive. We exploit this in turn to corrupt one of the program’s global code

pointers, implementing the delay primitive. To simplify the payload, we make the pro-

gram’s heap executable prior to the attack so that the malicious HTTP request can carry its

own shellcode. In a real-world setting, the attacker could instead trigger the CVE multiple

times to write a ROP chain into memory that corrupts the global pointer.

CVE-2004-0541 This CVE stems from a bug in one of Squid’s remote authentication

modules, which can be remotely triggered to cause a buffer overflow. Our attack augments

exploits for this CVE with the spoofing technique. Specifically, we trigger the overflow

in its NTLM authentication child process to inject and trigger a ROP chain, which in turn
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messages the logging daemon via an inter-process communication (IPC) channel to print

arbitrary log strings. We use this spoof primitive to forge the necessary messages to com-

plete a valid EUP signature, ending the current unit and starting a new one, and then trigger

the payload, which is now causally disconnected from the attacker.

CVE-2009-4769 This CVE stems from multiple format string bugs in httpd, which can

be triggered remotely by a HTTP request to perform arbitrary reads and writes. Specifically,

the buggy logging procedure is intended to record details pertaining to the incoming HTTP

request (timestamp, IP address, requested file, response code). However, by exploiting

it with the spoof technique, an attacker can control the write to inject multiple seemingly

legitimate entries into the log, thereby partitioning the attack across several bogus execution

units with no causal dependencies. The exploit can then trigger a payload using arbitrary

writes or leak data back to the attacker without creating a link to the malicious request.

4.4 Threat Model & Assumptions

Defender The defender’s goal is to investigate an intrusion with the aid of a full-system

data provenance framework. In order to handle complex real-world long-running programs,

it relies on EUP, as is the norm [200, 201, 84, 85, 86, 87, 88]. Conversely, simple short-

lived programs that do not incur dependency explosion can have all their events grouped

into a single partition and do not require further consideration for this work. In accordance

with prior work [200, 201, 84, 85, 86, 87, 88], partitioning signatures do not span multiple

programs, so each can be analyzed independently. We assume kernel integrity and correct

ordering of audit data, which are standard prerequisites in all full-system auditing [200,

201, 84, 85, 86, 87, 88]. We only consider EUP attacks and note that our proposed solution

is compatible with existing approaches to offline tamper-evident logging [150, 151, 152,

153, 210, 154, 155, 156, 211, 115, 116, 114, 113, 212, 213, 214].

CFI has some capacity to coincidentally reduce the EUP attack surface by limiting the
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range of unexpected control behaviors a program can exhibit. To account for this, we

define a metric for quantifying attack surface reduction in subsection 4.4.1 and perform a

comparison between CFI and our solution in the evaluation. Our findings show that our

design offers more protection than CFI, against EUP attacks, across all 14 evaluated real-

world programs, eliminating 47,642 additional delay and spoof gadgets per program.

Attacker The attacker’s primary goal is to take control of a target program in order to

gain a foothold into the victim’s system. For brevity, we will consider a production server

environment where the attack surface is an internet accessible service, such as a HTTP

server. Since the attacker expects the defenders to be using an auditing framework that

allows for data provenance, he is motivated to augment the attack with the techniques

described in section 4.3 to make it as difficult as possible to uncover his activities.

The minimum prerequisite for the attacker to succeed is one vulnerability in the target

program that enables control flow hijacking or arbitrary write, along with knowledge of the

EUP algorithm being used and a copy of the target program so he can know the partitioning

signatures in advance. However, to demonstrate the strength of our proposed defense, we

will consider a significantly more powerful adversary who has a complete local copy of the

victim system and access to an arbitrary read vulnerability in the target program, granting

him complete knowledge of the remote program’s state and the ability to refine his attack

to work on the first try, guaranteed. By demonstrating that our defense is able to correctly

recover the complete attack provenance of this powerful adversary, we also demonstrate

the ability to handle weaker, more realistically constrained attackers.

4.4.1 Quantifying EUP Attack Surface

In order to quantify the surface for EUP attacks and facilitate objective comparisons be-

tween defenses, we propose a new metric called PAS. The intuition behind PAS is to

quantify how many audit-event-producing sites (e.g., system calls, application log writ-

58



ing procedures) are reachable from any point in the program based on the policy being

enforced by integrity defenses. The more sites that are reachable from the current point in

the execution, the more events an attacker can choose from to match a signature.

To measure PAS in real-world programs efficiently, given a graph model representing

the enforced policy, we define audit-event-producing sites as nodes that invoke either a

system call or write library function (e.g., printf). Thus, for each node n in policy N

and node e in the set of audit-event-producing nodes E, PAS is defined as:

∑
n∈N,e∈E r(n, e, {E − e})

|N |
(4.1)

where r is a function that returns 1 if e is reachable from n without going through any

other node in E (i.e., {E − e}) and returns 0 otherwise. This check is relevant because

going through another node in E produces a side-effect that the attacker does not desire.

Ultimately, higher PAS values reflect a weaker defense that grants greater flexibility to the

attacker.

4.5 Design & Implementation

The high level idea of MARSARA is to use control flow data and knowledge of event-

producing code locations (i.e., what messages or system call parameters they can produce)

to validate unit signature matches. Figure 4.4 shows our proposed design, which similar to

prior work in EUP [200, 84, 88] consists of an offline profiling phase, an online auditing

phase, and a post-forensic analysis.

During offline profiling, MARSARA records and analyzes PT traces of the target pro-

gram, using a binary symbolic analysis, to identify important control and data flows along

with possible starting points for execution units (subsection 4.5.2).

During online auditing, MARSARA records the program’s execution and stores it

alongside the traditional audit log of system calls and application log messages (subsec-
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Figure 4.4: MARSARA architecture overview. An offline profiling phase yields a model
of expected program behavior, which is used alongside execution traces and audit logs
collected during online auditing to perform verified partitioning in post-forensic analysis.

tion 4.5.3).

Lastly, during post-forensic analysis, MARSARA compares the recorded trace against

the resulting audit log events to validate each occurring event (subsection 4.5.4) and then

uses these verified events to determine where to place partitions, yielding verified execution

units (subsection 4.5.5).

At first glance, this approach may seem too restrictive and false positive prone (i.e.,

rejecting of valid events) to be usable in real-world systems, however it works because:

1. The cost of a false positive is low, merely reintroducing an unnecessary dependency

back into the data provenance.

2. Since all EUP work is based on offline profiling [200, 84, 88], no such system can

guarantee that signatures are complete in the first place, and yet have demonstrated

value in making data provenance usable for real-world systems [92].

Ultimately, MARSARA is effective if it preserves attack provenances while having a false
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dependency reduction and performance comparable to previous (insecure) systems.

In this work, we focus on demonstrating the ability for MARSARA to ensure integrity

using verified events and execution unit signature matches, as opposed to proving that our

EUP algorithm is the most accurate. Readers interested in the latter topic should refer to

OmegaLog [200], which implements and evaluates a similar partitioning strategy (without

integrity verification).

4.5.1 Intel Processor Trace

Before diving into the phases of MARSARA, it is important to understand how PT works,

since we intentionally design our solution to be compatible with it for better performance.

PT enables MARSARA to securely audit the basic blocks executed by user space programs

and can be controlled with a kernel driver, which we implement as part of MARSARA. For

brevity, we will focus on how Intel’s implementation of PT works, which is the architecture

supported by our prototype, however our design can be generalized to other PT implemen-

tations as well.

When a program for which MARSARA has a model is loaded for execution, it con-

figures Intel PT to trace the execution. The MARSARA kernel maintains per-thread trace

buffers, redirecting PT’s data output appropriately during context switches. Anytime a

branching or indirect control transfer instruction occurs, PT records an event packet with

the outcome. For branches, the packet is a single taken-not-taken (TNT) bit, whereas for

indirect transfers (indirect call, indirect jump, and return), the target instruction pointer

(TIP) is recorded. The Intel PT hardware automatically applies compression to the written

packets to conserve space.

At the start of execution, the MARSARA kernel driver takes a snapshot of the pro-

gram’s executable pages and then any additional pages loaded into memory afterwards

(e.g., mmap) are also captured and recorded. This also includes dynamically generated

code, such as JIT compilation. The resulting sideband data consisting of the initial snap-
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shot, subsequently mapped executable memory, and context switch events, are interwoven

with the PT data in the thread buffers to yield a linear stream of data.

Each stream contains all the necessary data to recover the program’s execution, down

to individual instructions, with the help of a disassembler. However, as we will explain

in subsection 4.5.2, not every instruction needs to be recorded for auditing, so to conserve

space we distill the instruction sequences using kernel worker threads into relevant events

and metadata centered around basic blocks. Since the PT data is not needed until the

post-forensic investigation phase, the workers process data asynchronously to minimize

overhead.

Intel PT is only configurable in the root CPU privilege level using MSRs and writes

directly to physical memory. This allows the kernel to prevent all user space programs from

reading or tampering with the trace. It also bypasses CPU caches, eliminating potential side

channels and effects on the program’s performance. When the trace buffer is almost full,

an NMI is raised, allowing the contents to be flushed without any data loss. As a result,

systems leveraging Intel PT have demonstrated low performance overheads (under 7% [25,

168, 47]) and are capable of offering strong security integrity guarantees [25, 168].

4.5.2 Offline Profiling

In the offline phase, we propose to overcome the challenge of accurately determining a pro-

gram’s control and data flows by using a combination of concrete traces and symbolic anal-

ysis. Specifically, MARSARA reads a target binary and generates a model of the program

consisting of the possible paths between application log events, systems calls, and func-

tion/loop heads. Formally, given a binary b, MARSARA generates a graph G =< V,E >

where V is a subset of b’s basic blocks, and E = V × V is a set of edges such that

(u, v) ∈ E if there exists a path from u to v in b’s control flow. System call and application

log event nodes then get annotated with regular expressions defining their possible data

values, calculated using binary single-path symbolic execution over the profiled traces. We
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Func BUILDMODEL
Inputs : Binary b
Outputs: Model G

F ← GETLOGGINGPROCEDURES(b)
V ←

⋃
f∈F

GETCALLSITES(b, f)

V ← V ∪b.libc calls∪b.function heads∪b.loop heads∪b.function returns

foreach v ∈ V do
v.rva← CALCULATERVA(b, v)
if v is log call site then

v.logstring← GETLOGFORMATSTRING(b, v)
else if v is loop head then

v.is infinite loop← HASNOEXITEDGES(b, v)
end

E ← {(u ∈ V, v ∈ V ) | ∃ path u→ v in b}
Algorithm 2: Model generation in MARSARA

use angr [21] for our Linux prototype.

In algorithm 2, we show the steps to produce a model in more detail. First, MARSARA

identifies the set F of logging procedures that produce application level messages. Then,

using a first pass on the binary’s CFG, derived from profiled execution traces, MARSARA

captures the basic blocks that end in a call to any function in F . Next, MARSARA collects

all basic blocks that correspond to heads of functions/loops and blocks that lead to system

calls. In practice, we find that applications rarely make direct system calls, relying instead

on standard libraries (e.g., libc) that expose equivalent user APIs. To account for this,

MARSARA also collects all calls to functions in libc and analyzes them to determine the

possible system calls they can emit.

To accurately map these basic blocks to events received from PT and audit logs, MARSARA

needs to collect further metadata about them. MARSARA first tags each node v ∈ V with

its corresponding type: log, system call, function head, loop head, standard library call.

Then, MARSARA calculates the node’s relative virtual address (v.rva), which corresponds

to v’s offset from the binary’s base virtual address. The relative virtual address (RVA) al-

lows MARSARA to recognize addresses reported by PT, which are absolute addresses
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affected by ASLR. For each node v that is a call site to a logging procedure, MARSARA

uses symbolic execution to produce constraints that are then recorded as the log message’s

format specifier (v.logstring). This is essentially a regular expression of all messages this

code location is expected to produce. Finally, to be able to identify execution units (sub-

section 4.5.5) during the later post-forensic analysis phase, MARSARA marks all function

and infinite loop heads. We consider such nodes to be possible candidates for starting new

execution units since they often correspond to event-handling routines. While this is a

heuristic, it has been well studied and considered reliable, appearing in many prior EUP

systems [200, 84, 88].

4.5.3 Online Auditing

At runtime, MARSARA leverages PT to capture low level execution events alongside

traditional audit logs of system calls and application level log messages. PT provides a

hardware-enforced record of the program’s control flow, application log messages reflect

data flow, and system calls capture OS events. We pick these sources because they are

generated by different layers of the environment (hardware, application, kernel) and are

correlated. This provides MARSARA a rich perspective from which to verify consistency.

Hardware Processor Trace Pure software solutions for recording runtime execution suf-

fer from high performance overhead and weak security guarantees. PT is a hardware mech-

anism designed to address this by efficiently and securely capturing instructions as they are

executed in the CPU. Intel’s implementation has been included in their processors since

2015, making it a prevalent feature in most computing environments. Although we use

Intel’s implementation (subsection 4.5.1) in MARSARA, our design generalizes to other

PT hardware as well.

Application Layer Events At runtime, audited programs are loaded with an instrumented

standard library that augments the write call, as is typical of prior EUP designs [200]. In
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addition to writing to the original destination, the new call also forwards messages to the

framework used to record system calls. Most standard auditing frameworks (e.g., auditd)

provide an API with this functionality. To simplify the segmentation of messages during

post-forensic analysis, the instrumented write also appends the process/thread IDs and cur-

rent timestamp to the sent messages.

Although the event logging frameworks used by user space programs are diverse and

heterogeneous, the vast majority rely on standard runtime libraries (e.g., libc) to effi-

ciently write logs while preserving portability across systems. MARSARA takes advan-

tage of this to capture log messages that indicate various states in the execution units. A

more detailed discussion of supporting heterogeneous logging frameworks is presented in

prior work [200] and we discuss our prototype’s compatibility with other programming

languages with alternative standard libraries in section 4.7.

System Calls Recording for system calls and their parameters are provided by the audit-

ing frameworks MARSARA integrates with, which also include an API for MARSARA to

forward application log messages into. For our prototype, we use Linux Audit.

4.5.4 Signature Match Validation

During the post-forensic analysis phase, MARSARA performs two tasks, starting with

cross-validation of events received from PT with those from the audit logs, based on the

model generated offline in subsection 4.5.2. This yields validated audit events that will then

be used to produce verified execution unit partitions, which we describe in subsection 4.5.5.

In algorithm 3, we formalize our cross-validation matching. It takes three inputs: the

generated model G, a PT trace T , and an audit log A of system calls and application log

messages. For each event e received from the PT trace, MARSARA first determines if it is

a system call event or a code block event. If it is a system call, MARSARA extracts e’s call

number and checks that it matches the number on the next event received from the audit
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Func VALIDATETRACES
Inputs : Model G, PT Trace T , Audit Trace A, binary b
Outputs: Validated Events Path P , WarningsW
W ← {Φ} ,P ← {Φ}
/* ω is the last matched node */
ω = Φ
foreach event e ∈ T do

if e is system call then
a← GETNEXTEVENT(A)
if e.syscall num = a.syscall num then
P ← P ∪ {(e, a)}

end
else
W ←W ∪ {(e, a, critical)}

end

if e.object ∈ {libc, b} then
u← GETNODEBYRVA(e.rva)
ω ← VALIDATEEANODE(e, u, a)

end
end
else

u← GETNODEBYRVA(e.rva)
ω ← VALIDATEEANODE(e, u,Φ)

end
end

Func VALIDATEEANODE
Inputs : PT event e, nodes ω, u, Audit event a
Outputs: Last matched node

match← e is application log event ∧ MATCHLOGSTRING(a.logmessage, u.logstring)
if match ∨ (e is code block) then

if (ω, u) ∈ E then
P ← P ∪ {(e, a, u)}
return u

else
if `(u) ∈ {function head} ∨ `(ω) ∈ {function return} then
W ←W ∪ {(e, a, u, low)}
P ← P ∪ {(e, a, u)}
return u

else
W ←W ∪ {(e, a, u, critical)}
return Φ

else
W ←W ∪ {(e, a, u, critical)}
return Φ

Algorithm 3: MARSARA’s trace validation algorithm.
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log. If the two numbers do not match, then the event is invalid and discarded.

Next, if the system call originates from a code block that is either in libc or the

application’s binary, MARSARA obtains the corresponding node in G that matches the

event node’s RVA. It then validates if the path observed so far matches at least one known

signature. Non-system call PT events (i.e, loop heads, function heads, and returns) are

treated in a similar manner.

To check for path validity, MARSARA keeps track of the last matched node in the

current observed trace. If the newly matched node u is an application log node, MARSARA

extracts the node’s format specifier (u.logstring) from the model, and confirms that it

matches the concrete message recorded in the audit log. If a discrepancy is found, the

match is invalidated.

When the log matching succeeds, or alternatively, if u is simply a code block, MARSARA

checks if there exists an edge (ω, u) ∈ E between the last matched and current node. If it

exists, MARSARA considers the path to be valid and updates that last matched node to be

u. If a discrepancy is found, it is invalidated.

Warning Types When MARSARA detects invalid events, it records warnings of two

severity levels: low and critical. Currently, warnings are intended only to provide verbosity

so we can empirically evaluate MARSARA’s accuracy. They do not need to be considered

by investigators and we leave the possibility of using them to aid in investigations to future

work.

The severity is based on what kind of discrepancy is detected in the model. In benign

experiments where no attack is occurring, if a direct code branch causes a warning, it is

ranked low because this is due to a missed path during offline profiling and can be resolved

using more data. Recall that all prior work also relies on offline profiling and therefore

cannot guarantee completeness.

Conversely, if the inconsistency (in benign experiments) arises from indirect transfers
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(indirect jump, indirect call, return), it is ranked critical since this is a limitation in the

symbolic analysis used during offline profiling. This represents a limitation that cannot be

resolved with more data, which is why we differentiate it from low warnings. Fortunately,

as we demonstrate in our evaluation, these are rare, meaning that our design is effective

overall.

4.5.5 Execution Partitioning

MARSARA’s partitioning logic relies on the observation that developers of long-running

processes create log messages for the important events in each execution unit’s lifecycle.

For example, for a web server that handles user requests, it is customary for developers to

log the user’s request at the start of each unit. Such log messages often reside at the start of

an event-handling function (typically a function pointer) or an infinite loop, which is why

our binary analysis in subsection 4.5.2 labeled them explicitly.

However, determining which log messages signal the start of a new execution unit with-

out semantic analysis of the message’s content is a challenging task. To overcome this, we

combine information about loops and functions from the offline profiling phase with run-

time information about log messages to uncover the heads of execution units.

As discussed in subsection 4.5.2, MARSARA assigns each code block v with a label

` (v) indicating whether v is an infinite loop or the head of a function. Such blocks become

candidates for starting new execution units. MARSARA keeps a running count of the

number of times a log messages has been encountered in a priority queue. The intuition

behind this approach lies in the observation that application developers, in an effort to

reduce the performance overhead of logging, restrict the log messages to important events,

the most important of which is the servicing of a new input. Therefore, the log message

at the top of the priority queue (i.e., the one with the largest count) likely corresponds

to the head of an execution unit. Every time that message is encountered, MARSARA

performs a backward search in the current trace and identifies the closest code block that
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is either an infinite loop head, or the head of a function with no incoming edges in the

model. MARSARA then creates a new execution unit starting from that block and adds all

subsequent events to the new unit.

4.6 Evaluation

We evaluate MARSARA with an emphasis on answering the following research questions:

1. What is MARSARA’s accuracy when validating the integrity of partitions? We mea-

sure its accuracy in terms of the number of warnings generated over benign inputs in

14 real-world programs and show that only 2.82% of false dependencies are reintro-

duced at worst.

2. How much does MARSARA reduce the vulnerability of programs to EUP attacks

compared to CFI alone? We measure PAS for the same real-world programs while

being protected by MARSARA, shadow stack, and function-level CFI. MARSARA

removes 47,642 more gadgets per program.

3. Can MARSARA prevent execution repartitioning attacks based on the techniques

from section 4.3? We attack several programs using expertly crafted exploits and

find that MARSARA successfully preserves the full attack provenance.

4. What is the cost of MARSARA’s forensic analysis? We measure the overhead for the

real-world programs and the SPEC CPU 2006 benchmark compared to a standard

auditing framework and find it to be 8.7%, on average.

Experimental Setup We evaluate MARSARA using 14 popular real-world applications.

These programs have frequently been used to evaluate prior work [88, 93, 84, 200, 85],

justifying their inclusion. We use the default configurations and generate workloads with

standard benchmark tools, such as Apache Benchmark [215]. We also evaluate against the

SPEC CPU 2006 benchmark, with full workloads, for direct comparison with prior work.
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For practical binary CFI defenses, we consider shadow stack and function-level poli-

cies, which are realistic to enforce without source code. Shadow stack prevents control

flow hijacking from arising via corrupted return pointers whereas function-level CFI addi-

tionally enforces that indirect calls and jumps must target the start of a valid function. More

accurate policies have been proposed, but have not seen real-world deployment due to re-

quiring source code, being incompatible with mechanisms like stack unwinding, and/or

having overheads upwards of 47% [47].

We conduct our tests on a server-class machine with an Intel® Core™ i7-6700K CPU

and 16GB of memory, running Debian 10. Audit logs are collected using Linux Audit with

rules covering the most commonly used system calls, such as read, write, and execve

(23 in total).

Definition of Errors For the purposes of this evaluation, a false positive is defined as

a legitimate audit event that is accidentally detected during MARSARA’s integrity check,

yielding a warning, and a false negative is a spoofed or delayed event that is not. In terms

of the resulting provenance graph, a false positive may introduce a false dependency edge

whereas a false negative may remove a true dependency edge.5

Calculations Overhead is calculated as (P −B)/B where B is the baseline performance

value and P is the value with the evaluated system enabled. FP rate for Table 4.1 is cal-

culated as the sum of all warnings divided by total events. We do not report the time to

produce models since this is only done once per program during the offline phase.

4.6.1 Partition Validation Accuracy

Table 4.1 shows the performance and accuracy of MARSARA’s analysis for validating the

execution partitions. As expected from algorithm 3, the time to validate is linear to the

5Notice that if a false positive happens to be a true dependency, the graph is unaffected, and if a false
negative fails to forge a signature match, the graph is also unaffected.
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Table 4.2: PAS for several real-world programs and defenses.

Program ICT None SS Func. MARSARA
cupsd 4,017 19.42 8.62 8.59 8.33

HAProxy 13,155 2.49 2.18 2.18 2.11
httpd 1,779 40.00 12.14 12.02 9.41

lighttpd 2,858 0.18 0.13 0.13 0.13
memcached 797 2.82 1.10 1.02 0.89

nginx 3,997 0.80 0.37 0.37 0.28
postfix 848 16.00 10.28 9.75 9.42
Proftpd 34,830 2.18 0.82 0.81 0.72
Redis 28,047 7.09 5.37 5.34 5.06
squid 18,412 353.00 196.03 181.11 123.94
thttpd 1,198 1.02 0.14 0.14 0.11

Transmission 17,507 2.89 1.83 1.82 1.75
wget 16,594 6.71 0.85 0.71 0.64
yafc 8,590 0.85 0.64 0.63 0.62

Average: 10,902 32.53 17.18 16.04 11.67

number of events recorded. In the largest observed case (12 million events, thttpd),

MARSARA analyzes and validates the trace in less than 30 seconds. This is reasonable

since verification is only required once per trace and is not performed until an investigation

occurs (i.e., the post-forensic analysis phase).

We also report the number of events yielding FP warnings during verification. For

8 of the 14 applications, MARSARA reports no critical FPs, meaning that the symbolic

analysis used during the offline profiling phase works well on the evaluated programs. For

the remaining programs, the FPs are <6, highlighting only a few troublesome model edges.

FPs occur mainly for two reasons: due to limitations in binary symbolic analysis and

inaccuracies in reporting system calls. In some cases, MARSARA detects system calls that

do not map back to nodes in the model. For example, in Transmission, unexpected openat

system calls are recorded. Investigation reveals that the function tr variantToFile

makes a call to the libc method mkstemp. However, when examining the model, we did

not find a node for this method, indicating that symbolic execution was not able to analyze

it. We further investigated the source code for mkstemp in glibc and observed that it
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is replaced by the compiler with a function called gen tempname6. These kinds of

optimizations are not currently handled by the verification algorithm, but will be addressed

in future versions.

We also report the number of events yielding low severity warnings, which arise in

direct branches not covered by the profiling traces we collected during the offline phase. For

additional clarity, we categorize these into forward graph edges (calls, jumps), backward

edges (return), and other (unexpected audit log events). The evaluated programs yield

between 10 and 600 low warnings, which we explain the impact of next.

Since this experiment does not contain any exploits, all generated warnings are false

positives, i.e., legitimate events wrongly detected by MARSARA’s integrity check. This

is presented in the table as false positive rate (FPR), calculated as the number of warning-

producing events (low and critical) divided by the total number of events. In all cases, FPR

is 2.82% or lower. Recall that if a false positive pertains to a false dependency, it will be

preserved in the resulting provenance graph as an edge rather than being removed during

partitioning. A false positive detection of a true dependency is of no consequence, since it

would not have been removed anyway. Consequently, FPR is also the maximum number

of false dependencies that can be reintroduced into the graph. For example, if the ideal

partitioned provenance graph for a given query contains 1,000 dependencies (edges), the

resulting graph with a FPR of 2.82% could contain up to 1,028 edges (28 false dependen-

cies), presenting little difference to analysts or downstream systems. In short, MARSARA

almost completely preserves the false dependency reduction of prior (insecure) EUP tech-

niques with the added benefit of integrity.

4.6.2 Partitioning Attack Surface Reduction

Table 4.2 presents MARSARA’s PAS for the real-world programs compared to the unpro-

tected binaries and several practical binary CFI policies, along with the number of indirect

6Observed in glibc/misc/mkstemp.c at line 33.
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control transfers (ICTs) in each program. Recall from subsection 4.4.1 that smaller values

equate to greater protection against EUP attacks.

Across all measured programs, MARSARA’s PAS is better than any of the CFI de-

fenses. Since most programs contain over 1,000 ICTs, even small reductions in PAS are

significant. For example, MARSARA reduces Proftpd’s PAS by 0.09 versus function-level

CFI, which over 34,830 ICTs equates to eliminating 3,134 events that an attacker could

otherwise leverage to spoof EUP signatures. In the simpler programs, the benefits are

more modest. For example, lighttpd gains little added protection from MARSARA,

or function-level CFI for that matter, due to not having any indirect calls or jumps. The

biggest benefit is observed in Squid, where its modular design presents the opportunity for

MARSARA to reduce PAS by 57.17 over function-level CFI, eliminating over 1,052,614

event gadgets. On average, 47,642 additional gadgets are removed compared to function-

level CFI. In short, MARSARA successfully eliminates thousands (and sometimes mil-

lions) of options for an attacker attempting to spoof an EUP signature, even in programs

already protected by binary CFI.

4.6.3 Attack Investigation

To evaluate MARSARA’s integrity, we use the expertly crafted exploits described in sub-

section 4.3.3 to attack real-world programs. Specifically, we first run EUP without PT or

MARSARA’s partition verification (essentially placing partitions as prior systems would,

creating a baseline for comparison) to confirm that the exploits produce valid (malicious)

signatures for partitioning. As expected, all 3 attacks successfully manipulated prior EUP

algorithms into fragmenting the attacker’s exploit and resulting symptoms across disjoint

partitions. In short, without MARSARA, provenance queries made by investigators will be

answered with seemingly legitimate (but actually misleading and incomplete) results.

We then rerun the attacks, now with MARSARA. In the 2 control hijacking cases (CVE-

2013-2028, CVE-2004-0541), we observe critical warnings at the point where the exploits
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Figure 4.5: Performance overhead for the real-world programs. The average is 8.7%.

redirect control of the execution. For CVE-2009-4769, the critical warning arises because

the model reveals, based on the call site to the logging method, that the resulting mes-

sage in the audit log contradicts the expected format. Consequently, MARSARA does not

fragment the attacker’s network requests from the rest of the symptoms, yielding com-

plete provenance attack graphs that contain all the relevant events. For example, for CVE-

2013-2028, which pertains to our motivating example originally visualized in Figure 4.1,

MARSARA’s partition includes both the events pertaining to x.x.x.x and y.y.y.y. In

short, this experiment yields no false negatives.

4.6.4 Runtime & Space Overhead

Real-World Programs We report the storage requirements for MARSARA’s analysis in

the last two columns of Table 4.1. Our baseline represents the amount of compressed data

needed to store the events generated by the Linux Audit framework. We compare that to

the amount of extra storage (also in compressed form) that MARSARA requires for PT.

For 9 of the 14 applications we evaluated, MARSARA’s storage requirement is in the

same order as the baseline (e.g., 1.6 MB for 500K events in the case of httpd). However,

for each Linux Audit trace, the corresponding PT trace can be discarded after MARSARA’s

validation is completed. This renders the PT storage overhead as only a temporary cost.

For 3 applications (thttpd, Proftpd, and Redis), a large number of PT events
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Figure 4.6: Performance overhead for the SPEC CPU 2006 benchmark. The average is
7.21% and the geometric mean is 3.81%.

are generated, requiring significantly more temporary storage. Investigating further, we

discover that MARSARA reports on events pertaining to several loop blocks engaged in

“busy-waiting” behavior for initializing large arrays. For example, thttpd creates an

array for storing all the possible file descriptors (1024 in our evaluation environment) and

then initializes each element to −1. Consequently, every time this code block is executed,

PT records a path consisting of 1024 blocks, significantly increasing the number of events

generated. We discuss possible solutions to PT’s storage requirements in section 4.7.

Figure 4.5 shows MARSARA’s runtime overhead compared to the baseline of Linux

Audit framework with no PT event tracking. MARSARA’s average runtime overhead is

8.7%, which is consistent with prior PT systems [25, 47, 168]. The overhead observed

varies depending on the profiled application’s behavior. For example, applications that

are mostly IO-bound, such as caching servers (memcached, squid), file, mail, printing

servers (proftpd, postfix, and cupsd), and key-value stores (redis) exhibit low

runtime overhead, ranging from 1% for proftpd to 9% for Redis. Conversely, applica-

tions that are more CPU-intensive, such as web servers and load balancers, incur a larger

overhead (up to 17% for thttpd) since PT yields more events. We will consider alter-

native methods to reduce PT’s runtime overhead for CPU-intensive applications in future

work.

SPEC CPU 2006 To provide an additional standard benchmark for comparison, we also

report the performance overhead of monitoring the SPEC CPU 2006 benchmark programs
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over all provided workloads, visualized in Figure 4.6. Across the SPEC programs, MARSARA

yields an average performance overhead of 7.21%, which is consistent with the results from

monitoring the 14 real-world programs that are typically used in provenance system evalu-

ations. However, we also note that some of the SPEC programs produce noticeably higher

overhead due to the amount of PT data they produce. This is to be expected since the

benchmark is designed to stress CPUs, making the workloads CPU-bound, whereas the

other programs we evaluate are mostly I/O-bound. We believe the non-SPEC workloads

are more representative of the programs an EUP attack would target, so we conclude that

the SPEC performance results are tolerable.

4.7 Discussion

Improving Model Accuracy The current MARSARA prototype relies on binary single-

path symbolic execution to generate the model during offline profiling. This results in

an under-approximated set of paths. Although we consider improving the state of binary

analysis to be outside our scope, several possible solutions exist to improve its accuracy.

For example, because MARSARA already records the full PT trace and system call au-

dit for protected programs, it is possible to use the collected data to guide an offline replay.

Specifically, when MARSARA encounters an inconsistency due to a missing edge in the

model, an existing record-and-replay system [91, 26, 27] can re-execute the program offline

with additional instrumentation (e.g., Valgrind [22]) to detect the presence of memory cor-

ruptions and then refine the model appropriately. Although memory-safe record-and-replay

is expensive, the cost would be paid in an offline analysis and each newly encountered path

would only need to be tested once. In time, the model would converge to the ground truth

graph with a priority towards refining execution paths actually observed in real-world exe-

cutions.

We also note that symbolic execution does not scale to all programs, particularly com-

plicated ones like web browsers. However, by evaluating a prototype that uses application
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message and system call auditing, designed as an extension of the most recent work, we

demonstrate that our approach of using PT and binary symbolic analysis to verify signa-

tures can benefit the security of all EUP-dependent systems, not just our prototype. We also

demonstrate that even in its current form, MARSARA protects logs derived from important

web services.

Improving Storage Overhead While most of the tested binaries produce audit logs com-

parable in size to the baseline system considered in section 4.6, we encounter some cases

where sizes are an order of magnitude larger. We discover the cause of this phenomenon to

be non-blocking event loops (i.e., “busy waiting”), which yield many control flow events of

little significance (i.e., checking a flag and then returning to the loop head). This can be ad-

dressed as the PT trace is decoded by summarizing loops or using compression tailored to

our problem context. Note that decreasing the PT trace size will also benefit performance,

since less data has to be processed.

In a similar vein, while our PT-enabled kernel is capable of tracing programs with

dynamically generated code (e.g., JIT in browsers), doing so is likely to yield higher per-

formance overhead as each generated code page has to be captured in the sideband data.

We leave these optimizations to future work.

Compatibility with Other Languages MARSARA’s reliance on an instrumented libc

means it will not be able to capture application messages for all possible Linux programs.

However, fixating on this detail overlooks two points that are more significant. First, our

prototype’s EUP signatures contain messages and system calls. Even when the former is

unavailable due to compatibility, the latter can still be used to identify units of execution,

albeit at a coarser granularity. EUP is still valuable in such cases [84, 86]. Second, the

purpose for including application messages in our design is to demonstrate the flexibility

of our modeling to serve a wide range of analyses that require EUP, not just those reliant

on one data source (e.g., system calls).
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Compatibility with “At Rest” Integrity In this work, we focus on protecting log in-

tegrity against a novel form of online tampering based on EUP attacks. This is outside

the scope of prior work, which focuses on tampering performed to data at rest on stor-

age. Our proposed defense complements the protection offered by these past solutions

and MARSARA can be extended to incorporate them into a holistic system. For ex-

ample, solutions based on cryptography can be readily applied to the data produced by

MARSARA, thereby adding storage integrity. Similarly, MARSARA can control where

data is stored, allowing it to leverage trusted storage solutions like WORM drives or cen-

tral logging servers.

4.8 Conclusion

This work presents the first formal exploration of online anti-forensic attacks against data

provenance leveraging software exploits. We demonstrate that attackers can break the

causal links in data provenance graphs used for forensic investigation, and even frame

benign subjects, without triggering existing tamper-evident logging defenses. We propose

MARSARA to verify EUP signature matches and demonstrate that it resists expertly crafted

exploits while reintroducing no more than 2.82% of false dependencies, across 14 real-

world programs, with a performance overhead of 8.7%. Compared to CFI, MARSARA

removes 47,642 more gadgets per program.
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CHAPTER 5

BUNKERBUSTER: PROACTIVE BUG HUNTING AND REPORTING

In this chapter, my collaborators and I present Bunkerbuster, a system designed to proac-

tively hunt for and localize memory corruption bugs using benign user data recorded from

multiple end-host systems.

5.1 Introduction

As pressure on companies to swiftly identify and remediate system vulnerabilities has in-

creased [216], corporations have adopted bug hunting strategies. They proactively search

for and remediate problems in their adopted software before adversaries can exploit them in

an attack [217]. Unfortunately, the path from corporate bug hunting to developer software

patch is cumbersome and laborious, leaving less-equipped companies vulnerable.

Human bug hunters, lacking good inputs to test programs, rely on fuzz testing (fuzzing) [4,

7, 1, 2, 3] to brute force test cases, starting from seeds provided by the developers (e.g.,

regression tests) or scraped from public databases (e.g., ImageNet [218]) that offer limited

coverage. Such tools often require manually written scaffolding code to reach deep libraries

or APIs [6, 5, 219] and rely on crashes to signal buggy behavior [63, 58, 70, 64], which is

not always reliable [220, 54, 9]. The process is further complicated by binaries that lack

source code, requiring bug hunters to engage in extensive reverse engineering [221, 8, 10].

Worse still, the bug hunter then needs to share their findings with the software’s de-

velopers. Crashes can corrupt artifacts [142, 143, 101, 144, 145, 94, 146, 147, 148, 95,

149, 150, 151, 152, 153, 154, 155, 156] and bugs can be difficult to reproduce due to

environment differences. Capturing stack traces or re-executing the crashing input with

instrumentation [222, 59, 163, 139] offers some insights, but as we discover in an in-depth

case study, the results can be incomplete, hindering triage. Prior work shows that develop-
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ers consistently undervalue or ignore issues they do not understand [159, 160], but without

their aid, the only other remediation choices are incomplete stopgaps like input filters [136,

137, 138, 139] or selective function hardening [140], which incur significant overhead [23].

However, we observe that software testing need not occur in a vacuum. Namely, compa-

nies already have employees constantly using the software in question, and their real-world

usage already drives the program into deep behaviors within realistic environments. The

data to automate bug hunting and reporting is already within their reach, so why are they

not using it?

We hypothesize that the disconnect that occurs is due to the traditional definition of

“seed as program input” being insufficient. While program inputs are easy to collect, they

offer little insight into how to build scaffolding, how to get from sound program states to

buggy ones, and how to explain those bugs in a meaningful way. Instead, we hypothe-

size that control flow traces are the better seeds for automating bug hunting and reporting

because they can reveal the solution to all the above problems while still being efficient

enough to collect from real user environments.

To demonstrate this, we first propose how to segment control flow traces and save se-

quential memory snapshots to guide symbolic analysis through code where it is otherwise

susceptible to path explosion [223, 52]. We hypothesize that this control oriented record

and replay of user sessions is suitable for discovering serious classes of memory corruption,

such as those arising from overflows, use-after-free (UAF), double free (DF), and format

string (FS) bugs. Better still, thanks to the prevalence of hardware assisted PT, production

systems can securely capture traces with user transparency and tolerable overhead.

Notice that while prior work has demonstrated the value of snapshots for bug hunt-

ing [224], they did not combine them with traces. Without the accompanying segmented

control flow traces leveraged in our design, such systems are still susceptible to path explo-

sion due to loops and string manipulation, limiting their scalability in real-world settings.

However, collecting a corpus of new seeds is only half the battle. To reach new buggy
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program states, we also propose a technique to selectively symbolize predicate data, based

on the recorded control flow traces, to facilitate constrained exploration that prioritizes

certain paths while managing path explosion. To inspect deep API calls, we propose an

analysis to automatically recover parameter prototypes, eliminating the need for human

analysts to implement scaffolding. To find bugs from benign recordings, we employ bug-

class-specific search strategies and detection techniques that check uncovered states for

symbolic indicators of buggy behavior.

The above technical contribution also brings an additional benefit to our design, which

is that the same symbolic constraints can also be used to perform symbolic root cause

analysis [225]. This recently proposed technique for localizing memory corrupting bugs

has only been demonstrated in single path symbolic analysis, starting from the program

entry point, limiting its possible applications. Our design shows how it can be used in a

multi-path setting, starting from the main program entry point or entry points to imported

library APIs, increasing its applicability.

We implement our design as a Linux prototype, named Bunkerbuster, and evaluate

it on 15 programs, some of which contain binaries compiled from over 810,000 lines of

C/C++ code, invoking 1,710 imported functions and producing traces 19,392,602 basic

blocks long, on average. Bunkerbuster successfully uncovers 39 bugs, of which 8 are

newly discovered by our approach. 1 EDB and 3 CVE IDs have been issued and patched

by developers, using Bunkerbuster’s reports to independently verifying their novelty.1 In a

side-by-side comparison, Bunkerbuster finds 8 bugs missed by AFL and QSYM, and cor-

rectly classifies 4 that AddressSanitizer mislabeled. Our prototype accomplishes this with

7.21% recording overhead and manageable storage requirements. We have open sourced

our prototype and data to facilitate future work.2

1We report all bugs to developers, MITRE, and Offensive Security for responsible disclosure.
2https://github.com/carter-yagemann/arcus
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/ * c o d e r s / png . c * /
ReadMNGImage ( ) {
5129 : p r e v i o u s = image ; / / heap o b j e c t
5130 : mng info −>image = image ;
5138 : ReadOneJNGImage ( mng info ) ; / / 1 s t f r e e
5143 : D e s t r o y I m a g e L i s t ( p r e v i o u s ) ; / / 2nd f r e e
}

/ * c o d e r s / png . c * /
ReadOneJNGImage ( MngInfo * mng info ) {
3126 : D e s t r o y I m a g e L i s t ( mng info −>image ) ;
}

/ * magick / l i s t . c * /
D e s t r o y I m a g e L i s t ( Image * images ) {
239 : Des t royImage ( images ) ; / / c a l l s f r e e
}

Figure 5.1: Source code pertaining to CVE-2017-11403 in GraphicsMagick, summarized.
ReadMNGImage calls ReadOneJNGImage without realizing that it may free image,
making Line 5,143 a double free bug for some paths.

5.2 Overview

Bunkerbuster’s analysis replaces the laborious process of proactively hunting for and re-

porting software bugs in enterprise networks. Bug hunting should not be confused with

IDS, which requires reacting swiftly to ongoing attacks. In place of a human security ex-

pert creating a testbed to fuzz programs or library APIs, Bunkerbuster gathers data from

end-hosts using a kernel driver, cleverly inferring input structures and segmenting traces to

achieve offline binary symbolic execution.

5.2.1 Real-World Example

To show how Bunkerbuster benefits a bug hunter tasked with finding problems in soft-

ware, consider the following example based on CVE-2017-11403, a UAF vulnerability

found in GraphicsMagick. For clarity, we will explain this example using the source code

shown in Figure 5.1, however the real analysis is on binaries. In this instance, the func-
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Figure 5.2: Bunkerbuster architecture. End-hosts with PT-enabled kernel drivers collect
and filter traces of the target program, forwarding novel segments to the analysis environ-
ment. Symbolic states are reconstructed and then expanded by exploration plugins. When
a bug is detected, symbolic root cause analysis pinpoints the source and produces a report.

tion ReadMNGImage always frees the heap object image before returning, but what it

does not account for is that a child function it invokes, ReadOneJNGImage, can also free

image after a certain error, causing a DF.

Suppose that the bug hunter, having heard about all the recent vulnerabilities found

in image processing libraries, wants to analyze a program his employees are using that

imports the GraphicsMagick library. Unfortunately, he is not familiar with obscure image

formats like MNG, so building fuzzer scaffolding for all of GraphicsMagick’s APIs would

be tedious, and fuzzing the entire program from startup would be inefficient due to its

complexity.

Instead, he gives the name of the target program to the Bunkerbuster analysis system,

which in turn forwards it to all the end-hosts with the Bunkerbuster kernel driver installed,

as shown in Figure 5.2. These systems observe the processes being created locally and

anytime the target program starts, they configure PT for recording. As the data is collected

at the end-host, it locally segments the trace at calls to imported library functions and

hashes them on-the-fly. Each hash is checked against a filter, and if the segment is novel, it

is forwarded for analysis.

Back at the analysis system, Bunkerbuster uses the incoming traces along with symbolic

execution to reconstruct symbolic states for each executed basic block. Since the conditions

leading to CVE-2017-11403 are rare, these segments do not directly reach the DF bug, but

some contain invocations of the vulnerable function. Using its search plugins containing
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bug-class-specific exploration strategies, Bunkerbuster symbolically expands the set of re-

constructed states, yielding additional states within the same function, including the one

containing the CVE. When Bunkerbuster checks them for memory corruption, it finds the

state containing the DF. It then switches to localizing a concise root cause. Bunkerbuster

compares the constraints leading to this buggy state against others sharing the same pre-

decessor guardian (i.e., conditional check) and determines the difference that makes the

DF reachable. It then traces this back through the predecessor states, pinpointing the error

checking branch. The end result is a concise, human-readable report, identifying the site of

the first and second frees, and the input error check in GraphicsMagick that caused the DF.

Notice that if no end-user ever loads an MNG image, the analysis will not find this DF

because the traces will not have any invocations of the vulnerable function to reference.

However, code that is never invoked is a prime candidate for debloating [226, 227, 228,

229, 230], which is outside the scope of this work. Conversely, Bunkerbuster will cover all

the code used by monitored users.

5.2.2 Goals & Assumptions

We focus on discovering and localizing overflow, UAF, DF, and FS bugs within unob-

fuscated, benign Linux programs without access to source code or debug symbols. The

limitations imposed by this scope are discussed further in section 5.5.

We assume that the end-hosts contain PT-enabled CPUs, which also form our trusted

computing base (TCB). PT is a hardware feature that writes directly to physical memory,

bypassing all CPU caches, and is only configurable in the privileged CPU mode, making

it a trusted platform in numerous security systems [168, 25, 231, 232, 233]. We expect

collected data to encode benign behaviors, motivating the need for bug hunting. In the event

that an end-host captures malicious activity, detection becomes easier. We envision our

system being deployed on enterprise computers and servers, leaving mobile and embedded

devices for future work.
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To recover the structure of inputs to APIs as accurately as possible while covering

the diverse range of possible use cases, we consider two scenarios. The first targets open

source C/C++ libraries, where we assume access to stub code or source headers that define

the API. This is a necessary part of any public release to allow other developers to integrate

their systems with the API. For all other cases, we assume the most conservative scenario

where only the binary is available.

5.2.3 Bug Class Definitions

Use-After-Free UAF is a type of temporal memory safety violation that can lead to mem-

ory corruption. Instances follow a specific pattern [234, 235], starting with a block of mem-

ory being freed by the program. Once freed, any pointers in memory to the freed block that

are not cleared become dangling pointers. If a dangling pointer is dereferenced for any

operation, this becomes a UAF. By this definition, DF is a subclass where the violating use

is another free [236].

Overflow Overflows are a type of spacial memory safety violation whereby a looping

sequence of memory writes exceeds the bounds of a finite buffer and corrupts neighbor-

ing memory locations. Conceptually, overflows are possible if a loop fails to correctly

consider the address bounds of the buffer being written to. Vulnerable loops typically ter-

minate based on conditions derived from counting (e.g., fwrite) and delimiters (e.g.,

strcpy) [237]. Since our analysis is performed at binary level, where variable type infor-

mation is unavailable, we focus on control flow hijacking overflows, which corrupt code

pointers and lead to arbitrary code execution [23, 70, 238, 71, 7], as opposed to data-only

attacks [239]. Future work can extend our design to cover data-only attacks by either infer-

ring types [169, 170] or incorporating source code or debug symbols.

Format String FS is another type of spacial memory safety violation where input data

directly controls the format specifier used in functions like printf, allowing for arbitrary
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reading and writing of memory. This can lead to memory corruption or be used to leak sen-

sitive data. We consider both cases, including data-only attacks, because unlike overflows,

FS can be analyzed without additional type information.

5.3 Design & Implementation

In this section, we elaborate on the steps in Bunkerbuster’s recording and analysis, initially

presented at a high level in subsection 5.2.1. Stepping through the workflow sequentially,

subsection 5.3.1 describes how the end-hosts record and filter the PT traces that the analysis

uses to recover valid program execution paths. Next, subsection 5.3.2 describes how mem-

ory snapshots are taken at the end-host and how the analysis selectively symbolizes them to

bootstrap symbolic execution. Given a symbolized snapshot as a starting state and a match-

ing trace segment, subsection 5.3.3 describes how to recover symbolic representations of

all the intermediate program states along the traced path at basic block granularity.

With a linear sequence of symbolic states for the recorded path constructed, we then

describe how to explore additional paths, prioritized using search strategies based on our

domain knowledge of our target bug classes. We also describe how Bunkerbuster uses the

symbolic constraints for the states to detect and then localize bugs. Since our techniques

are bug-class-specific, we split our description between UAF/DF, which arise from tem-

poral memory safety violations, and overflow/FS, which arise from spatial memory safety

violations, in subsection 5.3.4 and subsection 5.3.5, respectively.

5.3.1 Capturing & Filtering Traces

One technical challenge Bunkerbuster has to overcome is how to efficiently, securely, and

transparently record user sessions. To this end, we center our design around PT, and then

propose a novel way of hashing recorded segments so redundant ones can be discarded.

However, before explaining filtering, it is important to understand what PT is and how

Bunkerbuster uses it. For brevity, we will focus on Intel’s implementation of PT, however
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similar features exist in processors made by ARM, AMD, and others.

Intel PT records traces of user space execution directly to physical memory, where it can

then be forwarded by a kernel driver to persistent storage or remote endpoints. Its recording

can be restricted to a particular process at the hardware level using a configuration register

that accepts a CR3 value representing the process’ page table address.

Traces consist of a stream of packets, each recording the outcome of a branching in-

struction, indirect call/jump, return, or interrupt. Binary branches are recorded as a single

TNT bit, whereas other events yield a TIP. To decode the trace into an instruction sequence,

the decoder also needs additional side-band data about the traced process’ memory space

and thread scheduling, which we describe next.

First, the decoder needs the process’ executable pages in order to recover instructions.

Bunkerbuster’s kernel driver handles this by hooking relevant system calls (e.g., mmap,

mprotect) and recording memory pages alongside the PT trace. Bunkerbuster can then

linearly disassemble the memory, starting at the program’s entry point and consulting the

next PT packet whenever a branch is encountered, to recover every executed instruction.

Second, in order to distinguish threads that share the same page table (CR3 value), the

kernel driver also hooks context switches to record when threads are swapped in and out

of CPU cores. The driver also hooks the fork and exec system calls so it can detect and

trace child processes created by the target program.

Trace Filtering Unlike prior PT systems, Bunkerbuster has to account for the fact that

users and services may engage in repetitive tasks, yielding partially redundant execution

traces. To address this, our driver quickly hashes trace segments on-the-fly and compares

them against a global map, discarding ones that have already been observed, using the

following algorithm:

(u, v) ∈ T : u� 1⊕ v mod S (5.1)
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where u and v are virtual address offsets, relative to their object bases to account for ASLR,

recovered from trace T . The result is a bit offset within a map of size S bits corresponding

to the edge (u, v). The global map is initialized with all bits set to 0 and then as edges are

decoded from the PT trace, their corresponding bits are set to 1. If a trace segment adds

any novel bits to the global map, it is forwarded for analysis, otherwise it is discarded.

5.3.2 Symbolizing Memory Snapshots

Alongside the data described in subsection 5.3.1, the end-host driver also records snapshots

of register values and memory that will serve as starting states for symbolic execution.

Specifically, when the program is loaded at runtime, the driver hooks the program’s main

entry point and any entrances to imported APIs (i.e., library functions) by placing traps in

the process’ procedure linkage table (PLT). Once captured, Bunkerbuster symbolizes the

input data, which for the main entry point is the program’s input arguments and for APIs are

the called function’s parameters. This data is replaced with unconstrained symbolic vari-

ables, enabling Bunkerbuster to reason about all possible input values to the program and

imported APIs. For this reason, each trap only needs to be used once, and is then removed,

minimizing runtime overhead. This also allows Bunkerbuster to analyze snapshots (and

their corresponding trace segments) in any order because there are no prior constraints.

Generally speaking, under-constrained symbolic execution can result in false positive

detections, i.e., bugs that cannot actually be reached in real executions. However, because

we are careful to only snapshot the entry points to the program and its imported libraries,

Bunkerbuster’s results do not have this issue. Bugs found using snapshots of the program’s

entry point will be inherently reachable, and of relevance to the program’s developers.

Conversely, for API snapshots, so long as Bunkerbuster halts its analysis at the return from

the called function,3 any discovered bugs may not be reachable within the context of the

program that was recorded, but may be reachable by other programs that also import the

3Analysis beyond this point can yield false positives because the returned value is under-constrained.
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0000000000001142 <foobar>:
...
114a: mov    %rdi,-0x18(%rbp)
114e: mov    %esi,-0x1c(%rbp)
1151: mov    %rdx,-0x28(%rbp)
...
1164: mov    -0x18(%rbp),%rax
1168: add    %rdx,%rax
116b: movzbl (%rax),%eax
116e: movsbl %al,%eax
...
1183: mov    -0x28(%rbp),%rax
...
118c: callq  *%rax

u:{rdi}
u:{rdi,esi}
u:{rdi,esi,rdx}

u:{rdi[s8],esi,rdx}

u:{rdi[s8],esi,rdx[c]}

Figure 5.3: Binary-only scenario, with color added for clarity. The boxes show the usage of
non-clobbered values. The first snippet reveals foobar has 3 arguments, the next reveals
that the RDI argument is a char pointer (denoted [s8]), and the last reveals RDX is a
code pointer ([c]).

same library, making the results relevant to library developers. In this way, Bunkerbuster

decomposes long traces into smaller segments, simplifying the symbolic execution.

One small caveat we discovered while designing Bunkerbuster is that while most inputs

within snapshots should be symbolized, code pointers passed to APIs should not. The

reason is that some APIs are designed to accept code pointers, which may serve as callback

functions, helper functions, and more. If these are replaced with unconstrained symbolic

variables, then their use will be difficult to distinguish from control flow hijacking, despite

being intended behavior. The reason why will become clearer in subsection 5.3.5, which

describes how Bunkerbuster detects overflow bugs.

Whereas program arguments adhere to a fixed memory layout, as specified by the op-

erating system, the locations and types of API arguments has to be recovered by Bunker-

buster. Recall from subsection 5.2.2 that we aim to handle both public and private APIs.

Consequently, we propose two approaches for inferring and symbolizing the input argu-

ments, one based on parsing C/C++ headers and the other based on binary-only analysis.

Source-Based Inference When source headers are available, we use a C/C++ parser to

read the API’s function prototype into an abstract syntax tree (AST), terminating with basic
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data types of known size (e.g., int, void pointer). All non-pointer types are treated as

data. For pointers, if the type is a function prototype, then it is a code pointer. Similarly,

pointers to basic data types are data. However, it is ambiguous when the type is void, which

could point to data or code. In such cases, the parser assumes the pointer points to code

to remain conservative. The result is a data structure defining the offset, size, and type of

each element for each argument. This is then combined with the calling convention for the

architecture being analyzed to pinpoint these elements in registers and memory. Notice that

because libraries are shared between programs, factors like padding are treated consistently

across systems and is easy to account for. When data pointers point to buffers of arbitrary

length, they are replaced with new large buffers of unconstrained symbolic bytes to test for

overflows.

Binary-Based Inference When headers are unavailable, our analysis leverages the recorded

trace, shown with a concrete example in Figure 5.3. Bunkerbuster steps through the traced

basic blocks in order and tracks where registers and stack values are used in operations

versus being clobbered by writes. If a non-clobbered value is used, it is likely an argument.

The type is inferred based on how the loaded value is manipulated. If it appears in a call, it

is treated as a code pointer. If it is used in subsequent loads, it is a data pointer. Otherwise

it is treated as a basic data type. It is possible for this approach to miss a parameter if it is

never used, however we did not observe this in our evaluation.

During implementation, we tested the robustness of this approach by comparing its

outputs against those of the source-based technique and verifying that they match. We

include a breakdown of the tested libraries in Table A.1 of the appendix.

5.3.3 Symbolic State Reconstruction

Once Bunkerbuster has a symbolized snapshot for a starting state (subsection 5.3.2), and

a corresponding trace segment (subsection 5.3.1), it then needs to recover the intermediate
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program states that cover the recorded execution path. Notice that Bunkerbuster cannot

simply take more snapshots because doing so comes at a performance cost, so instead our

solution is to use symbolic execution to recover the missing states. As an added benefit,

this will also enable Bunkerbuster to consider states beyond what was concretely executed,

potentially finding additional bugs.

To perform the reconstruction, each instruction is emulated and constraints are added

to the programs state to encode all possible data that can reach the current point in the

execution. When a branching instruction is encountered, a satisfiability modulo theories

(SMT) solver evaluates the accumulated constraints to yield reachable successor states.

However, Bunkerbuster initially focuses on only recovering the path that was recorded, so

it only keeps the successor that matches the next address in the trace. In this way, there is

only 1 active state per step.

CPU Architecture-Specific Considerations Although following a linear sequence of

executed addresses is conceptually intuitive, in practice real-world encoding schemes can

introduce ambiguities that must be resolved carefully. One prevalent case occurs in pro-

cessors supporting extended instruction sets (ISAs), such as IA64 and AMD64. Among

the added instructions are complex operations like Intel’s “repeat” instructions, which al-

low compilers to implement an entire loop in one instruction.4 When executing concrete

memory in a real processor, these instructions are deterministic, so Intel PT ignores them.

However, in symbolic analysis, two successor states become reachable if symbolic mem-

ory is accessed: one that completes the instruction and another that continues its iterating.

Since the trace offers no guidance, our solution is to “iterate” on the repeat instruction as

many times as possible, given the symbolic constraints, because this is most likely to re-

veal to an overflow bug. Once the analysis must advance past the complex instruction, it

synchronizes back to the trace and continues.

4strlen can be implemented in IA64 using a single repnz scas instruction.
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5.3.4 Use-After-Free & Double Free Bugs

The UAF module (also covering DF) relies on a value set analysis (VSA) over the sym-

bolic states. However, unlike a typical VSA that tracks the concrete pointers to allocated

and freed memory buffers, Bunkerbuster’s VSA is performed using symbolic pointers, con-

strained by the symbolic execution to encode all possible values at the current program

state. This carries several advantages. For example, in the evaluation presented in sub-

section 5.4.3, we encounter a case where AddressSanitizer, having access to only a single

concrete input provided by a fuzzer, concluded that a pointer passed to free could cause

an invalid free, since the pointer’s value was an address that was not allocated. However

Bunkerbuster, using the symbolic representation of that same pointer, detected that there

were other satisfiable values for it, some of which corresponded to addresses that were

allocated, revealing the bug to really be a UAF, which is more severe.

Detection To perform the VSA, we assume knowledge of the syntax of memory manage-

ment functions in advance, which is easily achievable in practice because most programs

rely on a few standard implementations. Even when a wrapper is placed around memory

management functions for portability across systems, we find that Bunkerbuster can track

the underlying standard library while disregarding the wrapper. In the case of the real-world

programs in our evaluation dataset, they all rely on either libc or jemalloc. There are

also algorithms to automatically detect and infer memory management functions [196],

which can be incorporated in future work, but are not implemented in our initial prototype.

When the program calls into an allocation function, Bunkerbuster records the locations

of the pointer, the allocated buffer, and its size, in an allocated set. If the size is symbolic,

Bunkerbuster evaluates it to its maximum satisfiable value. When a pointer is passed to a

free function, Bunkerbuster evaluates the symbolic constraints to determine which buffer

is being referenced and moves it into a freed set. Notice that the referenced buffer could

be one that is already freed, in which case a DF bug is detected. Similarly, Bunkerbuster
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checks any dereferenced pointers in each discovered state, and if one can point to a freed

buffer, it is a UAF bug.

Search With symbolic buffer and pointer metadata recovered via VSA, Bunkerbuster’s

search strategy first recovers function boundaries, which are determined based on the calls

and returns contained within the trace, and then labels which functions manipulate heap

based on the collected pointer metadata. The implementation of the algorithm to recover all

the accessed memory addresses for a basic block is provided in the appendix as algorithm 4.

Bunkerbuster then searches these functions for additional states using depth-first-search to

see if they can cause a UAF or DF. By sticking only to functions reached during tracing,

Bunkerbuster can avoid path explosion by returning to any of the traced states reconstructed

in subsection 5.3.3.

Figure 5.4 shows a partial CFG for a UAF bug found with this strategy. The initial

states from the trace are shown in white, connected by black edges. Nearby states found

during exploration are shown in blue, revealing the blue path to a free. Further exploration

of this and other traced functions then reveals the red path leading to a UAF.

Root Cause Once detected, the symbolic root cause report prepared for the developers

contains the basic block that allocated the accessed buffer, the one that freed it, and the one

that performed the buggy access. To propose a preliminary patch, the module constructs

a CDG over the path leading to the UAF, revealing all the conditional branches the vio-

lating basic block’s reachability depends on. The branch nearest to the violator is selected

(based on shortest path) and the state for the alternate branch (which did not cause a bug)

is checked for its constraints. If these constraints contradict the UAF state, this becomes

the preliminary patch, otherwise the report advises the developers to place a new guard

condition before the violating basic block.
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5.3.5 Overflow & Format String Bugs

Detection Bunkerbuster’s overflow detection module focuses on bugs that can manifest

into control flow hijacking, taking advantage of the fact that all external input data is sym-

bolized in the starting memory snapshot (subsection 5.3.2). Consequently, if the program

counter for a state ever becomes symbolic due to one of these variables, this means ex-

ternal input can directly control the execution of the code via crafted inputs, which is a

serious vulnerability. Notice that symbolic constraints are already propagated by the sym-

bolic execution, so detection is performed by querying the SMT solver to check whether

the program counter is symbolic (i.e., has more than 1 satisfiable value). If it is, an overflow

has occurred.

Search Bunkerbuster searches for overflows by identifying all the loops that appear in

the trace, which is accomplished by transforming the linear execution into a CFG and then

using a depth-first search to find all the backward edges in the graph.5 Once identified, the

module’s search strategy is to stress the known loops by iterating through them as much as

possible (given the symbolic constraints) and then observe the side effects in subsequent

successor states. However, stressing every loop encountered in the trace is time consuming,

so Bunkerbuster employs two strategies to prioritize loops that are more likely to lead to

overflows.

First, not all loops write to memory and for the ones that do, not all writes rely on a

changing pointer value or offset, which is necessary to cause an overflow. We coin this

behavior as stepping and Bunkerbuster checks for instances of it in the recorded trace.

Specifically, for each visit to each loop in the reconstructed CFG, Bunkerbuster collects the

target memory address of each write instruction and examines how its target changes over

each iteration. If there exists a write instruction such that each invocation targets an always

increasing (or decreasing) memory address, then the loop is prioritized as a candidate for

5See NetworkX’s find cycle algorithm for a suitable implementation.
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overflow analysis. An implementation of this algorithm is provided in the appendix as

algorithm 5. Notice that since symbolic states are examined, the pointers can have multiple

satisfiable values, so the satisfiability test for the stepping criteria is performed by the SMT

solver.

Next, the module takes into special consideration loops that engage in counting behav-

ior because subsequent overflow candidates may have control dependencies to the com-

puted value. For example, a string copying method can be implemented as two loops, the

first counting how many bytes are in the string and the second copying them, as shown in

Figure 5.5. If our algorithm blindly stresses the counting loop, its final written value will be

maximized and then the subsequent copying loop will have to iterate the appropriate num-

ber of times. However, once the module detects that a code or return pointer in memory has

been corrupted, continuing to stress the loop is excessive. Our solution is to detect counting

loops, similarly to how stepping is detected, and replace the final value with a new sym-

bolic variable constrained to all of the original’s intermediate values. For example, if the

counting loop in Figure 5.5 can iterate up to 4,096 times, rather than constraining length

to 4096, it is replaced with the symbolic integer set [1, 4096]. This allows it to discover the

subsequent bug in fewer steps.

Once candidate loops have been stressed by iterating them as much as possible (or until

a return pointer on the stack is overwritten), the module explores successor states until a

return executes. If a control flow hijack is not detected by this point, it moves on to the next

candidate until none remain.

Root Cause To generate a report, the module first includes the basic block where the

hijack occurred. Next, it identifies the memory location of the symbolic pointer that trig-

gered the hijack using the symbolic constraints. An implementation of this algorithm is

in the appendix (algorithm 6). Next, it rewinds backwards through the predecessor states

until it finds the one that first made the pointer symbolic and adds it to the report. The
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module then generates a CDG for the execution path leading to this state, selects the near-

est conditional branch in terms of shortest path, and checks the alternate branching states

for contradicting constraints. If any are found, they become the preliminary patch for the

developers, otherwise a new guarding branch should be placed before the corrupting state.

Format String Bugs We find that unlike UAFs, DFs, and overflows, FS bugs are usually

not as constrained by control flow. Specifically, if a call site contains a FS vulnerability,

reaching it via any path is sufficient for discovering the bug. For this reason, we do not

employ a tailored search strategy for FS and instead perform detection over the states found

by the other exploration modules. In practice, format specifier strings should always be

constant, turning them into read-only data at compile time. Consequently, for each call to

a known format string function (e.g., printf), the module checks whether the specifier

pointer or any of its content is symbolic. If it is, this means input data is able to directly

control the specifier, which is a bug. In such cases, the root cause report identifies the caller

of the format string function and the predecessor state that wrote to the specifier.

5.4 Evaluation

We aim to answer the following questions in our evaluation:

1. Is Bunkerbuster able to detect bugs within our covered classes? We select 15 widely-

used commodity programs and generate a corpus of benign inputs. After analysis,

Bunkerbuster finds 39 bugs, of which 8 are new, never before reported cases. We

manually verify the presence of all bugs. 1 EDB and 3 CVE IDs have been issued

and patched by developers using Bunkerbuster’s reports. We also measure Bunker-

buster’s code coverage to show that its exploration converges.

2. Is Bunkerbuster’s exploration effective compared to prior techniques? We compare

against AFL [20] and QSYM [64] on our target programs, starting from similar seeds.

After 1 week, Bunkerbuster finds 8 bugs missed by the other systems.
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3. Is Bunkerbuster’s root cause analysis valuable compared to existing instrumenta-

tion? We compare Bunkerbuster’s root cause reports for Autotrace against those from

QSYM with AddressSanitizer [222]. Bunkerbuster provides more accurate class la-

bels in 4 cases.

4. Are Bunkerbuster’s exploration heuristics effective? We compare the exploration

techniques described in section 5.3 against breadth-first and depth-first search and

find that Bunkerbuster outperforms across all trials by better managing path explo-

sion.

5. Is Bunkerbuster feasible to deploy in terms of runtime and storage overhead? We

measure the performance and storage overheads of tracing programs using the SPEC

CPU 2006 benchmark and Nginx, averaging 7.21% runtime overhead.

6. Is Bunkerbuster’s symbolic root cause analysis over partial paths correct? We repeat

the main experiment from the original symbolic root cause analysis work [225] using

Bunkerbuster and verify our prototype produces the same results.

Experimental Setup We use 1 computer to represent the end-host for tracing and 1 server

to perform the analysis. Each device runs Debian Buster and contains an Intel Core i7-

7740X processor, 32GB of memory, and solid state storage. Our prototype uses angr [21]

as its symbolic execution engine and is implemented in 7,062 Python and 1,208 C source

lines of code (SLoC).

Dataset & Selection Criteria To select our target programs for evaluation, we start by

considering the packages offered in Debian’s APT repository, filtered using the C/C++,

CLI, and GUI tags, to ensure we only consider standalone programs written in languages

that can contain memory corruption bugs. We then cross-reference MITRE’s CVE database

to isolate programs that contain or import (via libraries) code with known prior overflow,
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UAF, DF, and FS vulnerabilities, as these may contain more that have yet to be discovered.

From this, we randomly pick 15 programs for testing.

We also manually assemble a corpus of benign inputs for each program by examining

test cases and documentation. For CLI programs, we ensure the corpus has at least one case

for each possible flag. For GUI programs, we manually perform some basic actions, such

as opening, modifying, and saving files. When programs require complex input formats

(e.g., images), we collect valid inputs from public sources like ImageNet [218].

5.4.1 Bug Hunting in Real-World Programs

Methodology For each of the 15 real-world programs in our dataset, we allow Bunker-

buster to trace and analyze our corpus of benign inputs for 1 week. We also measure

Bunkerbuster’s code coverage over forwarded traces to test whether it converges, which is

relevant to determining its usability in real-world deployments.

Results Table 5.1 shows the results produced by Bunkerbuster’s analysis for the gathered

data using our target programs and input corpus. In total, 39 bugs were found across the

15 tested programs. The “ID” column shows that 31 of the found bugs pertain to already

publicly known vulnerabilities, whereas 8 have never been reported before. We manually

inspect these cases to verify their presence. In 1 case, our prototype found a previously

reported bug that the developers decided not to fix due to its performance consequences

versus the relatively low security impact. 1 bug has been issued an EDB ID by Offensive

Security and 3 CVE IDs by MITRE. Developers have patched them, using our system’s

reports to independently review and verify their novelty and impact. Some of these bugs

were highly exploitable, including a now patched remote code execution (RCE) vulnera-

bility, triggered via a WHOIS response.

The “Type” column lists the type of each bug. In total, Bunkerbuster found 25 over-

flows (Ovf), 1 FS bug, and 13 UAFs/DFs. The “Program” and “Component” columns re-
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port where the bugs reside, with “main” denoting the main executable object. 24 bugs were

found within import libraries and 15 were inside the main object. We also report the version

number of the vulnerable component for completeness. We observe that Autotrace is par-

ticularly buggy, with 17 vulnerabilities residing within the main object. Conversely, while

GIMP is associated with 3 bugs, they were all found within imported libraries, demonstrat-

ing the importance of being able to analyze these APIs.

The “# APIs” column counts how many unique function imports were segmented by

Bunkerbuster, using its symbolized memory snapshots and automatic prototype recovery.

In other words, this is the number of APIs a human analyst would have to build scaffolding

for if they were not using Bunkerbuster and wanted similar results. On average, 90 unique

APIs were segmented per program, with counts ranging from 9 (GOOSE) to 278 (GIMP).

Bunkerbuster eliminates the need to manually perform this laborious task.

The “# Traces” column reports how many traces (not segments) were recorded. On av-

erage, the end-host monitored 189 execution sessions per program. “# Novel” is the number

of traces that contained at least 1 novel segment forwarded for analysis. On average, 36

where novel per program. For most programs, even with as few as 4 traces, at least 1 was

filtered, demonstrating the importance of being able to identify and remove redundant data.

The “# Snaps” column shows the number of trace segments and snapshots forwarded. On

average, 1,710 were forwarded for analysis per program. In the case of GIMP, our input

corpus yielded a comparatively high number of API snapshots. This is due to GIMP being

one of the largest programs in our dataset, compiled from over 810,000 lines of C/C++

code, with a sophisticated architecture where each plugin is itself a standalone executable

with additional library dependencies. For example, one of the babl functions found to

contain a vulnerability was not invoked by GIMP directly, but rather by its plugin for load-

ing PNG images. Trying to naively symbolically execute 46,757,444 basic blocks (from

GIMP’s entry point, through the PNG plugin, into babl) would be difficult for prior work.

Bunkerbuster succeeds thanks to its ability to segment.
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“# BBs” records the number of traced basic blocks and “To Find” reports the number of

seconds it took for the analysis to make its discovery. On average, traces containing bugs

were 19,392,602 basic blocks long and bugs were found in 7,045 seconds, i.e., within 2

hours or so. Some bugs were found in as little as 1 second, while others took over 4 hours,

depending on the complexity of the recorded behavior. Interestingly, because Bunkerbuster

is able to segment and snapshot APIs, there is little correlation between trace length and

the time to find bugs. For example, despite one GIMP trace being 60,406,299 basic blocks

long, the bug it revealed was uncovered in 12 seconds. Conversely, several Autotrace traces

of about 40,000,000 basic blocks each uncovered bugs in about 1 hour.

Figure 5.6 presents the coverage of our analysis over forwarded traces (i.e., after end-

host-side filtering). To normalize each program’s curve, we present a cumulative distri-

bution function (CDF) of the percentage of novel basic blocks discovered versus the per-

centage of traces analyzed. For all target programs, by the time 50% of the traces were

analyzed, at least 80% of the total discovered basic blocks had been found, demonstrating

that Bunkerbuster’s analysis converges. This is also consistent with the change in ratio of

segments being filtered by the end-host over time.

5.4.2 Comparing Prior Exploration Techniques

Methodology We compare Bunkerbuster against AFL [20], a highly popular greybox

fuzzer, and QSYM [64], a recent concolic execution hybrid fuzzer, for this experiment.

We pick these systems because they work in the binary-only setting for a wide range of

bug classes, whereas other prior work requires source code [62] or is limited to a single

class [68, 52], which would make for an unfair comparison. For consistency, we run each

system on each target program for 1 week, starting from the same corpus of seeds. For each

unique crash (as determined by AFL and QSYM), we manually inspect it to determine the

bug class and root cause. We measure which bugs are detected by each system and how

many reports are generated. We present the results for Autotrace in subsection 5.4.3 as an
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Table 5.2: Bunkerbuster Vs. AFL & QSYM

ID Type Program BB AFL QSYM
EDB-47254 Ovf abc2mtex 1 0 0
CVE-2004-1257 Ovf abc2mtex 1 350 246
Patched FS dmitry 1 0 0
CVE-2020-14931 Ovf dmitry 1 5 35
CVE-2020-9549 Ovf pdfresurrect 1 0 0
CVE-2019-14267 Ovf pdfresurrect 1 88 108
CVE-2017-11403 UAF GraphicsM. 1 0 25
CVE-2017-14103 UAF GraphicsM. 1 0 0
CVE-2018-12327 Ovf ntpq 1 15 27
CVE-2018-12326 Ovf redis-cli 1 18 44
CVE-2009-5018 Ovf gif2png 1 88 163
CVE-2004-1279 Ovf jpegtoavi 1 0 0
CVE-2004-0597 Ovf Butteraugli 1 72 65
CVE-2018-18957 Ovf GOOSE 1 1 1
CVE-2013-2028 Ovf Nginx 1 0 0
EDB-46807 Ovf MiniFTP 1 32 29
Will Not Fix Ovf GIMP 1 0 0
CVE-2020-35457 Ovf GIMP 1 0 0
EDB-49259 UAF GIMP 1 0 0
CVE-2019-17582 UAF PHP 1 0 0
CVE-2017-12858 DF PHP 1 7 7

extended case with crashes analyzed by AddressSanitizer.

Results The results are presented in Table 5.2. In several cases, AFL and QSYM were

unable to detect vulnerabilities found by Bunkerbuster. For example, they were unable to

find the FS bug in DMitry because it requires a specific set of command line arguments to

reliably cause a crash. Conversely, Bunkerbuster detected that symbolic format specifiers

were being passed to libc, alerting it to the bug even in non-crashing cases. In general,

we observed that the mutation algorithms used by AFL and QSYM are not well suited for

fuzzing CLIs, which is also noted in AFL’s documentation. We also observe that of the

4 UAFs listed in Table 5.2, QSYM only found 1 and AFL none. QSYM and AFL also

struggled to handle GIMP and GraphicsMagick due to their size and complexity, causing

them to miss 10 and 11 bugs, respectively. It is possible that these tools would perform

better if an expert human analyst created scaffolding around the imported libraries, but
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Table 5.3: Bunkerbuster Vs. AddressSanitizer

ID Location BB QSYM + AS
CVE-2017-9167 input-bmp.c-337 Ovf Ovf
CVE-2017-9168 input-bmp.c-353 Ovf Ovf
CVE-2017-9169 input-bmp.c-355 Ovf Ovf
CVE-2017-9170 input-bmp.c-370 Ovf Ovf
CVE-2017-9171 input-bmp.c-492 Ovf Ovf
CVE-2017-9172 input-bmp.c-496 Ovf Ovf
CVE-2017-9173 input-bmp.c-497 Ovf Ovf
CVE-2017-9191 input-tga.c-252 Ovf Ovf
CVE-2017-9192 input-tga.c-528 Ovf Ovf
CVE-2017-9162 autotrace.c-191 UAF UNDEF
CVE-2017-9163 pxl-outline.c-106 UAF UNDEF
CVE-2017-9182 color.c-16 UAF UAF
CVE-2017-9183 autotrace.c-309 UAF UNDEF
CVE-2017-9190 bitmap.c-24 UAF BADFREE
Reported pxl-outline.c-140 UAF -
Reported pxl-outline.c-609 UAF -
Reported color.c-10 UAF -

in GIMP’s case, there are 70 unique libraries with 1,288 exported functions to consider.

Bunkerbuster relieves the analyst of this task.

In almost all of the cases where the prior systems found the same bug as Bunkerbuster,

the former generated over 15 redundant reports. This is because AFL and QSYM rely

on stack traces to determine the uniqueness of crashes, which are sometimes unreliable,

such as when dealing with overflows. For example, QSYM generated 108 reports for

CVE-2019-14267 and 246 for CVE-2004-1257 because a stack corruption mislead it to

classify each crash as unique. Bunkerbuster avoids this fatigue inducing redundancy using

its symbolic root cause analysis, resulting in only 1 report per bug. Curiously, while QSYM

generated more unique crashes than AFL overall, it only led to the discovery of 1 additional

bug. This is likely due to the sparsity of bugs in real-world programs.

5.4.3 Comparing Prior Root Cause Techniques

Methodology In this experiment, we perform the same evaluation as described in sub-

section 5.4.2, with two adjustments made. First, we focus explicitly on Autotrace for this
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experiment because it yields by far the most bugs out of all the real-world programs. Sec-

ond, we use AddressSanitizer (AS) to automatically triage the crashes uncovered by AFL

and QSYM, as is common practice in real-world bug hunting. This allows us to compare

the quality of Bunkerbuster’s root cause analysis to AS.

Over the course of this experiment, QSYM and AFL found 1 crash identified by AS

as integer overflow and 1 out-of-bounds read, which we exclude from the results since

these are classes outside the current scope of Bunkerbuster. For clearer presentation, we

translate binary addresses in our figures to source code line numbers using debug symbols,

postmortem. No system had access to the symbols during the experiment. In our results,

AFL and QSYM found the same set of bugs, so we only present QSYM for brevity.

Results After 1 week of analysis, Bunkerbuster yields 17 bug findings. Conversely,

QSYM yields 14 bugs after triaging by AS. The two sets of reports are presented side-

by-side in Table 5.3. Bunkerbuster finds all of the UAFs and overflows identified in the AS

reports along with 3 UAFs never before reported. Upon investigation, we discover that the

new UAFs reside in code branches missed by QSYM’s exploration. We believe that given

more time, QSYM would eventually find inputs to reach these branches, whereupon AS

would be able to triage them correctly. However, QSYM did not accomplish this within the

allotted time whereas Bunkerbuster did.

Another interesting observation is that for 4 CVEs, Bunkerbuster is able to give more

precise classifications than AS (bold in Table 5.3). In 3 cases, AS reports undefined be-

havior (UNDEF), meaning that despite QSYM detecting a crash and providing a concrete

input to AS for analysis, AS still could not decide on a class for the bug. Conversely,

Bunkerbuster correctly identifies the bugs to be UAFs. In 1 case, AS reports a bad free

(BADFREE), meaning that the address being freed was never allocated, but Bunkerbuster,

using its symbolic constraints, is able to correctly identify that a more carefully chosen in-

put can turn this bug into a UAF. In summary, our system finds 3 UAFs missed by QSYM
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and yields more accurate classifications than AS in 4 cases.

5.4.4 Effectiveness of Exploration Techniques

Methodology To validate whether our proposed exploration techniques enable Bunker-

buster to better search program states while avoiding path explosion, we compare against

two baselines: breadth-first and depth-first search (BFS, DFS).6 Notice that DFS is the

default exploration technique used by popular symbolic analysis frameworks [21].

To conduct the experiment, we randomly pick 1 trace for each of the real-world pro-

grams from our dataset and allow each technique (BFS, DFS, and ours) to explore states

for 1 hour per program. Once the time limit has expired, we halt Bunkerbuster and count

the number of unique basic blocks discovered by each technique. Since some target pro-

grams are slower to explore than others, we normalize our results by dividing the counts

by the total number of unique blocks discovered globally, across all evaluated techniques,

yielding a percentage from 0% to 100%.

Results The results of our experiment are presented in Figure 5.7. Across all 15 real-

world programs, Bunkerbuster’s exploration techniques outperform BFS and DFS. Specif-

ically, for about half of the programs, Bunkerbuster’s techniques find all the basic blocks

BFS and DFS find, and more. Bunkerbuster also finds more than double the number of

basic blocks than the baselines in many cases, such as in Dmitry and MiniFTP.

The biggest contrast occurs in Butteraugli, where BFS and DFS only find about 2% of

the blocks discovered by Bunkerbuster. Upon investigation, we discover that BFS and DFS

both get stuck in libz’s CRC32 checksumming function. Such functions are notorious

for inducing path explosion [240]. Bunkerbuster’s techniques avoid this function using

heuristics to recognize that the contained code is unlikely to cause our targeted bug classes

(e.g., the contained loops do not perform stepping writes, subsection 5.3.5).

6We include these baselines in the open sourced code repository for reproducibility.
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Another stark contrast occurs in MiniFTP, where the baselines only find about 10%

of the blocks Bunkerbuster finds. In this case, BFS, DFS, and Bunkerbuster all focus on

MiniFTP’s function for loading the settings file, which is expensive to explore because

the code is densely packed with string comparisons, another well-known source of path

explosion. However, whereas BFS and DFS explore this function naively, yielding lower

code coverage and uncovering no bugs within the allotted time, Bunkerbuster prioritizes the

contained loops using our described heuristics and finds EDB-46807 in under 10 seconds.

In summary, the heuristics we propose for Bunkerbuster do in fact help it explore more

code in our evaluated dataset in less time than BFS or DFS. In many cases, the contrast is

significant, with Bunkerbuster’s exploration techniques discovering more than double the

number of basic blocks within the allotted time.

5.4.5 Performance & Storage

Methodology To measure the performance and storage overheads of Bunkerbuster, we

start with the SPEC CPU 2006 benchmark with a storage quota of 10 GB per end-host.

We use the 2006 version deliberately so our numbers can be directly compared against

other prior full-trace7 PT systems [25, 47]. Since these workloads are CPU intensive, we

consider this to be the worst realistic case for our system. For another comparison point,

we also evaluate Nginx running PHP with default settings, stressed using ApacheBench to

serve 50,000 HTTP requests for files ranging in size from 100 KB to 100 MB, which we

consider to be an I/O bound workload. Performance overhead is measured with tracing and

API snapshots enabled versus running without the kernel driver installed for the baseline.

Storage is the at-rest size of all collected data. Overheads are calculated as (P − B)/B

where B is the baseline metric and P is with Bunkerbuster.

Results Figure 5.8 shows the metrics for the SPEC benchmark. The average tracing

overhead is 7.21% with a geometric mean of 3.83%, which is within 1% of prior systems
7As opposed to systems that use small finite buffers [233, 232].
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Table 5.4: Symbolic Root Cause Verification

CVE / EDB Type # BBs ∆RC L P M
CVE-2004-0597 Ovf 41,625,163 247 Y [174] Y
CVE-2004-1257 Ovf 53,490 6,319 Y - -
CVE-2004-1279 Ovf 67,772 26,216 Y - -
CVE-2004-1288 Ovf 74,723 33,211 Y [175] Y
CVE-2009-2629 Ovf 300,071 28 Y [176] Y
CVE-2009-3896 Ovf 283,157 59 Y [177] Y
CVE-2009-5018 Ovf 90,738 1,848 Y [179] Y
CVE-2017-7938 Ovf 100,186 4,051 Y - -
CVE-2017-9167 Ovf 75,404 1,828 Y - -
CVE-2018-12326 Ovf 291,275 8 Y [178] Y
CVE-2018-12327 Ovf 374,830 122,740 Y [180] Y
CVE-2018-18957 Ovf 65,198 94 Y [181] Y
CVE-2019-14267 Ovf 128,427 83,123 Y [182] Y
EDB-15705 Ovf 260,986 19,322 Y - -
EDB-46807 Ovf 60,849 335 Y - -
CVE-2017-9182 UAF 132,302 296 Y - -
CVE-2017-11403 UAF 2,316,152 38 Y [187] Y
CVE-2017-14103 UAF 2,316,133 38 Y [187] Y
CVE-2017-12858 DF 5,980,255 51 Y [188] Y
CVE-2005-0105 FS 127,209 1 Y [189] Y
CVE-2012-0809 FS 108,442 1 Y [190] Y

that record full PT traces, demonstrating that the filtering and snapshot steps performed

by Bunkerbuster incur negligible additional overhead. Similar to prior work, the storage

requirement is also large for some cases, averaging 1,348 MB/min, however all tests com-

pleted in under 1 minute, so the average final size is 110 MB per workload. We believe

this is tolerable given that the data is forwarded to a storage server and with a 10 GB quota

per end-host, dozens of executions can be stored at a time for analysis. Recall that this

storage is temporary. Once a trace is analyzed, it can be discarded to free space. The band-

width required to transfer traces currently makes Bunkerbuster better suited to enterprise

LANs/WANs as opposed to end-hosts distributed across the internet.

Figure 5.9 shows the results for our Nginx benchmark. Here the average performance

overhead is only 2% with 1.6 MB of data generated, on average, per HTTP request. With

a quota of 10 GB, traces corresponding to thousands of requests can be buffered at a time.

Requested file size had little impact on our results.

108



5.4.6 Verifying the Root Cause Analysis

Methodology We trace proof of compromise exploits targeting overflow, UAF, DF, and

FS vulnerabilities, for the same dataset used in the original symbolic root cause analysis

work [225]. We then analyze the recorded traces with Bunkerbuster. In each case, we

verified that our detection modules pinpoint the concise root cause of the vulnerability, in

accordance with the prior work’s results.

Results The results of our evaluation are summarized in Table 5.4, which shows the num-

ber of basic blocks in each trace, the number of blocks between where the bug was detected

and its determined root cause, whether the root cause was correctly located, whether a patch

exists, and if so, whether the recommended constraints match the official patch. In total,

21 bugs were evaluated. As the table shows, Bunkerbuster’s detection modules are able

to accurately detect and localize all 21 of the tested exploits, even when traces are over

1,000,000 basic blocks long and contain bugs that do not manifest into an observable cor-

ruption until over 100,000 blocks from the root cause. This gives us confidence that our

symbolic root cause analysis is correctly designed, despite now working over partial traces

in multi-path exploration.

5.5 Limitations & Threats to Validity

Scope of Target Programs Our current prototype is evaluated on benign, unobfuscated,

Linux binaries. Further work is required to handle malware, packing, and virtualization,

which fall outside the intended scope for this system. The current prototype also skips dy-

namically generated code (e.g., JIT compilation), however our driver is capable of record-

ing and decoding it. Although our prototype focuses on Linux, the analysis is implemented

for VEX IR, which is architecture independent and can be ported to other OSes that support

PT, assuming the necessary system calls are modeled.
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Scope of Detected Bug Classes Bunkerbuster currently supports detection of overflow,

UAF, DF, and FS bugs, but these are not the only types of memory corruption that can

occur in programs written in unsafe languages like C/C++. However, all approaches to

bug detection have class limitations. For example, the systems we compare against (AFL,

QSYM) rely on crashes as indicators of buggy behavior, and consequently cannot detect

non-crashing bugs, such as ones caught by exception handlers. Conversely, it is possible

for Bunkerbuster to miss bugs that reside in program states that it cannot reach within the

allotted time. It is also possible for Bunkerbuster to miss overflows that cannot corrupt

the program counter. Detecting UAF, DF, and FS bugs relies on knowing which functions

manage dynamic memory and accept format specifier strings in advance. The search strate-

gies proposed in section 5.3 are used only to prioritize certain paths and therefore do not

limit Bunkerbuster’s total detection capabilities.

Reachability of Detected Bugs As explained in subsection 5.3.2, bugs found using snap-

shots taken from the program’s entry point are inherently reachable via input arguments.

Conversely, bugs found via API snapshots may not be reachable via the analyzed program,

but may be reachable by other programs that also import the same library. In such cases,

we reported the bugs to the library maintainers, who decided to patch in most cases.

Severity of Detected Bugs Our prototype does not currently analyze the exploitability

of uncovered bugs, however our approach is compatible with automatic exploit generation

techniques [70]. Our system has found confirmed 0-day RCE vulnerabilities, demonstrat-

ing the security relevance of our techniques.

In one case, Bunkerbuster found a bug that the developers decided not to patch, labeled

“Will Not Fix” in Table 5.1. In this lone case, the develops acknowledged the bug’s exis-

tence, but decided that the performance cost of fixing it was too high, and instead cautioned

downstream developers to take care in validating the inputs passed to the relevant library

API.
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Trace Length vs. Analysis Time Given the computationally expensive nature of sym-

bolic execution, it is not surprising that minutes of real-time execution can take hours to

analyze. However, our experiments in section 5.4 show that the analysis converges, making

novel traces less frequent.

Snapshot Frequency vs. Performance Overhead In Bunkerbuster’s current implemen-

tation, one snapshot is taken per API per execution. This is reflected in the evaluation

results presented in subsection 5.4.5 and is not impacted by prior traces or analysis because

in order to perform filtering, the end-host must first capture and decode the trace. In other

words, the runtime overhead is the same regardless of whether a particular trace segment

or snapshot is ultimately filtered or not.

5.6 Privacy & Legal Considerations

In the evaluation, we setup an end-host and an analysis server as separate machines to

emphasize the decoupled nature of Bunkerbuster’s design. However, it is important to

point out that analyzing control flow reveals some information about the values of data

variables due to program control dependencies.

The threat of control flow leaking sensitive data has been well-studied by the side-

channel research community [55], and some sensitive applications (e.g., cryptography) use

hardened code to mitigate, however leakage in the context of traces recorded by PT has

not been formally studied, to the best of our knowledge. Consequently, we envision the

end-hosts and analysis servers belonging to the same or trusted parties where leakage is

not an issue. However, it is possible for these machines to belong to different parties, rais-

ing privacy and legal concerns (e.g., Europe’s General Data Protection Regulation, a.k.a.,

GDPR). Further research is required to fully understand this risk, which is outside the

scope of this work. Notice however that there exists prior work on sanitizing artifacts

like crash dumps [141], some large corporations may already be recording PT traces from
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end-users [241], and once the analysis is distilled into a root cause report, its privacy risk

diminishes, as can be seen in the example report shown in the appendix.

5.7 Conclusion

We propose Bunkerbuster, a system for automated data-driven bug hunting of memory

corruption bugs using symbolic root cause analysis. Our design leverages PT and sparse

memory snapshots to symbolically reconstruct execution traces and explore nearby paths

to uncover overflow, UAF, DF, and FS vulnerabilities. We implement our prototype and

evaluate it on 15 real-world Linux programs, where it finds 39 bugs, 8 of which are never

before reported. 3 have been independently verified by MITRE, issued CVE IDs, and

patched by developers using Bunkerbuster’s reports, validating our prototype’s usefulness.

Bunkerbuster finds 8 bugs missed by AFL and QSYM in our target programs and correctly

classifies 4 more bugs that AS mislabeled. Bunkerbuster achieves this with 7.21% perfor-

mance overhead and reasonable storage requirements.
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validate_image+0x41 (0x1284)
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Figure 5.4: CFG created by the UAF module for a real-world case (subgraph shown for
brevity). Black edges are the path traced by PT and blue nodes are states the module
discovered. The blue edges show a discovered path leading to a free, followed by the red
path leading to a UAF bug (red node).
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 1. void my_strcpy(char *src, char *dst) {
 2.     int length = 0;
 3.     char *ptr = src;
 4.     // “counting” loop
 5.     while (*ptr) {
 6.         ptr++;
 7.         length++;
 8.     }
 9.
10.     // “stepping loop”
11.     for (int i = 0; i < length; i++) {
12.         dst[i] = src[i];
13.     }
14.     dst[length] = 0;
15. }
16.
17. void foobar() {
18.     char *m_dst[128];
19.     char *m_src = {‘A’ * 4096, 0};
20.     my_strcpy(src, dst);
21. }

RCX := [4096]
RCX := [1, 2, …, 4096]

RCX := [1, 2, …, 4096]
RCX := 132

Figure 5.5: Counting loop example. Here the number of iterations of Line 12 depends on
length, set by the loop starting at Line 5. When foobar passes my strcpy a 4097
byte string, the register holding length (RCX) would normally become 4096 by Line 9.
Our module overwrites RCX with a symbolic variable, allowing Line 11 to exit sooner, and
then verifies the control hijack via a corrupted return pointer at Line 21.
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Figure 5.6: Basic block coverage for traces forwarded to the analysis, cumulatively.
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Figure 5.7: Percentage of unique basic blocks discovered using breadth-first search, depth-
first search, and our proposed exploration techniques. Our techniques outperform the base-
lines across our entire dataset of 15 real-world programs.
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Figure 5.8: Performance and storage for tracing the SPEC CPU 2006 benchmark. The
average overhead is 7.21% and the geometric mean is 3.83%. The average trace size is
1,348 MB/min and the geometric mean is 602 MB/min.
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Figure 5.9: Overheads for tracing Nginx. The performance overhead is under 2% and the
maximum storage is 1.6 MB per request.
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CHAPTER 6

CONCLUSION

In this dissertation, I presented the growing problem of publicly disclosed vulnerabilities

not being addressed in a timely manner, granting adversaries a window of opportunity

for exploitation. In response, I proposed the need for new systems and techniques that

can automate the steps between bug discover and bug remediation to bridge the automa-

tion gap and deny adversaries the opportunity to cause harm. In this context, I proposed

a novel hardware-assisted approach to detecting, localizing, and preventing software bugs

and attacks centered around the idea of control-oriented record and replay. Specifically, my

approach makes novel use of PT, an advanced hardware feature available in most commod-

ity processors, to record directly from production systems the necessary telemetry about

attacks and benign user activities to extract the information system administrators and de-

velopers need to secure their programs and systems.

To demonstrate the versatility of my approach, I presented three unique systems —

ARCUS, MARSARA, and Bunkerbuster — targeting applications in explaining IDS alerts

to admins and developers, preventing attackers from shaping their exploits to tamper with

data provenance-based forensic analysis, and proactively hunting for and explaining bugs.

These systems serve both developers and system administrators while incurring overheads

that are low enough to be deployable on production systems. In terms of real-world impact,

these systems have led to the detection and remediation of over 18 novel 0-day vulnerabil-

ities in real-world software. Thanks to the human readable reporting by Bunkerbuster, the

third and most general of my presented solutions, all these vulnerabilities have been fixed

by software developers.

Moving forward, Bunkerbuster continues to analyze traces of software available in the

Debian ecosystem and report findings to developers for patching. All three systems are
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also open source, including their evaluation datasets, to help promote future work towards

PT-based solutions to the automation gap I presented, as well as other broader security

problems. In particular, the code repository for ARCUS and Bunkerbuster has been forked

by 14 researchers at academic institutes across the world. In the broader scope of systems

security, solutions based on hardware-software co-design, like the ones I presented here,

are going to play an increasing role in securing computing infrastructure. While the pre-

sented solutions lay the groundwork for demonstrating the feasibility of hardware-assisted,

control-oriented record and replay using PT, there is still more work that can be done to

increase its generality and to transition these ideas into practice.

First, while I have proposed ways to manage the amount of trace data yielded by PT,

there is still more work that can be done to reduce trace sizes and to encode traces in an

encoding that is searchable without requiring decompression. Advances in this direction

will reduce the storage requirements of PT-based defenses, reduce performance overhead

caused by I/O bottlenecks, and reduce latency for online applications that target prevention.

Second, the work presented here demonstrates feasibility only in the context of typical

user programs. There is still more work that needs to be done in applying the proposed con-

cepts to additional important domains like kernels, embedded systems, and cyber-physical

systems. These domains incur new technical challenges arising from different execution

models and additional constraints, namely energy usage. For example, Bunkerbuster’s

end-host recording is not suitable yet for deployment on mobile phones.

Third, while ARCUS and Bunkerbuster demonstrate the feasibility of addressing low-

level memory bugs, and MARSARA demonstrates a high-level semantic bug, there are still

plenty of other important bug classes that require modeling to increase the scope of these

systems. One such example is race conditions, which is a particularly difficult bug class

to model that can nevertheless give rise to severe vulnerabilities. Another is vulnerabilities

that can give rise to working exploits without hijacking control flow. Detecting such bugs

requires more accurate information about software data types than is currently available in
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the proposed systems.

In the longer term, the viability of hardware-assisted security solutions can be improved

by a redesign of the PT hardware. When companies like Intel originally designed their PT

implementations, they did so with a focus on helping developers debug tricky software

bugs in their development environments. The way that I (and others [25]) leverage PT for

security exceeds this scope, giving rise to the technical challenges overcome by ARCUS,

MARSARA, and Bunkerbuster. A redesigned PT that guarantees no data loss at the hard-

ware level and that can selectively record memory data values at runtime would go a long

way towards improving the efficiency and security guarantees of future work.

However, even with the current challenges and limitations, the systems I presented are

already able to have a significant positive impact on the security of the software ecosystem,

addressing severe bug classes like overflows, use-after-free, double-free, and format string

bugs, as well as more advanced semantic level bugs like the presented execution reparti-

tioning attacks. I plan to continue collaborations with academic, industry, and government

partners to expand and improve upon the ideas presented here.
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APPENDIX A

BUNKERBUSTER ALGORITHMS & ADDITIONAL EXPERIMENTS

A, T ← ∅
foreach i ∈ I do

if Type(i) = Store then
if Type(i.addr) = Const then

// Write to constant address
A← A ∪ i.addr

end
else

// Write to variable address
T ← T ∪ i.addr

end
end
if Type(i) = WrTmp ∧ Type(i.data) = Load then

if Type(i.data.addr) = Const then
// Read from constant address
A← A ∪ i.data.addr

end
else

// Read from variable address
T ← T ∪ i.data.addr

end
end

end
// Use S to avoid recomputing ASTs
foreach t ∈ T do

A← A∪ EvalTmp(S,t)
end

Algorithm 4: Retrieve all memory reads and writes for a VEX IRSB I , using successor
state S, producing A.
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Figure A.1: Example root cause report for CVE-2018-12326.

Trace : o p e n h o s t +0 x2a4 i n n tpq (0 xbae4 )
Trace : o p e n h o s t +0x218 i n n tpq (0 xba58 )
Trace : o p e n h o s t +0 x3bc i n n tpq (0 xbbfc )
Trace : s t a c k c h k f a i l +0x0
We’ ve t r i g g e r e d a bug
Ana lyz ing e x i t a t o p e n h o s t +0 x218
Blaming : o p e n h o s t +0 x2dd i n n tpq (0 xbb1d )
Recommendation : Add [ a rgv [ 2 3 2 ] == ’ ] ’ ] t o
<CFGENode o p e n h o s t +0x2d8 0 x55857a27db18 [5]>

V u l n e r a b i l i t y Hooks D e t a i l s :
Hash : 1 c f a d
Addr : 0 x55857b000028 => s t a c k c h k f a i l +0x0

0 x55857a27dc01 => o p e n h o s t +0 x3c1

Table A.1: Manually Verified APIs for Binary-Only Recovery

Library # Functions # Variables # Pointers Match?
libpng 71 183 117 Yes
libz 11 14 2 Yes
glib 125 283 202 Yes
libc 22 29 19 Yes
libbabl 70 163 104 Yes
libx11 5 247 137 Yes
libjpeg-turbo 25 15 12 Yes
libcyrus-sasl 1 3 1 Yes
libpoppler 3 7 4 Yes
libgegl 33 52 44 Yes
libghostpdl 29 47 40 Yes
libgimp 36 50 48 Yes
libgtk 21 41 26 Yes
libkeyutils 4 8 6 Yes
libidn2 1 2 1 Yes
libXpm 5 18 5 Yes
libopenjpeg 22 40 24 Yes
Total: 484 1,202 792
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R← False
I ← ∅
foreach s ∈ S do

foreach i ∈ s.irsb.statements do
if IsTmpStore(i) then

I[i.addr]← I[i.addr] ∪ i.addr.tmp
end

end
end
foreach a ∈ I do

l← I[a].size
if l > 1 then

if I[a][0] ≤ I[a][1] ≤ ... ≤ I[a][l] then
R← True

end
if I[a][0] ≥ I[a][1] ≥ ... ≥ I[a][l] then

R← True
end

end
end

Algorithm 5: Detect stepping behavior in a sequence of states S, iterating a loop.
IsTmpStore is true when the VEX IRSB instruction is a WrTmp and its expression
is Store.
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Input: VEX IR statements S starting from last executed.
Tmp n to taint initially.
Result: Addresses A and registers R used to calculate n.
A,R← ∅
T ← {n}
foreach s in S do

if Type(s) = Put and Type(s.data) = RdTmp then
if s.data.tmp ∈ T then

R← R ∪ {s.register}
end

end
if Type(s) = WrTmp and s.tmp ∈ T then

foreach a in s.data.args do
if Type(a) = Get then

R← R ∪ {a.register}
end
if Type(a) = RdTmp then

T ← T ∪ {a.tmp}
end
if Type(a) = Load then

A← A ∪ EvalTmp(a.address)
end

end
end

end
Algorithm 6: Tainting algorithm to obtain the registers and addresses used to calculate
a VEX IR temporary variable.
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