
This paper is included in the Proceedings of the
30th USENIX Security Symposium.

August 11–13, 2021
978-1-939133-24-3

Open access to the Proceedings of the
30th USENIX Security Symposium

is sponsored by USENIX.

ARCUS: Symbolic Root Cause Analysis of
Exploits in Production Systems

Carter Yagemann, Georgia Institute of Technology; Matthew Pruett,
Georgia Tech Research Institute; Simon P. Chung, Georgia Institute of Technology;
Kennon Bittick, Georgia Tech Research Institute; Brendan Saltaformaggio and

Wenke Lee, Georgia Institute of Technology
https://www.usenix.org/conference/usenixsecurity21/presentation/yagemann

ARCUS: Symbolic Root Cause Analysis of Exploits in Production Systems

Carter Yagemann
Georgia Institute of Technology

Matthew Pruett
Georgia Tech Research Institute

Simon P. Chung
Georgia Institute of Technology

Kennon Bittick
Georgia Tech Research Institute

Brendan Saltaformaggio
Georgia Institute of Technology

Wenke Lee
Georgia Institute of Technology

Abstract
End-host runtime monitors (e.g., CFI, system call IDS) flag
processes in response to symptoms of a possible attack. Un-
fortunately, the symptom (e.g., invalid control transfer) may
occur long after the root cause (e.g., buffer overflow), creating
a gap whereby bug reports received by developers contain
(at best) a snapshot of the process long after it executed the
buggy instructions. To help system administrators provide de-
velopers with more concise reports, we propose ARCUS, an
automated framework that performs root cause analysis over
the execution flagged by the end-host monitor. ARCUS works
by testing “what if” questions to detect vulnerable states, sys-
tematically localizing bugs to their concise root cause while
finding additional enforceable checks at the program binary
level to demonstrably block them. Using hardware-supported
processor tracing, ARCUS decouples the cost of analysis
from host performance.

We have implemented ARCUS and evaluated it on 31 vul-
nerabilities across 20 programs along with over 9,000 test
cases from the RIPE and Juliet suites. ARCUS identifies the
root cause of all tested exploits — with 0 false positives or
negatives — and even finds 4 new 0-day vulnerabilities in
traces averaging 4,000,000 basic blocks. ARCUS handles
programs compiled from upwards of 810,000 lines of C/C++
code without needing concrete inputs or re-execution.

1 Introduction

End-host runtime monitors are designed to enforce secu-
rity properties like control flow integrity (CFI) [1]–[10] or
detect anomalous events (system calls [11], segmentation
faults [12]–[15]). They can effectively halt attacks that rely
on binary exploits and are seeing real-world deployment [16],
[17]. However, these systems are designed to react to the
symptoms of an attack, not the root cause. A CFI monitor
responds to an invalid control flow transfer, not the buggy
code that allowed the code pointer to become corrupted in the
first place. A host-based IDS responds to an unusual sequence

of system calls, without concern for how the program was
able to deviate from the expected behavior model.

Traditionally, symptoms of an attack are easier to detect
than root causes. Namely, it is easier to detect that the current
state has violated a property than to diagnose what lead to that
violation. Unfortunately, this has led security professionals to
adopt brittle stopgaps (e.g., input filters [18]–[21] or selective
function hardening [22]), which can be incomplete or incur
side effects (e.g., heavyweight instrumentation [23]). Ideally,
the developers that maintain the vulnerable program must fix
the code and release a patch, but this creates a conundrum:
where is the bug that led to the detected attack?

Unfortunately, the journey from a detected attack to a patch
is rarely easy. Typical attack artifacts, like crash dumps [24] or
logs [25]–[35], contain partial, corruptible data [36]–[42] with
only the detection point marked. Concrete inputs may repro-
duce the symptoms in the production environment, but raise
privacy concerns [24] and rarely work for developers [43],
[44]. Worse still, developers are known to undervalue a bug’s
severity [45] or prioritize other (better understood) issues [46].

Seeking a better solution, we propose a root cause analysis
that considers “what if” questions to test the impact of partic-
ular inputs on the satisfiability of vulnerable states. The tests
are vulnerability-class-specific (e.g., buffer overflows) and
enable the analysis to localize vulnerabilities and recommend
new enforceable constraints to prevent them, essentially sug-
gesting a patch to developers. Analysis is conducted over the
control flow trace of the program flagged by the end-host mon-
itors, testing at each state “what if” any of the vulnerability
tests could be satisfied. Notice that this is a divergence from
the traditional mindset of replaying [47]–[49] or tainting [21],
[50]. For example, instead of tainting a string that caused a
stack overflow, the developers would most directly benefit
from knowing which code block caused the corruption and
what additional constraints need to be enforced upon it.1

Armed with vulnerability-class-specific satisfiability tests,
we turn our attention to efficiently collecting control flow

1Such analysis could also merge redundant alerts stemming from the
same bug producing varying symptoms, improving alert fatigue [51]–[53].

USENIX Association 30th USENIX Security Symposium 1989

traces in production end-hosts, which is challenging due
to strict performance expectations. Interestingly, we find
that readily available, hardware-supported, processor trac-
ing (PT)2 offers a novel avenue towards efficient recording.
Specifically, we leverage the capability of Intel® PT to design
a kernel module that can efficiently capture the control flow of
user programs, storing and forwarding it to an analysis system
if the end-host runtime monitor flags the process. Notably,
this avoids recording concrete data or attempting to re-execute
the program.

We have implemented a system called ARCUS3 — an au-
tomated framework for localizing the root cause of vulnerabil-
ities in executions flagged by end-host runtime monitors. We
have evaluated our ARCUS prototype using 27 exploits target-
ing real-world vulnerabilities, covering stack and heap over-
flows, integer overflows, allocation bugs like use after free
(UAF) and double free (DF), and format string bugs, across
20 different commodity programs. Surprisingly, ARCUS also
discovered 4 new 0-day vulnerabilities that have been issued
3 CVE IDs, demonstrating an ability to find neighboring
programming flaws.4 ARCUS demonstrates impressive scala-
bility, handling traces averaging 4,000,000 basic blocks from
complicated programs and important web services (GIMP,
Redis, Nginx, FTP, PHP), compiled from upwards of 810,000
source lines of C/C++ code. It also achieves 0 false positives
and negatives in analyzing traces taken of the over 9,000 test
cases provided by the Juliet and RIPE benchmarks for our
implemented classes. We show that tracing incurs 7.21% per-
formance overhead on the SPEC CPU 2006 benchmark with
a reasonable storage requirement. To promote future work,
we have open source ARCUS and our evaluation data.5

2 Overview

ARCUS’ analysis begins when an end-host runtime monitor
flags a running process for executing some disallowed op-
eration. Three classes of such systems are widely deployed
today: CFI monitoring [1]–[10], system call/event anomaly
detection [11], and segmentation fault/crash reporting [12]–
[15]). However, ARCUS is not dependant on how or why
the process was flagged, only that it was flagged. Notice
that ARCUS must handle the fact that these systems detect
attacks at their symptom and not their onset or root cause. In
our evaluation, we tested alongside a CFI monitor [1] and
segmentation fault handler, both of which provide delayed
detection. ARCUS can easily be extended to accept triggers
from any end-host runtime monitor.

2Available in Intel®, AMD®, and ARM® processors.
3Analyzing Root Cause Using Symbex.
4We reported new vulnerabilities to MITRE for responsible disclosure.
5https://github.com/carter-yagemann/ARCUS

1 i n t o p e n h o s t (c o n s t char *hname , . . .) {
2 char * cp ;
3 char name [2 5 6] ;
4
5 cp = hname ;
6 i f (* cp == ’ [’) {
7 cp ++;
8 f o r (i = 0 ; * cp && * cp != ’] ’ ; cp ++ , i ++)
9 name [i] = * cp ; / / b u f f e r o v e r f l o w

10 i f (* cp == ’] ’) {
11 name [i] = ’ \ 0 ’ ;
12 hname = name ;
13 } e l s e re turn 0 ;
14 / * [. . .] * /

Figure 1: CVE-2018-12327 in ntpq. A stack overflow occurs
if there is no ‘]’ within the first 257 characters of hname.

2.1 Real-World Example

We will briefly walk through how to apply our proposed solu-
tion to a real vulnerability: CVE-2018-12327. We pick this
example because the bug is concise and straightforward to
exploit. Conversely, a case study containing thousands of
intermediate function calls is presented in Section 4.5. We
will stay at a high level for this subsection and revisit the same
example in greater detail in Subsection 3.2.

CVE-2018-12327 is a stack overflow bug exploitable in
ntpq to achieve arbitrary code execution. The vulnerability
exists because there is no check for the length of the relevant
command line argument. We will follow the source code in
Figure 1 for simplicity, but the actual analysis is on binaries.

Assume the attacker can manipulate the arguments passed
to ntpq, allowing him to overwrite the stack with a chain
of return addresses that will start a reverse shell — a typical
example of return-oriented programming (ROP). When ntpq
starts, the ARCUS kernel module snapshots the program’s
initial state and configures PT. The malicious input triggers
the bug, and a shell is created. A runtime monitor determines
that the shell spawning is anomalous and flags the program,
causing the kernel module to send the snapshot and trace for
analysis.

The analysis sequentially reconstructs a symbolic program
state for each executed basic block. All input data, including
command line arguments, are symbolized. As the states are
stepped through, a plugin for each implemented bug class
checks for memory violations (Subsection 3.3). Since the
attacker’s input is symbolic, when the buggy code corrupts
the stack, the return pointer will also become symbolic. The
return causes the program counter to become symbolic, which
is detected by the stack overflow module as a vulnerability.

ARCUS now switches to localizing the root cause. It iden-
tifies the symbolic instruction pointer in memory and finds
the prior state that made it become symbolic (compiled from
line 9). By examining the control dependencies of this state,
ARCUS automatically identifies the guardian basic block that

1990 30th USENIX Security Symposium USENIX Association

https://github.com/carter-yagemann/ARCUS

Figure 2: ARCUS architecture. The user program executes in the end-host while the ARCUS kernel module snapshots and
traces it using Intel PT. When a runtime monitor flags a violation or anomaly, the data is sent to the analysis environment where
symbolic states are reconstructed, over which the modules detect, localize, and report vulnerabilities.

decides when the relevant loop will exit (compiled from line
8). ARCUS determines the loop could have exited sooner
and checks what would happen if it did (the “what if” ques-
tion, elaborated on in Subsection 3.2). ARCUS verifies that
this alternative state does not have a symbolic return pointer,
compares the resulting data constraints to those in the compro-
mised program state, and spots the contradiction — a special
delimiter character at a particular offset of an input string.
It uses this to automatically recommend a new constraint to
enforce at the guardian to fix the overflow.

As output, the human analyst automatically receives a re-
port containing: 1) the basic block that corrupted memory, 2)
the guardian that failed to protect against the exploit, and 3) a
recommended fix for the guardian.

2.2 Threat Model
We consider attacks against user programs and assume that the
kernel and hardware in the production system are trustworthy,
which is reasonable given that Intel PT is a hardware feature
that writes directly to physical memory, bypassing all CPU
caches, configurable only in the privileged CPU mode. This
is consistent with prior security work relying on Intel PT [1],
[2], [54], [55]. We do not alter user space programs in any
way. The kernel module also provides a secure way to store
and forward recorded data to an analysis system, which may
be a separate server for extra isolation.

We expect attackers to target the production system’s pro-
grams, but not have direct access to the analysis. We focus
on program binaries without assuming access to source code
or debug symbols.6 Consequently, we cannot handle all data-
only attacks (e.g., selectively corrupting a flag), which may
require accurate type information. However, ARCUS can be
extended in future work to incorporate this.

3 Design

ARCUS consists of two general components, shown in Fig-
ure 2. A kernel module snapshots the initial state of the

6However, we reference source code in our explanations and figures
whenever possible for brevity and clarity.

monitored program and collects its subsequent control flow
via PT (Subsection 3.4). The data is recorded to secure stor-
age reserved by the kernel module and if an alarm is raised
by a runtime monitor, it is transmitted to the analysis system,
which may reside in a separate server. ARCUS is compatible
with any end-host runtime monitor that can flag a process ID.
We use an asynchronous CFI monitor [1] and a segmentation
fault handler in our evaluation for demonstration.

The analysis is facilitated using symbolic execution with
pluggable modules for different classes of bugs (Subsec-
tion 3.3). This serves to reconstruct the possible data flows
for a single path, which enables the system to spot vulnera-
ble conditions (e.g., a large input integer causing a register
to overflow) and consider “what if” questions to automati-
cally find contradictory constraints that prune the vulnerable
state (Subsection 3.2). ARCUS then automatically recom-
mends places in the binary to enforce these constraints so that
developers can quickly understand and patch the root cause.

3.1 Symbolic Execution Along Traced Paths

Once an alarm is raised by a monitor, ARCUS will construct
symbolic program states from the data sent by the kernel mod-
ule. Our insight is to use symbolic analysis, but with special
consideration to avoid its greatest shortcoming: state explo-
sion. Put briefly, symbolic analysis treats data as a combina-
tion of concrete (one possible value) and symbolic (multiple
possible values) data. As the analysis explores different paths
in the program, it places constraints on the symbolic data,
altering their set of values. In this way, symbolic analysis
tracks the possible data values that can reach a program state.

We use symbolic analysis not to statically explore all pos-
sible paths, as is the typical use case, but to instead consider
all possible data flows over one particular path. To do this,
we symbolize all input data that could be controlled by the at-
tacker (command line arguments, environment variables, files,
sockets, and other standard I/O) and only build constraints for
the path that was traced. This sidesteps the biggest problem
with performing analysis in a vacuum — state explosion —
by leveraging the execution trace leading up to the end-host
runtime monitor’s alert.

USENIX Association 30th USENIX Security Symposium 1991

 1. int openhost(const char *hname, ...) {

 2. char *cp;

 3. char name[256];

 4.

 5. cp = hname;

 6. if (*cp == '[') {

 7. cp++;

 8. for (i = 0; *cp && *cp != ']'; cp++, i++)

 9. name[i] = *cp;

10. if (*cp == ']') {

11. name[i] = '\0';

12. hname = name;

13. } else return 0;

14. /* [...] */

hname := ['[','A',...,']']hname := [s1,s2,...]

name := []

cp := {}

ret_ptr := {c1}

hname := ['[',s2,...]

name := []

cp := hname+0

ret_ptr := {c1}

hname := ['[',s2,...]

name := [s2]

cp := hname+1

ret_ptr := {c1}

hname := ['[',s2,...]

name := [s2,s3]

cp := hname+311

ret_ptr := {s258}

hname := ['[',s2,...,']']

name := [s2,s3,...]

cp := hname+312

ret_ptr := {s258}

hname := ['[',s2,...,']']

name := [s2,s3,...,]

cp := hname+257

ret_ptr := {c1}

PT: Taken

PT: Taken x312

Snapshot

PT Trace

Symbolic States

...

"w
h

a
t if"

contradicts

Figure 3: Revisiting CVE-2018-12327 in more detail. Part of the snapshot and constraints tracked by ARCUS are shown on the
right with registers and addresses substituted with variable names for clarity. PT is on the left.

3.2 “What If” Questions

Reasoning over symbolic data also enables ARCUS to con-
sider “what if” questions, which is a key novelty in our root
cause analysis. We now revisit CVE-2018-12327 (introduced
in Subsection 2.1) to show how ARCUS uses “what if” ques-
tions in detail. In Figure 3, part of the snapshot (orange box)
and constraints tracked by ARCUS (grey boxes) are shown
on the right. We substitute registers and memory addresses
with variable names for clarity, but keep in mind that ARCUS
operates on binaries without needing debug symbols or source
code. A part of the PT trace (yellow boxes) is shown on the
left with the source code in the center. We use square brackets
to denote array contents and curly to list the possible values
for a variable. The notation si is for unconstrained symbolic
data and ci is for concrete constants. ret_ptr is the return
pointer.

ARCUS starts by replacing the attacker-controlled data
in the snapshot with symbolic variables. hname points to a
command line argument, which is why its contents become
symbolic. As ARCUS symbolically executes the program,
it follows the PT trace, which says to take the branch at line
6 and to repeat the loop 312 times. As the loop iterates, cp
increments, and name is filled with symbolic values copied
from hname. By the time line 14 is reached, the return pointer
has been overwritten with an unconstrained symbolic value.
When the function returns, the program counter becomes
symbolic, which means the attacker is capable of directly
controlling the program’s execution via crafted command
line arguments. This is a vulnerability that triggers the stack
overflow module in ARCUS to begin root cause analysis.

The full algorithm for this vulnerability class is presented
in Subsection 3.3, so for brevity we will focus on the “what if”
question, which comes into play after ARCUS has located the

symbolic state prior to ret_ptr being corrupted. ARCUS
revisits this state and discovers there is another possible path
where the loop exits sooner, which requires cp≤ hname+257
and the 257th character in hname to be ‘]’.

What if this path were to be taken by the program? The
resulting constraints would contradict the ones that led to
the corrupted state, which requires ‘]’ to occur in hname
no sooner than offset 258. Thus, by solving the “what if”
question, ARCUS has automatically uncovered a fix for the
vulnerability. Subsection 3.3 covers how the module then
determines where to enforce the new data constraints to make
the recommendation more concise and practical. Note that
even after applying the recommended fix, line 14 of the pro-
gram is still reachable. However, because the newly enforced
constraints contradict the compromised state, the code can no
longer be executed in the context that would give rise to the
observed overflow.

3.3 Analysis Modules

In this subsection, we expand on our methodology from Sub-
sections 3.1 and 3.2 to describe how serious and prevalent
classes of vulnerabilities can be analyzed using ARCUS.
Each class has a refined analysis strategy and definition of
root cause based on our domain expertise. In our prototype,
each technique is implemented as a pluggable module, sum-
marized in Table 1. Each module description concludes with
a list of contents generated by ARCUS in its reports.

Stack & Heap Overflow. The stack and heap overflow
module focuses on analyzing control flow hijacking (re-
call that data-only attacks are out of scope, Subsection 2.2),
which requires the adversary to gain control over the program

1992 30th USENIX Security Symposium USENIX Association

Table 1: ARCUS Modules Summary
Module Locating Strategy Root Cause
Stack Overflow Symbolic PC Control Dep.
Heap Overflow Symbolic PC Control Dep.
Integer Overflow Overflowed Reg/Mem Overflow Site
UAF R/W Freed Address Control Dep.
Double Free Track Frees Control Dep.
Format String Symbolic Arguments Data Dep.

counter. As ARCUS reconstructs all the intermediate states
along the executed path, the module checks whether the pro-
gram counter has become symbolic. If it has, this means data
from outside the program can exert direct control over which
code the program executes, which is indicative of control
hijacking.

From this point, the module looks at the previous state to
determine what caused symbolic data to enter the program
counter. Since hijacking can only occur at indirect control
flow transfers, this previous state must have executed a basic
block ending in a return, indirect call, or indirect jump. The
steps we define for root cause analysis are: 1) identify the
code pointer that became symbolic, 2) identify the basic block
that wrote it, 3) find basic blocks that control the execution of
the write block, and 4) test whether additional constraints at
these blocks could have diverted the program away from the
buggy behavior (i.e., by introducing a constraint that would
contradict the buggy state).

To accomplish the first task, the module uses backward
tainting over the previously executed basic block, lifted into an
intermediate representation (IR), to identify the registers and
then the memory address used to calculate the code pointer.
The implementation details are in the Subsection 3.7. Once
identified, the module iterates backwards through the pre-
viously reconstructed states to find the one where the data
contained at the identified address changes, which reveals the
state that corrupted the pointer. We coin this the blame state.

The next step is to identify the basic blocks that control it,
which we refer to as guardians. The module uses forward
analysis over the reconstructed states to generate a control de-
pendency graph (CDG) and find them.7 If there are guardians
for the blame state, the closest one is picked in terms of short-
est path, and the prior state to execute this code is revisited to
see if there exists another branch whose constraints contradict
the blame state (solving the “what if” question from Sub-
section 3.2). If contradicting constraints are found, ARCUS
recommends enforcing them at the guardian. Otherwise, only
the blame state is reported because an entirely new guardian
is required.

For heap overflows, ARCUS needs to ensure that the heap
objects are allocated exactly as they were in the flagged exe-
cution, which requires careful designing. We elaborate on the
details in Subsection 3.5.

7These graph algorithms are readily available in projects like angr.

1. TIFFFetchData(TIFF* tif, TIFFDirEntry* dir, char* cp) {

2. int w = TIFFDataWidth(dir->tdir_type);

3. tsize_t cc = dir->tdir_count * w;

4.

5. if (!isMapped(tif)) {

6. /* [...] */

7. if (!ReadOK(tif, cp, cc))

8. goto bad;

9. /* [...] */

tdir_count := {s1}

w := {0,1,2,4,8}
cc := {}

tdir_count := {s1}

w := {0,1,2,4,8}

cc := {0,...,232-1}
cc < w * tdir_count

tdir_count := {0,...,536870911}
w := {0,1,2,4,8}

cc := {0,...,232-1}

not(cc < w * tdir_count)

"w
h

a
t if"

Figure 4: CVE-2006-2025. Attacker controls the TIFF image
and thus tdir_count, which can be used to overflow cc.
ARCUS automatically finds a new constraint to prevent it.

Report: Blame state and, if found, the guardian to modify
and new constraints to enforce.

Integer Overflow & Underflow. The two key challenges
with detecting integer overflows and underflows (referred to
collectively as overflows for brevity) are: 1) inferring the
signedness of register and memory values in the absence of
type info and 2) avoiding false positives due to intentional
overflowing by developers and compilers.

To conservatively infer signedness, the module uses hints
provided by instruction semantics (e.g., zero vs. signed ex-
tending [56]), and type info for arguments to known standard
library functions (“type-sinking” [57]). If the signedness is
still ambiguous for an operand, the arithmetic operation is
skipped to err on the side of false negatives.

If an operation can overflow, according to the accumulated
data constraints, the result register is flagged and subsequent
stores and loads are tracked by the module. However, this
is not immediately reported as a bug because the overflow
may be intentional (second challenge). Instead, a bug is
only reported if flagged data is passed to another function
(i.e., following a call or ret instruction). The intuition
is that when data crosses a function boundary, it is likely
that the receiver did not consider the possibility of receiving
overflowed integers, leading to violated assumptions and bugs.
Prior work has measured this phenomenon [58].

Figure 4 illustrates how the module handles CVE-2006-
2025, showing source code for clarity. In this case, an adver-
sary can craft a TIFF image to overflow the register holding
cc (defined at line 3) and pass it to ReadOK at line 7. Since cc
is the product of two unsigned values, cc < w ∗ tdir_count
should not be possible, yet at line 4 the module discovers it
is satisfiable, indicating cc can overflow. When cc is then
passed to ReadOK, the module flags the bug.

To recommend a fix, the module solves the “what if”
question: what if the prior constraint was not satisfiable?
This requires an additional data constraint to be placed on
tdir_count. The module includes this in its report along
with the basic block that overflowed cc and the basic block

USENIX Association 30th USENIX Security Symposium 1993

that passed cc to ReadOK.
Report: Basic block and IR statement that overflowed

the variable, recommended constraints, and basic block that
passed the overflowed variable to another function.

Use After Free & Double Free. The UAF and DF modules
monitor all calls to allocation and free functions, which we
assume to know the semantics of in advance. When an allo-
cation call is reached, the size argument is extracted and the
returned pointer is evaluated to a concrete value to maintain
a list of currently allocated buffers. When a free is reached,
the corresponding entry is moved from the allocation list to
a freed buffers list. Subsequent allocations can move freed
entries back to the allocation list, maintaining mutually ex-
clusive sets. For each state, addresses accessed by memory
operations are checked against the freed list to detect the oc-
currence of UAF, upon which the module reports the starting
address, size, and accessed offset. Similarly, the DF module
detects freeing of entries already in the freed list. A CDG
from the free site to the violating block determines and reports
negligent guardians.

Report: Address, size, and offset (if applicable) of the
violated buffer. The freeing and violating basic blocks, along
with a partial CDG for the path between them.

Format String. Programming best-practice is to always
create format strings as constant values in read-only mem-
ory. Unfortunately, buggy programs still exist that allow an
attacker to control a format string and achieve arbitrary reads
or writes. As the analysis reconstructs program states, this
module checks for states entering known format string func-
tions (e.g., printf) and verifies that: 1) the pointer to the
format string is concrete, as it should be if it resides in read-
only memory, 2) the string’s contents are completely concrete,
and 3) all the additional arguments point to mapped memory
addresses. If any of these criteria are violated, the module
knows data from outside the program can directly influence
the format string function, which is a vulnerability.

Once located, the module locates the violating symbolic
data in memory and examines prior states to find the one
that wrote it. This is the blame state for this category of
vulnerability. Since format strings should not be writable in
the first place, no further analysis is necessary.

Report: Contents of the symbolic string, the basic block
that wrote it, and where it was passed to a format function.

3.4 Capturing the Executed Path
Analyzing the execution flagged by an end-host runtime mon-
itor, which may reside in a different system, requires an effi-
cient way of tracing the program without relying on instrumen-
tation or binary modifications that could degrade performance
or be targeted by the attacker. Our solution is to employ a
kernel module to manage PT. For simplicity, we will focus on

0x27ab push %rbp
0x284e jmp 0x2898

…
0x2850 mov $1 %esi

…
0x287e test %rax %rax
0x2881 jne 0x2894
0x2883 lea 0xf05f %rdi

…
0x288f call %rax

…
0x2898 cmp $0x19 %rax
0x289c jle 0x2850

0xfeff push %rbp
…

T

NT

TIP

Snapshot

0x2000
-

0x3000

T

NT

TIP 0xfeff

Snapshot

0xf000
-

0xffff

Trace Disassembler

START

Figure 5: Using the trace (left), with snapshot and PT packets,
to recover the executed sequence of instructions (right).

Intel PT, but other modern processors come with their own
hardware implementations.

A trace captures the sequence of instructions executed by
the CPU, which is large given that modern processors execute
millions of instructions per second. To be efficient, Intel PT
assumes that the auditor knows the memory layout of the
audited program, which our kernel module prepends to the
trace as a snapshot, shown on the left side of Figure 5 as
grey packets. The kernel module also captures and inserts
dynamically generated code pages between PT data, allow-
ing complex behaviors to be followed (e.g., JIT). With this,
all the auditor needs from the PT hardware is which path to
follow when a branch is encountered, shown on the left in
blue. For conditional branches, a single taken-not-taken bit
is recorded. For indirect control flow transfers (return, indi-
rect call, and indirect jump) and asynchronous events (e.g.,
interrupts, exceptions), the destination is recorded.

Intel PT is configured using model specific registers
(MSRs) that can only be written and read while the CPU
is in privileged mode. Since only the kernel executes in this
mode, only it can configure Intel PT. The trace is written
directly into memory at physical addresses specified during
configuration, meaning the kernel can make this data inac-
cessible to all other processes. Intel PT bypasses all caches
and memory translation, which minimizes its impact on the
traced program. When the buffer allocated for tracing is filled,
the CPU raises a non-maskable interrupt (NMI), which the
kernel module handles immediately so no data is lost.

Challenges with PT & Symbolic Execution. Intel PT tries
to be as efficient as possible in recording the executed control
flow. As a result, only instructions that produce branching
paths yield trace packets, which excludes instructions for re-

1994 30th USENIX Security Symposium USENIX Association

Table 2: Symbolically Executing CISC Repeat Instructions
Type Common Usage Strategy
rep movs String Copy Maximize Iterations
rep stos Memory Initialization Maximize Iterations
rep cmps String Search (presence) Symbolize Register
rep scas String Search (offset) Symbolize Register

peat string operations — used to speed up common tasks. For
example, rep mov sequentially copies bytes from one mem-
ory location to another until a condition is met and repnz
scas can be used as a replacement for strlen. These instruc-
tions encode an entire traditional loop into a single statement.

When memory is concrete, these complex instructions are
deterministic, so Intel PT does not record how many times
they “repeat.” This creates a problem for symbolic execution
because if these instructions encounter symbolic data in mem-
ory or registers, the state will split and the trace will not have
information on which successor to follow.

Our solution is to take the path that will most likely lead
to a vulnerability, which depends on the type of repeat in-
struction, shown in Table 2. Three repeat types are excluded
(ins, outs and lods) because they are typically used by ker-
nel drivers and not user space programs. For move (movs)
and store (stos), the analysis follows the maximum possible
iterations given the symbolic constraints to check for over-
flow bugs. For comparison (cmps) and scanning (scas), the
analysis skips to the next instruction (i.e., it executes zero iter-
ations) and symbolizes the results register. The constraints for
this register depend on the instruction. For example, repnz
scasb in 64-bit mode scans memory, decreasing RCX by 1 for
each scanned byte, until either RCX becomes 0 or the value
stored in AL is encountered. The analysis therefore constrains
RCX to be between 0 and its starting value.

3.5 Snapshots & Memory Consistency

Symbolic execution requires an initial memory state to start
its analysis from, which can be created with a custom loader
or from a snapshot. The distinction is usually minor, but
ends up being vital for ARCUS because it has to follow the
path recorded by PT, as opposed to generally exploring the
program. We discover that snapshots are essential to AR-
CUS because native loaders have complicated undocumented
behaviors that the custom loaders are likely to contradict,
creating inconsistencies in memory.

One such discrepancy is in how they resolve weak symbols,
which can be resolved to one of several possible locations
depending on the execution environment. For example, libc
contains a weak symbol for memcpy, which is resolved to
point at the most efficient implementation for the processor
model. By our count, out of the 2,211 function symbols in
glibc version 2.28, 30% are weak symbols. Additionally,
shared objects can choose to implement their own resolver

functions, invoked by the loader, to decide values.8

Our solution is for the kernel module to save a concrete
snapshot of the program’s user space at its entry point — af-
ter the initial dynamic loading is complete — and whenever
a new thread or process is created. This captures the en-
vironment variables, command line arguments, and current
program break pointer, the latter of which is important for
heap placement.

Allocation Consistency. Analyzing attacks requires spe-
cial care with replicating the spacing and absolute position of
dynamically allocated buffers. Inconsistencies could cause
overflows between objects or exploited writes to not be repro-
ducible in the analysis.

The solution is to capture the program break (brk) pointer
in the snapshot, which marks the end of the program’s data
segment. When functions like malloc do not have enough
space to allocate a new buffer, they make a system call to
move the break. Consequently, all dynamically allocated
objects are placed relative to the starting position of the break.
Therefore, by starting with the same break and following the
trace, ARCUS can ensure a consistent layout.

3.6 Performance Constraints
We prioritize performance in our design, but acknowledge that
storage is also a concern for long running programs, to which
we create two policies. For task-oriented workers, snapshots
are taken as the kernel creates them and the oldest snapshots
are discarded if a user defined threshold is exceeded. If a long
living thread exceeds the threshold, a snapshot is retaken and
the oldest data is discarded. This introduces potential false
negatives due to truncation, but we demonstrate useful results
with practical thresholds in Section 4 and leave improvements
to future work.

Since the analysis is performed offline only after an alarm
is raised, we relax the performance requirements of the anal-
ysis system. Our evaluation shows real vulnerabilities are
analyzed in minutes, which is sufficient for practical use.

3.7 Vex IR Tainting
Algorithm 1 shows how we perform backwards tainting on
VEX IR lifted from binary code to identify the registers and
memory addresses used to calculate a chosen temporary vari-
able. We start by tainting the chosen variable and iterate back-
wards over the prior statements. Any registers used to store
tainted variables (Put) become tainted. Whenever tainted
variables are assigned a value (WrTmp), any registers, memory
addresses, or additional variables used to produce the value
(i.e., operands) also become tainted. EvalTmp uses the sym-
bolic execution engine to resolve memory address pointers.

8Example: https://sourceware.org/glibc/wiki/GNU_IFUNC.

USENIX Association 30th USENIX Security Symposium 1995

https://sourceware.org/glibc/wiki/GNU_IFUNC

Input: VEX IR statements S starting from last executed.
Tmp n to taint initially.
Result: Addresses A and registers R used to calculate n.
A← /0

R← /0

T ←{n}
foreach s in S do

if Type(s) is Put and Type(s.data) is RdTmp then
if s.data.tmp ∈ T then

R← R∪{s.register}
end

end
if Type(s) is WrTmp and s.tmp ∈ T then

foreach a in s.data.args do
if Type(a) is Get then

R← R∪{a.register}
end
if Type(a) is RdTmp then

T ← T ∪{a.tmp}
end
if Type(a) is Load then

A← A∪EvalTmp(a.address)
end

end
end

end
Algorithm 1: Tainting algorithm to obtain the registers and
addresses used to calculate a VEX IR temporary variable.

To taint multiple basic blocks, we clear T between blocks
while persisting A and R.

4 Evaluation

We aim to answer the following questions in our evaluation:

1. Is ARCUS accurate at detecting bugs within our covered
classes? We perform several micro-benchmarks with
a ground truth set of over 9,000 test cases from the
RIPE [59] and Juliet [60] suites. This ground truth
allows us to verify that ARCUS can find root causes
for vulnerabilities with 0 false positives and negatives
(Subsection 4.1).

2. Can ARCUS locate and analyse real-world exploits?
We craft, trace, and have ARCUS analyze exploits for
known CVEs and EDBs in real programs. ARCUS suc-
cessfully handles 27 exploits and even discovers 4 new
0-day vulnerabilities, which we examine in additional
case studies (Subsections 4.2 and 4.5).

3. Are ARCUS’ root cause reports consistent with real-
world advisories and patches? We manually verify that
ARCUS’ root cause reports are consistent with public
disclosures and, where available, official patches (Sub-
section 4.3).

4. Is ARCUS feasible to deploy in terms of runtime and

Table 3: RIPE and Juliet Test Cases

Overall Results (Detection by ≥ 1 Strategies)
RIPE TP TN FP FN Acc.
BSS 170 170 0 0 100%
Data 190 190 0 0 100%
Heap 190 190 0 0 100%
Stack 260 260 0 0 100%
Juliet TP TN FP FN Acc.
CWE-134 1,200 2,600 0 0 100%
CWE-415 818 2,212 0 0 100%
CWE-416 393 1,222 0 0 100%

By Locating Strategy (RIPE)
Symbolic IP TP TN FP FN Acc.
BSS 154 170 0 16 95.3%
Data 171 190 0 19 95.0%
Heap 154 190 0 36 90.5%
Stack 211 260 0 49 90.6%
Int Overflow TP TN FP FN Acc.
BSS 60 170 0 110 67.6%
Data 60 190 0 130 65.8%
Heap 60 190 0 130 65.8%
Stack 150 260 0 110 78.8%

By Locating Strategy (Juliet)
Symbolic Args. TP TN FP FN Acc.
CWE-134 1,200 2,600 0 0 100%
Track Frees TP TN FP FN Acc.
CWE-415 818 2,212 0 0 100%
R/W Freed Addrs. TP TN FP FN Acc.
CWE-416 393 1,222 0 0 100%

storage overhead? We measure the performance and
storage overheads of tracing programs using the SPEC
CPU 2006 benchmark and Nginx (Subsection 4.4).

Experimental Setup & Runtime Monitor Selection. We
use 2 distinct servers to represent the production and analysis
systems, each running Debian Buster and containing an Intel®

Core™ i7-7740X processor, 32GB of memory, and solid state
storage. To serve as end-host runtime monitors, we use an
open source CFI system [1] and our own segmentation fault
handler. The former is used for the exploits that leverage code
reuse attacks and the latter for crashes. We pick this particular
CFI monitor because it is asynchronous and only guarantees
detection of control flow violations by the next system call,
which requires ARCUS to handle traces containing activity
past the initial exploit.

4.1 Accuracy on Micro-Benchmarks
Before deploying ARCUS on real-world programs, we eval-
uate on benchmark test cases where there is known ground

1996 30th USENIX Security Symposium USENIX Association

truth for the location and behavior of every bug. This is nec-
essary in order to measure false negatives (i.e., executions
where a bug is triggered but ARCUS yields no report) and
cannot be known for real-world programs.9 False positives
are measurable by manually reviewing reports.

Dataset & Selection Criteria. For the overflow modules
(stack, heap, and integer), we use the complete RIPE [59]
benchmark, which systematically exploits the provided test
binary with different bugs (memcpy, strlen, etc.), strategies
(ROP, code injection, etc.), and memory locations (stack,
heap, etc.). We port the benchmark to 64-bit and manually
create a second patched (bug-free) version of the test binary
to measure false positives (FPs), false negatives (FNs), true
positives (TPs) and true negatives (TNs). RIPE yields 810
working exploits in our environment.

RIPE does not contain tests for UAF, double free, or for-
mat string bugs. We address this shortcoming with the NIST
C\C++ Juliet 1.3 suite [60], which contains 2,411 buggy and
6,034 bug-free binaries for CWE-416 (UAF), CWE-415 (dou-
ble free), and CWE-134 (format string). These are all the test
cases provided by Juliet for these CWEs.

Results. As presented at the top of Table 3, ARCUS cor-
rectly analyzes all the test cases across all suites with no FPs
or FNs. That is, each TP is detected by at least 1 module and
TN by none. We manually verify that the root cause reports
for the TP cases correctly identify the buggy functions and
the recommendations prevent the memory corruptions.

On closer investigation, we realize that ARCUS is so accu-
rate on the RIPE cases because there are multiple opportuni-
ties for detecting overflows. For example, an integer overflow
that corrupts a return pointer can be detected either by the
integer overflow module when the register wraps around or
by the stack overflow module when the pointer is overwritten.
Detecting either behavior (or both) yields an accurate report.
Based on this observation, we present the middle and bottom
portions of Table 3, which separates the RIPE and Juliet re-
sults by the locating strategies from Table 1. For the modules
tested by the Juliet cases, their capabilities do not overlap
and yield the same numbers as in the overall table. For the
strategies relevant to RIPE, we discover that the symbolic IP
detection is 92.9% accurate, on average, whereas the integer
overflow detection is 69.5%. The latter is expected given the
challenges described in Subsection 3.3, like inferring signed-
ness in binaries. We observe that the accuracy is consistent
across exploit locations for symbolic IP (4.8% variation), but
less so for integer overflow (13%) where it performs better
on stack-based tests. Since each strategy yields 0 FPs, their
capabilities compliment each other, covering their individual
weaknesses and enabling ARCUS to operate effectively.

9If we knew the location and behavior of every bug in real-world pro-
grams, we could produce new versions that are guaranteed to be bug-free,

4.2 Locating Real-World Exploits
With ARCUS verified to be working accurately on the micro-
benchmarks, we turn our attention to real-world exploits.

Dataset & Selection Criteria. We select our vulnerabili-
ties starting with a corpus of proof of compromises (PoCs)
gathered from the LinuxFlaw [78] repository and Exploit-
DB [79], distilled using the following selection procedure:

1. First, we filter PoCs pertaining to bug classes not cov-
ered by our modules (Subsection 3.3).

2. Next, we filter PoCs that fail to trigger in our evaluation
environment.

3. Finally, for PoCs targeting libraries (e.g., libpng), we
select a large real-world program that utilizes the vul-
nerable functionality (e.g., GIMP) for evaluation.

In total, we consider 34 PoCs pertaining to our covered bug
classes (Step 1). Of these, 7 failed to trigger and were filtered
(Step 2). The primary cause of failure is older PoCs written
for 32-bit that cannot be converted to 64-bit. We decide to use
GIMP for evaluating image library CVEs, GOOSE Publisher
for CVE-2018-18957, exif for CVE-2007-2645, and PHP for
CVE-2017-12858 (Step 3).10

This yields PoCs targeting 27 unique vulnerabilities across
20 programs, covering a diverse range of multimedia libraries,
client applications, parsers, and web services. Some are com-
monly evaluated in related work (e.g., libexif [80]), whereas
others align with our motivation of protecting production
servers (e.g., nginx, ftp) and require ARCUS to handle more
complex behaviors like multi-threading, inter-process com-
munication, and GUIs (e.g., GIMP). For vulnerabilities that
lead to arbitrary code execution, we develop the PoCs into
exploits that use code reuse attacks like ROP. We create
crashing exploits only as a last resort.

Results. Table 4 shows that our system is able to success-
fully localize all 27 exploited vulnerabilities. Surprisingly,
ARCUS also uncovers 4 new 0-day vulnerabilities — 3 is-
sued CVE IDs — that are possible to invoke along the same
control flow path, bringing the total count to 31. An example
of how this occurs is presented in Subsection 4.5. For ex-
ploited libraries evaluated in the context of a larger program
(e.g., CVE-2004-0597), we show the traced program’s name
alongside the library.

Table 4 includes the number of basic blocks recorded in
each trace (“# BBs” column) and size in megabytes (“Size
(MB)” column). Traces range from 53,000 basic blocks to
over 78,000,000. Sizes are from 600 KB to 56 MB. The larger
sizes correlate with programs containing GUIs and complex
plug-in frameworks.

which is obviously not possible with existing techniques.
10We could not find larger programs in the Debian repositories that trigger

CVE-2007-2645 or CVE-2018-18957.

USENIX Association 30th USENIX Security Symposium 1997

Table 4: System Evaluation for Real-World Vulnerabilities
CVE / EDB Type Program # BBs Size (MB) ∆Root Cause ∆Alert Located Has Patch Match
CVE-2004-0597 Heap GIMP (libpng) 41,625,163 56.0 247 1 Yes [61] Yes†

CVE-2004-1279 Heap jpegtoavi 67,772 0.65 26,216 1 Yes No -
CVE-2004-1288 Heap o3read 74,723 0.65 33,211 1 Yes [62] Yes
CVE-2009-2629 Heap nginx 300,071 1.10 28 33,824 Yes [63] Yes
CVE-2009-3896 Heap nginx 283,157 1.10 59 16,821 Yes [64] Yes
CVE-2017-9167 Heap autotrace 75,404 1.01 1,828 2 Yes No -
CVE-2018-12326 Heap Redis 291,275 1.20 8 234 Yes [65] Yes
EDB-15705 Heap ftp 260,986 0.85 19,322 2 Yes No -
CVE-2004-1257 Stack abc2mtex 53,490 0.67 6,319 1 Yes No -
CVE-2009-5018 Stack gif2png 90,738 1.09 1,848 1 Yes [66] Yes
CVE-2017-7938 Stack dmitry 100,186 0.71 4,051 14,402 Yes No -
CVE-2018-12327 Stack ntpq 374,830 1.85 122,740 77,990 Yes [67] Yes
CVE-2018-18957 Stack GOOSE (libiec61850) 65,198 0.71 94 30 Yes [68] Yes
CVE-2019-14267 Stack pdfresurrect 128,427 0.66 83,123 1 Yes [69] Yes
* EDB-47254 Stack abc2mtex 53,490 0.67 6,566 - Yes No -
EDB-46807 Stack MiniFtp 60,849 0.69 335 107 Yes No -
CVE-2006-2025 Integer GIMP (libtiff) 78,419,067 55.0 3 8 Yes [70] Yes
CVE-2007-2645 Integer exif (libexif) 67,697 0.97 1 7 Yes [71] Yes
CVE-2013-2028 Integer nginx 809,977 2.00 1 25,268 Yes [72] Yes
CVE-2017-7529 Integer nginx 1,049,494 1.10 2 780,404 Yes [73] Yes
CVE-2017-9186 Integer autotrace 75,142 1.00 1 1 Yes No -
CVE-2017-9196 Integer autotrace 74,695 1.03 1 203 Yes No -
* CVE-2019-19004 Integer autotrace 132,302 1.02 1 - Yes No -
CVE-2017-11403 UAF GraphicsMagick 2,316,152 4.61 38 1 Yes [74] Yes
CVE-2017-14103 UAF GraphicsMagick 2,316,133 4.61 38 1 Yes [74] Yes
CVE-2017-9182 UAF autotrace 132,302 1.02 296 58,058 Yes No -
* CVE-2019-17582 UAF PHP (libzip) 5,980,255 6.40 49 - Yes [75] Yes
CVE-2017-12858 DF PHP (libzip) 5,980,255 6.40 51 719 Yes [75] Yes
* CVE-2019-19005 DF autotrace 132,302 1.02 57,859 - Yes No -
CVE-2005-0105 FS typespeed 127,209 0.74 1 1 Yes [76] Yes
CVE-2012-0809 FS sudo 108,442 0.69 1 1 Yes [77] Yes

Average: 4,568,619 5.07 11,722 36,804
* New vulnerability discovered by ARCUS. † Equivalent to applied patch.

The “∆Root Cause” column lists how many basic blocks
were executed between the state where ARCUS first identifies
the vulnerability and its determined root cause point. The
numbers vary substantially by class, with heap and stack
overflows having distances upwards of 120,000 basic blocks
whereas integer overflows and format strings are usually 1.

“∆Alert” reports the number of blocks between where the
runtime monitor flagged the execution and where ARCUS
first detected the bug during analysis. In other words, the
distance between the monitor alert and the ultimate root cause
determined by ARCUS is the sum of “∆Root Cause” and
“∆Alert.” Distances vary depending on which monitor was
tripped and the overall program complexity. Some executions
were not halted until over 700,000 blocks past the bug’s initial
symptoms. 0-days found by ARCUS have no reported value
since they were not detected by a monitor.

4.3 Consistency to Advisories & Patches
We evaluate the quality of reports for the real-world exploits
by manually comparing them against public vulnerability
advisories. For example, in CVE-2017-9167, the advisory
states that AutoTrace 0.31.1 has a heap-based buffer overflow
in the ReadImage function defined in input-bmp.c on line

337. Accordingly, we expect ARCUS’s root cause report to
include the code compiled from this line.

When ARCUS provides a recommendation for extra con-
straints, we also manually verify that the reported guardian
does in fact control the execution of the vulnerable code and
that the recommended constraints would prevent the exploit.
For example, the ARCUS report for CVE-2018-12327 recom-
mends enforcing at the inner most loop in Figure 1 that a ‘]’
character occurs within the first 257 characters of hname, as
explained in detail in Subsection 3.2. This does prevent the
exploit from succeeding, making the report satisfactory.

Some of the evaluated vulnerabilities have already been
fixed in newer versions of the targeted programs. In these
cases, we use the patch to further verify the quality of AR-
CUS’s reports by manually confirming that they identify the
same code.

Results. The results are shown in the “Located,” “Has
Patch,” and “Match” columns of Table 4. All 31 reports
correctly identify the exploited vulnerable code. There are
patches available at the time of evaluation for 5 of the 8
heap overflows, 4 of the 8 stack overflows, 4 of the 7 integer
overflows, 3 of the 4 use after frees, 1 of the 2 double frees,

1998 30th USENIX Security Symposium USENIX Association

and all 2 format string vulnerabilities. In all but 1 of the 19
official patches available for our tested vulnerabilities, the
report generated by ARCUS is consistent with the applied
patch. CVE-2004-0597 is a special case where a parent func-
tion calls a child using unsafe parameters, causing the child
to overflow a heap buffer. ARCUS correctly identifies the
vulnerable code, however the developers chose to patch the
parent function, whereas ARCUS suggests adding checks
inside the child. Both fixes are correct, so this report is satis-
factory despite being slightly different from the official patch.
12 of the evaluated vulnerabilities are not patched at the time
of evaluation.

4.4 Runtime & Storage Overheads
Dataset & Selection Criteria. To evaluate the performance
and storage overheads of ARCUS, we start with the SPEC
CPU 2006 benchmark and a storage threshold of 100 GB. We
pick this suite because it is commonly used and intentionally
designed to stress CPU performance. Since our design re-
quires control flow tracing, CPU intensive tasks are the most
costly to trace. I/O tasks by comparison incur significantly
less overhead due to blocking, which we demonstrate using
Nginx with PHP. Consequently, we consider the SPEC work-
loads to represent realistic worst case scenarios for ARCUS.

To simulate long-running services and heavy workloads,
we stress Nginx and PHP with default settings using
ApacheBench (ab) to generate 50,000 requests for files rang-
ing from 100 KB to 100 MB. This experiment also uses a
100 GB storage threshold.

Results. Figure 6 shows the performance and storage over-
heads of tracing the SPEC workloads without the runtime
monitors. The average overhead is 7.21% with a geometric
mean of 3.81%, which is consistent with other Intel PT sys-
tems [1], [2]. A few workloads have overheads upward of
25%, which is also consistent with prior work and is caused
by programs with frequent indirect calls and jumps. A work-
load yields 110 MB of data on average, which at our chosen
storage threshold allows us to store 930 invocations of the
program before old data is deleted. In the worst case, we can
store 83 invocations.

For the Nginx with PHP stress test, shown in Figure 7,
performance overhead is negligible at under 2%. ARCUS
generates at most 1.6 MB of data per request, allowing us
to store the past 64,000 requests given our 100 GB storage
quota. We observe that file size has little influence over stor-
age requirements, with the smallest file producing 1.2 MB of
data per request and the largest producing 1.6 MB.

4.5 Case Studies
Discovering Nearby 0-Days. ARCUS discovers that ver-
sion 1.2.0 of libzip has a known vulnerability that can be

altered into a new, previously undiscovered, 0-day.11 Specifi-
cally, there is a buggy memory freeing function that maintains
a flag in a parent structure to track whether a substructure has
already been freed. Calling the freeing function twice on the
same structure, without checking the flag, results in a double
free (CVE-2017-12858), exploitable via a malformed input.

However, what was not previously known, but uncovered
by ARCUS, is that further corrupting the malformed input can
trigger a UAF, which has been assigned CVE-2019-17582.
Specifically, after freeing the parent structure, invoking the
freeing function again can cause it to access the flag that is
no longer properly allocated.

Although both bugs reside in the same function, they are
distinct — the known CVE double frees the child structure
while the new bug inappropriately accesses the parent struc-
ture’s flag. A developer fixing the prior by more carefully
checking the flag will not remediate the latter. ARCUS is able
to find this new CVE because it considers all data flows over
the executed path.

Vulnerabilities Cascading Into 0-Days. An interesting ex-
ample in autotrace demonstrates how a patch can address
one bug, but fail to fix related “downstream” bugs, which
gives ARCUS the opportunity to uncover new vulnerabilities.
Version 0.31.1 contains a UAF vulnerability exploitable via
a malformed input bitmap image header (CVE-2017-9182).
Ultimately, ARCUS discovers two additional downstream
vulnerabilities: an integer overflow (CVE-2019-19004) and a
double free (CVE-2019-19005).

They all stem from a lack of input file validation. When
the value of the bits_per_pixel field of the image header is
invalid, after the known UAF, a previously unreported integer
overflow can occur as autotrace attempts to calculate the
number of bytes per row in the input_bmp_reader function.
ARCUS then discovers an additional double free that releases
the same freed buffer the UAF accesses. In short, all 3 vulner-
abilities are triggered by the same malformed header field, but
each resides in a different code block, meaning a developer
fixing one may overlook the others.

Vulnerabilities Over Large Distances. Version 0.15 of the
program PDFResurrect has a buffer overflow vulnerability
(CVE-2019-14267) that can be exploited via a malformed
PDF to achieve arbitrary code execution. When the function
encounters a ‘%%EOF’ in the PDF, it scans backwards looking
for an ‘f’ character, which is supposed to represent the end of
‘startxref’. As it scans, a register representing pos_count
is incremented. An attacker can create a malformed PDF
without a ‘startxref,’ causing pos_count to exceed 256

11Post evaluation, we discovered that this vulnerability had been described
in a previous bug report, however it was never issued a CVE ID and so we
were unaware of it while evaluating ARCUS. Consequently, we were the first
to report it to a CVE authority, resulting in the issuance of CVE-2019-17582.

USENIX Association 30th USENIX Security Symposium 1999

Figure 6: Performance overhead and storage size of tracing the SPEC CPU benchmark. The average overhead is 7.21% and the
geometric mean is 3.81%. The average trace size is 110 MB and the geometric mean is 38.2 MB.

Figure 7: Performance overhead and storage required to trace
Nginx. The performance overhead is under 2% and the maxi-
mum storage is 1.6 MB per request.

and overflow buf. This bug can be exploited to overwrite the
stack and achieve arbitrary code execution.

What is interesting about this example is the vulnerable
function loads all cross references before returning, any one
of which could trigger the described overflow. This means
thousands of references can be loaded between the corruption
point and the return that starts the arbitrary code execution. In
our crafted exploit, this distance is over 83,000 basic blocks
(see Table 4) and includes almost 17,000 function calls. AR-
CUS successfully identifies the root cause of the vulnerability
despite this distance.

5 Discussion & Limitations

False Negatives & Positives. Prior work enumerates the
possible sources of error in symbolic analysis [81], which
are not special to ARCUS. ARCUS is a root cause analysis
framework invoked in response to an end-host monitor’s alert,
so it depends on the monitor detecting an attack symptom [82].
As described in Subsection 3.3, some of the modules imple-
mented in ARCUS can incur false negatives.

Only the integer overflow module can yield false positives
due to its combination of forward analysis and heuristics. The
sole case we have encountered occurs in libpng, where an
overflowed value is passed to another function, triggering a de-
tection by ARCUS, but then the receiving function performs
additional checks, preventing exploitation. Such patterns of
checking for overflows in the receiving function (as opposed
to the sending) are atypical [58].

Robustness. Recommendations made by ARCUS are based
on constraints built from a single execution path, meaning
completeness cannot be guaranteed. Human developers are
expected to implement the official patch using ARCUS’s rec-
ommendation as a starting point. Like most solutions that
incorporate symbolic analysis, ARCUS is not well suited to
building constraints within cryptography procedures, making
the current prototype poorly suited for handling bugs within
libraries like OpenSSL (e.g., CVE-2010-2939). However,
this does not prevent ARCUS from analyzing programs that
import such libraries — because the APIs can be modeled —
and there are tailored analysis techniques [83] that ARCUS
can adopt in future work. Similarly, we do not expect the
current ARCUS prototype to perform well on heavily obfus-
cated binaries or virtual machines (e.g., JVM). The kernel
module can trace programs that dynamically generate code,
including just-in-time (JIT) compilation, however additional
API modeling is required for angr to support web browsers.
Conversely, ARCUS already successfully handles some com-
plex programs (e.g., GIMP, 810,000 source lines of C/C++),
demonstrating potential for future improvement.

Cross-Platform Support. The current implementation of
ARCUS is for x86-64 Linux, but with engineering effort it
can support other platforms. Currently, the analysis uses VEX
IR semantics, which is machine independent, and angr can
lift several hardware architectures. Our “what-if” approach is
also machine independent. The integer overflow module lever-
ages some x86-specific semantics to help infer signedness,
but it also contains general techniques and can be extended in
future work. The memory allocation and format string mod-
ules require the semantics for allocation and format string
functions (e.g., printf, malloc). The current prototype sup-
ports typical libraries like libc and jemalloc and prior work
proposes techniques for custom functions [84], which can be
incorporated in future work.

The largest task is the tracing functionality, which requires
an OS module. Although Windows® 10 has an Intel PT
driver for tracing applications [85], it is not intended for third-
party use and Microsoft® has not released any documentation.
While it would be easy for Microsoft to implement ARCUS
for Windows, for anyone else, it would require reverse engi-

2000 30th USENIX Security Symposium USENIX Association

neering Microsoft’s driver [86].

6 Related Work

6.1 Symbolic Execution
The earliest work in symbolic execution demonstrated how ex-
ecuting with symbolic variables can aid in testing and debug-
ging code [87]. As solvers became more efficient, literature
emerged for how to use symbolic execution to replay pro-
tocols [88] and detect vulnerabilities [89]–[92]. Symbolic
execution was also applied to side-channel research [93],
firmware analysis [94], correctness of cryptography soft-
ware [95], emulator testing [96] and automatic binary patch-
ing [97].

Much of this work focused on a subset of symbolic analysis
called concolic execution. Rather than performing pure static
analysis, which can get stuck on loops and string parsing,
concolic systems leverage real executions for guidance [98]–
[100], exploring outwards from the concrete executions to
examine as many paths as possible [80], [101]. However, this
can lead to state explosion, especially as the analysis deviates
further from the concrete execution. This led to hybrid ap-
proaches [102], [103], which alternate between fuzzing and
symbolic exploration to manage state explosion.

A less explored direction is single path concolic execu-
tion, which has proven useful in automatically generating
exploits [101], [104], [105] and reverse engineering. The
advantage of single path is it sidesteps the issue of state ex-
plosion, but it also relies heavily on receiving concrete exe-
cutions that cover interesting program behaviors. ARCUS
distinguishes itself by providing concise root causes using
execution traces without needing concrete inputs.

6.2 Root Cause & Crash Dump Analysis
One of the earliest techniques for root cause analysis, delta
debugging [106], [107], compares program states between
successful and failing inputs to narrow down the set of rele-
vant variables. Another popular approach is to use program
slicing to extract only the code that contributes to the fail-
ure condition [108]. Delta debugging struggles to generate
enough inputs in both classes to be effective while the latter
requires tainting or lightweight replay to keep slices small.

Some failure sketching systems handle security bugs like
overflows [109], but most focus on race conditions because
they are harder to reproduce [110]. Although races have
serious security implications, they are not the only class hin-
dering modern programs. There is also work on application
layer root cause, including analysis of browser warnings and
websites, trace-based pinpointing of insecure keys, and bug
finding using written reports, which is orthogonal to ARCUS.

Another direction is crash dump analysis [111], which aims
to locate the cause of software crashes. However, while our

motivations overlap, our assumptions and scope do not. Crash
dump analysis assumes bugs will manifest into crashes, but
ARCUS can detect non-crashing exploits. Crash dumps yield
partial stack and memory info whereas we have PT traces and
snapshots. Data in crash dumps can be corrupt whereas the
integrity of PT is protected by the kernel. These factors make
our technical challenges significantly different.

7 Conclusion

This work presents ARCUS, a system for performing concise
root cause analysis over traces flagged by end-host runtime
monitors in production systems. Using a novel “what if”
approach, ARCUS automatically pinpoints a concise root
cause and recommends new constraints that demonstrably
block uncovered vulnerabilities, enabling system administra-
tors to better inform developers about the issue. Leveraging
hardware-supported PT, ARCUS decouples the cost of analy-
sis from end-host performance.

We demonstrate that our approach can construct symbolic
program states and analyze several classes of serious and
prevalent software vulnerabilities. Our evaluation against 27
vulnerabilities and over 9,000 Juliet and RIPE test cases shows
ARCUS can automatically identify the root cause of all tested
exploits, uncovering 4 new vulnerabilities in the process,
with 0 false positives and negatives. ARCUS incurs a 7.21%
performance overhead on the SPEC 2006 CPU benchmark
and scales to large programs compiled from over 810,000
lines of C/C++ code.

Acknowledgments

We thank the anonymous reviewers for their helpful and infor-
mative feedback. This material was supported in part by the
Office of Naval Research (ONR) under grants N00014-19-1-
2179, N00014-17-1-2895, N00014-15-1-2162, and N00014-
18-1-2662, and the Defense Advanced Research Projects
Agency (DARPA) under contract HR00112090031. Any opin-
ions, findings, conclusions, or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of ONR or DARPA.

References

[1] H. Hu, C. Qian, C. Yagemann, S. P. H. Chung, W.
Harris, T. Kim, and W. Lee, “Enforcing unique code
target property for control-flow integrity,” in Pro-
ceedings of the 25th ACM Conference on Computer
and Communications Security (CCS), Toronto, ON,
Canada, Oct. 2018.

USENIX Association 30th USENIX Security Symposium 2001

[2] X. Ge, W. Cui, and T. Jaeger, “Griffin: Guarding
control flows using intel processor trace,” in Proceed-
ings of the 22nd ACM International Conference on
Architectural Support for Programming Languages
and Operating Systems (ASPLOS), Xi’an, China, Apr.
2017.

[3] M. Khandaker, A. Naser, W. Liu, Z. Wang, Y. Zhou,
and Y. Cheng, “Adaptive call-site sensitive control
flow integrity,” in 2019 IEEE European Symposium
on Security and Privacy (EuroS&P), IEEE, 2019,
pp. 95–110.

[4] W. He, S. Das, W. Zhang, and Y. Liu, “Bbb-cfi:
Lightweight cfi approach against code-reuse attacks
using basic block information,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 19,
no. 1, pp. 1–22, 2020.

[5] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Maz-
ières, “Ccfi: Cryptographically enforced control flow
integrity,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Secu-
rity, 2015, pp. 941–951.

[6] M. Zhang and R. Sekar, “Control flow integrity for
cots binaries,” in 22nd USENIX Security Symposium
(USENIX Security 13), 2013, pp. 337–352.

[7] L. Feng, J. Huang, J. Hu, and A. Reddy, “Fastcfi:
Real-time control flow integrity using fpga without
code instrumentation,” in International Conference
on Runtime Verification, Springer, 2019, pp. 221–
238.

[8] B. Niu and G. Tan, “Modular control-flow integrity,”
in Proceedings of the 35th ACM SIGPLAN Confer-
ence on Programming Language Design and Imple-
mentation, 2014, pp. 577–587.

[9] Y. Gu, Q. Zhao, Y. Zhang, and Z. Lin, “Pt-cfi: Trans-
parent backward-edge control flow violation detection
using intel processor trace,” in Proceedings of the Sev-
enth ACM on Conference on Data and Application
Security and Privacy, 2017, pp. 173–184.

[10] B. Niu and G. Tan, “Rockjit: Securing just-in-time
compilation using modular control-flow integrity,” in
Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, 2014,
pp. 1317–1328.

[11] S. Forrest, S. Hofmeyr, and A. Somayaji, “The evolu-
tion of system-call monitoring,” in 2008 Annual Com-
puter Security Applications Conference (ACSAC),
IEEE, 2008, pp. 418–430.

[12] D. Sehr, R. Muth, C. L. Biffle, V. Khimenko, E. Pasko,
B. Yee, K. Schimpf, and B. Chen, “Adapting soft-
ware fault isolation to contemporary cpu architec-
tures,” 2010.

[13] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Gra-
ham, “Efficient software-based fault isolation,” in
Proceedings of the fourteenth ACM symposium on
Operating systems principles, 1993, pp. 203–216.

[14] J. Ansel, P. Marchenko, Ú. Erlingsson, E. Taylor,
B. Chen, D. L. Schuff, D. Sehr, C. L. Biffle, and B.
Yee, “Language-independent sandboxing of just-in-
time compilation and self-modifying code,” in Pro-
ceedings of the 32nd ACM SIGPLAN conference on
Programming language design and implementation,
2011, pp. 355–366.

[15] J. A. Kroll, G. Stewart, and A. W. Appel, “Portable
software fault isolation,” in 2014 IEEE 27th Com-
puter Security Foundations Symposium, IEEE, 2014,
pp. 18–32.

[16] B. Patel, Intel Releases New Technology Specifi-
cations to Protect Against ROP attacks, https :
/ / software . intel . com / content / www / us /
en / develop / blogs / intel - release - new -
technology - specifications - protect - rop -
attacks.html, [Online; accessed 26-June-2020].

[17] Control Flow Guard, https://docs.microsoft.
com/en- us/windows/win32/secbp/control-
flow-guard, [Online; accessed 26-June-2020].

[18] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L.
Zhou, L. Zhang, and P. Barham, “Vigilante: End-to-
end containment of internet worms,” in Proceedings
of the twentieth ACM symposium on Operating sys-
tems principles, 2005, pp. 133–147.

[19] D. Brumley, J. Newsome, D. Song, H. Wang, and S.
Jha, “Towards automatic generation of vulnerability-
based signatures,” in 2006 IEEE Symposium on Secu-
rity and Privacy (S&P’06), IEEE, 2006.

[20] J. Newsome, D. Brumley, D. Song, J. Chamcham, and
X. Kovah, “Vulnerability-specific execution filtering
for exploit prevention on commodity software.,” in
NDSS, 2006.

[21] A. Slowinska and H. Bos, “The age of data: Pinpoint-
ing guilty bytes in polymorphic buffer overflows on
heap or stack,” in Twenty-Third Annual Computer Se-
curity Applications Conference (ACSAC 2007), IEEE,
2007, pp. 487–500.

[22] K. Bhat, E. Van Der Kouwe, H. Bos, and C. Giuffrida,
“Probeguard: Mitigating probing attacks through re-
active program transformations,” in Proceedings of
the Twenty-Fourth International Conference on Ar-
chitectural Support for Programming Languages and
Operating Systems, 2019, pp. 545–558.

2002 30th USENIX Security Symposium USENIX Association

https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://software.intel.com/content/www/us/en/develop/blogs/intel-release-new-technology-specifications-protect-rop-attacks.html
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard
https://docs.microsoft.com/en-us/windows/win32/secbp/control-flow-guard

[23] Y. Kwon, B. Saltaformaggio, I. L. Kim, K. H. Lee,
X. Zhang, and D. Xu, “A2c: Self destructing ex-
ploit executions via input perturbation,” in Network
and Distributed Systems Security (NDSS) Symposium
2017, 2017.

[24] R. Ding, H. Hu, W. Xu, and T. Kim, “Desensitization:
Privacy-aware and attack-preserving crash report,” in
Network and Distributed Systems Security (NDSS)
Symposium 2020, 2020.

[25] F. Capobianco, R. George, K. Huang, T. Jaeger, S.
Krishnamurthy, Z. Qian, M. Payer, and P. Yu, “Em-
ploying Attack Graphs for Intrusion Detection,” in
New Security Paradigms Workshop, ser. NSPW’19,
2019.

[26] S. Forrest, S. A. Hofmeyr, A. Somayaji, and T. A.
Longstaff, “A sense of self for unix processes,” in
Proceedings 1996 IEEE Symposium on Security and
Privacy, 1996, pp. 120–128. DOI: 10.1109/SECPRI.
1996.502675.

[27] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z.
Li, and A. Bates, “Nodoze: Combatting threat alert
fatigue with automated provenance triage,” in 26th
ISOC Network and Distributed System Security Sym-
posium, ser. NDSS’19, 2019.

[28] X. Han, T. Pasqueir, A. Bates, J. Mickens, and M.
Seltzer, “Unicorn: Runtime provenance-based de-
tector for advanced persistent threats,” in 27th ISOC
Network and Distributed System Security Symposium,
ser. NDSS’20, 2020.

[29] S. T. King, Z. M. Mao, D. G. Lucchetti, and P. M.
Chen, “Enriching intrusion alerts through multi-host
causality.,” in Proceedings of the 12th ISOC Net-
work and Distributed System Security Symposium,
ser. NDSS’05, 2005.

[30] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar,
and V. Venkatakrishnan, “Holmes: Real-time apt de-
tection through correlation of suspicious information
flows,” in 2019 IEEE Symposium on Security and
Privacy, Los Alamitos, CA, USA: IEEE Computer
Society, 2019.

[31] X. Shu, D. (Yao, N. Ramakrishnan, and T. Jaeger,
“Long-span program behavior modeling and attack de-
tection,” ACM Transactions on Privacy and Security,
vol. 20, 2017.

[32] A. Wespi, M. Dacier, and H. Debar, “Intrusion de-
tection using variable-length audit trail patterns,” in
Recent Advances in Intrusion Detection, Springer,
2000, pp. 110–129.

[33] C. Warrender, S. Forrest, and B. Pearlmutter, “De-
tecting intrusions using system calls: Alternative data
models,” in Proceedings of the 1999 IEEE Sympo-
sium on Security and Privacy (Cat. No.99CB36344),
1999, pp. 133–145.

[34] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K.
Zou, J. Rhee, Z. Zhen, W. Cheng, C. A. Gunter, and
H. chen, “You are what you do: Hunting stealthy
malware via data provenance analysis,” in 27th ISOC
Network and Distributed System Security Symposium,
ser. NDSS’20, 2020.

[35] K. Xu, K. Tian, D. Yao, and B. G. Ryder, “A sharper
sense of self: Probabilistic reasoning of program be-
haviors for anomaly detection with context sensitivity,”
in 2016 46th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks (DSN),
2016, pp. 467–478.

[36] M. Bellare and B. Yee, “Forward integrity for secure
audit logs,” Computer Science and Engineering De-
partment, University of California at San Diego, Tech.
Rep., 1997.

[37] J. E. Holt, “Logcrypt: Forward security and public
verification for secure audit logs,” in Proceedings
of the Australasian Information Security Workshop
(AISW-NetSec), 2006.

[38] R. Paccagnella, K. Liao, D. (Tian, and A. Bates,
“Logging to the danger zone: Race condition at-
tacks and defenses on system audit frameworks,”
in Proceedings of the 2020 ACM SIGSAC Confer-
ence on Computer and Communications Security,
ser. CCS’20, 2020.

[39] B. Schneier and J. Kelsey, “Cryptographic support for
secure logs on untrusted machines.,” in Proceedings
of the USENIX Security Symposium (USENIX), 1998.

[40] D. Ma and G. Tsudik, “A new approach to secure
logging,” ACM Transactions on Storage (TOS), vol. 5,
no. 1, 2009.

[41] A. A. Yavuz and P. Ning, “Baf: An efficient publicly
verifiable secure audit logging scheme for distributed
systems,” in Proceedings of the Annual Computer
Security Applications Conference (ACSAC), 2009.

[42] A. A. Yavuz, P. Ning, and M. K. Reiter, “Efficient,
compromise resilient and append-only cryptographic
schemes for secure audit logging,” in Proceedings of
the International Conference on Financial Cryptog-
raphy and Data Security (FC), 2012.

[43] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A.
Nainar, and I. Neamtiu, “Finding and reproducing
heisenbugs in concurrent programs.,” in OSDI, vol. 8,
2008, pp. 267–280.

USENIX Association 30th USENIX Security Symposium 2003

https://doi.org/10.1109/SECPRI.1996.502675
https://doi.org/10.1109/SECPRI.1996.502675

[44] I. Ahmed, N. Mohan, and C. Jensen, “The impact of
automatic crash reports on bug triaging and develop-
ment in mozilla,” in Proceedings of The International
Symposium on Open Collaboration, 2014, pp. 1–8.

[45] J. Arnold, T. Abbott, W. Daher, G. Price, N. Elhage,
G. Thomas, and A. Kaseorg, “Security impact ratings
considered harmful,” arXiv preprint arXiv:0904.4058,
2009.

[46] P. J. Guo and D. R. Engler, “Linux kernel developer
responses to static analysis bug reports.,” in USENIX
Annual Technical Conference, 2009, pp. 285–292.

[47] H. Patil, C. Pereira, M. Stallcup, G. Lueck, and J.
Cownie, “Pinplay: A framework for deterministic
replay and reproducible analysis of parallel programs,”
in Proceedings of the 2004 International Symposium
on Code Generation and Optimization (CGO), Apr.
2010.

[48] S. Ren, L. Tan, C. Li, Z. Xiao, and W. Song, “Sam-
sara: Efficient deterministic replay in multiproces-
sor environments with hardware virtualization exten-
sions,” in Proceedings of the 2016 USENIX Annual
Technical Conference (ATC), Denver, CO, Jun. 2016.

[49] J. Chow, T. Garfinkel, and P. M. Chen, “Decoupling
dynamic program analysis from execution in virtual
environments,” in USENIX 2008 Annual Technical
Conference on Annual Technical Conference, 2008,
pp. 1–14.

[50] Y. Ji, S. Lee, E. Downing, W. Wang, M. Fazzini, T.
Kim, A. Orso, and W. Lee, “Rain: Refinable attack in-
vestigation with on-demand inter-process information
flow tracking,” in Proceedings of the 24th ACM Con-
ference on Computer and Communications Security
(CCS), Dallas, TX, Oct. 2017.

[51] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z.
Li, and A. Bates, “Nodoze: Combatting threat alert
fatigue with automated provenance triage.,” in NDSS,
2019.

[52] M. E. Aminanto, L. Zhu, T. Ban, R. Isawa, T. Taka-
hashi, and D. Inoue, “Automated threat-alert screen-
ing for battling alert fatigue with temporal isolation
forest,” in 2019 17th International Conference on Pri-
vacy, Security and Trust (PST), IEEE, 2019, pp. 1–
3.

[53] S. McElwee, J. Heaton, J. Fraley, and J. Cannady,
“Deep learning for prioritizing and responding to intru-
sion detection alerts,” in MILCOM 2017-2017 IEEE
Military Communications Conference (MILCOM),
IEEE, 2017, pp. 1–5.

[54] R. Ding, C. Qian, C. Song, B. Harris, T. Kim, and
W. Lee, “Efficient protection of path-sensitive control
security,” in Proceedings of the 26th USENIX Security
Symposium (Security), Vancouver, BC, Canada, Aug.
2017.

[55] C. Yagemann, S. Sultana, L. Chen, and W. Lee, “Bar-
num: Detecting document malware via control flow
anomalies in hardware traces,” in Proceedings of the
25th Information Security Conference (ISC), New
York, NY, USA, 2019.

[56] J. Lee, T. Avgerinos, and D. Brumley, “Tie: Princi-
pled reverse engineering of types in binary programs,”
2011.

[57] Z. Lin, X. Zhang, and D. Xu, “Automatic reverse en-
gineering of data structures from binary execution,” in
Proceedings of the 11th Annual Information Security
Symposium, 2010, pp. 1–1.

[58] T. Wang, C. Song, and W. Lee, “Diagnosis and emer-
gency patch generation for integer overflow exploits,”
in International Conference on Detection of Intru-
sions and Malware, and Vulnerability Assessment,
Springer, 2014, pp. 255–275.

[59] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar,
and W. Joosen, “Ripe: Runtime intrusion preven-
tion evaluator,” in In Proceedings of the 27th An-
nual Computer Security Applications Conference (AC-
SAC), ACM, 2011.

[60] P. E. Black and P. E. Black, Juliet 1.3 Test Suite:
Changes From 1.2. US Department of Commerce,
National Institute of Standards and Technology, 2018.

[61] CVE-2004-0597 Patch, https : / / github . com /
mudongliang / LinuxFlaw / tree / master / CVE -
2004-0597#patch, [Online; accessed 25-October-
2019].

[62] CVE-2004-1288 Patch, https://pastebin.com/
raw / fsFkspFF, [Online; accessed 25-October-
2019].

[63] Red Hat Bugzilla – Attachment 360889 Details for
Bug 523105, https://bugzilla.redhat.com/
attachment.cgi?id=360889&action=diff, [On-
line; accessed 07-January-2020].

[64] Debian Bug report logs - #552035, https://bugs.
debian.org/cgi-bin/bugreport.cgi?att=1;
bug=552035;filename=diff;msg=16, [Online;
accessed 10-January-2020].

[65] Commit 3f730d50, https : / / github . com /
antirez/redis/commit/3f730d50, [Online; ac-
cessed 16-January-2020].

2004 30th USENIX Security Symposium USENIX Association

https://github.com/mudongliang/LinuxFlaw/tree/master/CVE-2004-0597#patch
https://github.com/mudongliang/LinuxFlaw/tree/master/CVE-2004-0597#patch
https://github.com/mudongliang/LinuxFlaw/tree/master/CVE-2004-0597#patch
https://pastebin.com/raw/fsFkspFF
https://pastebin.com/raw/fsFkspFF
https://bugzilla.redhat.com/attachment.cgi?id=360889&action=diff
https://bugzilla.redhat.com/attachment.cgi?id=360889&action=diff
https://bugs.debian.org/cgi-bin/bugreport.cgi?att=1;bug=552035;filename=diff;msg=16
https://bugs.debian.org/cgi-bin/bugreport.cgi?att=1;bug=552035;filename=diff;msg=16
https://bugs.debian.org/cgi-bin/bugreport.cgi?att=1;bug=552035;filename=diff;msg=16
https://github.com/antirez/redis/commit/3f730d50
https://github.com/antirez/redis/commit/3f730d50

[66] gif2png, Command Line Buffer Overflow, https://
bugs.debian.org/cgi- bin/bugreport.cgi?
bug = 550978 # 50, [Online; accessed 25-October-
2019], 2009.

[67] ntp, Stack-based buffer overflow in ntpq and ntpdc
allows denial of service or code execution, https:
//bugzilla.redhat.com/show_bug.cgi?id=
1593580, [Online; accessed 25-October-2019], 2018.

[68] Commit 5470551c, https : / / github . com / mz -
automation / libiec61850 / commit / 5470551c,
[Online; accessed 09-April-2020].

[69] pdfresurrect, Prevent a buffer overflow in possibly
corrupt PDFs, https://github.com/enferex/
pdfresurrect / commit / 3f811dbc, [Online; ac-
cessed 25-October-2019], 2019.

[70] libtiff, Multiple libtiff Issues, https://bugzilla.
redhat . com / attachment . cgi ? id = 128255 &
action=diff, [Online; accessed 25-October-2019],
2006.

[71] EXIF Tag Parsing Library, #70 SERIOUS SECU-
RITY BUG IN EXIF_DATA_LOAD_DATA_ENTRY(),
https://sourceforge.net/p/libexif/bugs/
70/, [Online; accessed 25-October-2019], 2007.

[72] patch.2013.chunked.txt, https : / / nginx . org /
download/patch.2013.chunked.txt, [Online;
accessed 16-January-2020].

[73] patch.2017.ranges.txt, https : / / nginx . org /
download/patch.2017.ranges.txt, [Online; ac-
cessed 16-January-2020].

[74] GraphicsMagick, Attempt to Fix Issue 440, http:
//hg.code.sf.net/p/graphicsmagick/code/
rev/98721124e51f, [Online; accessed 25-October-
2019], 2017.

[75] libzip, Fix double free, https://github.com/nih-
at/libzip/commit/9179b796, [Online; accessed
25-October-2019], 2017.

[76] CVE-2005-0105 Patch, https://pastebin.com/
raw / GHm1k1Rk, [Online; accessed 25-October-
2019].

[77] sudo, Format String Vulnerability, https://bugs.
gentoo.org/401533, [Online; accessed 25-October-
2019], 2012.

[78] LinuxFlaw, https : / / github . com /
VulnReproduction / LinuxFlaw, [Online; ac-
cessed 06-January-2020].

[79] Exploit Database, https : / / www . exploit - db .
com/, [Online; accessed 06-January-2020].

[80] I. Haller, A. Slowinska, M. Neugschwandtner, and
H. Bos, “Dowsing for overflows: A guided fuzzer to
find buffer boundary violations,” in Proceedings of
the 22nd USENIX Security Symposium, 2013, pp. 49–
64.

[81] D. Zhang, D. Liu, Y. Lei, D. Kung, C. Csallner, and W.
Wang, “Detecting vulnerabilities in c programs using
trace-based testing,” in 2010 IEEE/IFIP International
Conference on Dependable Systems and Networks
(DSN), 2010.

[82] V. van der Veen, D. Andriesse, M. Stamatogiannakis,
X. Chen, H. Bos, and C. Giuffrdia, “The dynamics of
innocent flesh on the bone: Code reuse ten years later,”
in Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, 2017,
pp. 1675–1689.

[83] S. Y. Chau, M. Yahyazadeh, O. Chowdhury, A. Kate,
and N. Li, “Analyzing semantic correctness with sym-
bolic execution: A case study on pkcs# 1 v1. 5 signa-
ture verification.,” in NDSS, 2019.

[84] X. Chen, A. Slowinska, and H. Bos, “Who allocated
my memory? detecting custom memory allocators
in c binaries,” in 2013 20th Working Conference on
Reverse Engineering (WCRE), IEEE, 2013, pp. 22–
31.

[85] WindowsIntelPT, https://github.com/intelpt/
WindowsIntelPT, [Online; accessed 12-June-2020].

[86] winipt, https : / / github . com / ionescu007 /
winipt, [Online; accessed 12-June-2020].

[87] J. C. King, “Symbolic execution and program testing,”
Communications of the ACM, vol. 19, no. 7, pp. 385–
394, 1976.

[88] J. Newsome, D. Brumley, J. Franklin, and D. Song,
“Replayer: Automatic protocol replay by binary anal-
ysis,” in Proceedings of the 13th ACM conference on
Computer and communications security, ACM, 2006,
pp. 311–321.

[89] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager,
M. G. Kang, Z. Liang, J. Newsome, P. Poosankam,
and P. Saxena, “Bitblaze: A new approach to
computer security via binary analysis,” in Interna-
tional Conference on Information Systems Security,
Springer, 2008, pp. 1–25.

[90] P. Saxena, P. Poosankam, S. McCamant, and D. Song,
“Loop-extended symbolic execution on binary pro-
grams,” in Proceedings of the eighteenth international
symposium on Software testing and analysis, ACM,
2009, pp. 225–236.

[91] D. A. Molnar and D. Wagner, “Catchconv: Symbolic
execution and run-time type inference for integer con-
version errors,” UC Berkeley EECS, 2007.

USENIX Association 30th USENIX Security Symposium 2005

https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=550978#50
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=550978#50
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=550978#50
https://bugzilla.redhat.com/show_bug.cgi?id=1593580
https://bugzilla.redhat.com/show_bug.cgi?id=1593580
https://bugzilla.redhat.com/show_bug.cgi?id=1593580
https://github.com/mz-automation/libiec61850/commit/5470551c
https://github.com/mz-automation/libiec61850/commit/5470551c
https://github.com/enferex/pdfresurrect/commit/3f811dbc
https://github.com/enferex/pdfresurrect/commit/3f811dbc
https://bugzilla.redhat.com/attachment.cgi?id=128255&action=diff
https://bugzilla.redhat.com/attachment.cgi?id=128255&action=diff
https://bugzilla.redhat.com/attachment.cgi?id=128255&action=diff
https://sourceforge.net/p/libexif/bugs/70/
https://sourceforge.net/p/libexif/bugs/70/
https://nginx.org/download/patch.2013.chunked.txt
https://nginx.org/download/patch.2013.chunked.txt
https://nginx.org/download/patch.2017.ranges.txt
https://nginx.org/download/patch.2017.ranges.txt
http://hg.code.sf.net/p/graphicsmagick/code/rev/98721124e51f
http://hg.code.sf.net/p/graphicsmagick/code/rev/98721124e51f
http://hg.code.sf.net/p/graphicsmagick/code/rev/98721124e51f
https://github.com/nih-at/libzip/commit/9179b796
https://github.com/nih-at/libzip/commit/9179b796
https://pastebin.com/raw/GHm1k1Rk
https://pastebin.com/raw/GHm1k1Rk
https://bugs.gentoo.org/401533
https://bugs.gentoo.org/401533
https://github.com/VulnReproduction/LinuxFlaw
https://github.com/VulnReproduction/LinuxFlaw
https://www.exploit-db.com/
https://www.exploit-db.com/
https://github.com/intelpt/WindowsIntelPT
https://github.com/intelpt/WindowsIntelPT
https://github.com/ionescu007/winipt
https://github.com/ionescu007/winipt

[92] P. Godefroid, M. Y. Levin, D. A. Molnar, et al., “Au-
tomated whitebox fuzz testing.,” in NDSS, Citeseer,
vol. 8, 2008, pp. 151–166.

[93] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kan-
demir, “Casym: Cache aware symbolic execution for
side channel detection and mitigation,” in CaSym:
Cache Aware Symbolic Execution for Side Channel
Detection and Mitigation, IEEE, 2019.

[94] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel,
and G. Vigna, “Firmalice-automatic detection of
authentication bypass vulnerabilities in binary
firmware.,” in NDSS, 2015.

[95] S. Y. Chau, O. Chowdhury, E. Hoque, H. Ge, A.
Kate, C. Nita-Rotaru, and N. Li, “Symcerts: Practical
symbolic execution for exposing noncompliance in x.
509 certificate validation implementations,” in 2017
IEEE Symposium on Security and Privacy (SP), IEEE,
2017, pp. 503–520.

[96] L. Martignoni, S. McCamant, P. Poosankam, D. Song,
and P. Maniatis, “Path-exploration lifting: Hi-fi tests
for lo-fi emulators,” in ACM SIGARCH Computer
Architecture News, ACM, vol. 40, 2012, pp. 337–348.

[97] Y. Shoshitaishvili, A. Bianchi, K. Borgolte, A. Cama,
J. Corbetta, F. Disperati, A. Dutcher, J. Grosen, P.
Grosen, A. Machiry, et al., “Mechanical phish: Re-
silient autonomous hacking,” IEEE Security & Pri-
vacy, vol. 16, no. 2, pp. 12–22, 2018.

[98] M. G. Kang, S. McCamant, P. Poosankam, and D.
Song, “Dta++: Dynamic taint analysis with targeted
control-flow propagation.,” in NDSS, 2011.

[99] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic
unit testing engine for c,” in ACM SIGSOFT Software
Engineering Notes, ACM, vol. 30, 2005, pp. 263–
272.

[100] Y. Shoshitaishvili, R. Wang, C. Salls, N. Stephens,
M. Polino, A. Dutcher, J. Grosen, S. Feng, C. Hauser,
C. Kruegel, and G. Vigna, “SoK: (State of) The Art
of War: Offensive Techniques in Binary Analysis,” in
Proceedings of the 37th Symposium on Security and
Privacy (Oakland), San Jose, CA, May 2016.

[101] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing mayhem on binary code,” in Proceed-
ings of the 33rd Symposium on Security and Privacy
(Oakland), San Francisco, CA, May 2012.

[102] N. Stephens, J. Grosen, C. Salls, A. Dutcher, R. Wang,
J. Corbetta, Y. Shoshitaishvili, C. Kruegel, and G. Vi-
gna, “Driller: Augmenting fuzzing through selective
symbolic execution.,” in Proceedings of the 2016 An-
nual Network and Distributed System Security Sym-
posium (NDSS), San Diego, CA, Feb. 2016.

[103] I. Yun, S. Lee, M. Xu, Y. Jang, and T. Kim, “Qsym:
A practical concolic execution engine tailored for
hybrid fuzzing,” in 27th USENIX Security Symposium
(USENIX Security 18), 2018, pp. 745–761.

[104] T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brum-
ley, “Automatic exploit generation,” Carnegie Mellon
University, 2018.

[105] Y. Wang, C. Zhang, X. Xiang, Z. Zhao, W. Li, X.
Gong, B. Liu, K. Chen, and W. Zou, “Revery: From
proof-of-concept to exploitable,” in Proceedings of
the 2018 ACM SIGSAC Conference on Computer and
Communications Security, ACM, 2018, pp. 1914–
1927.

[106] A. Zeller and R. Hildebrandt, “Simplifying and iso-
lating failure-inducing input,” IEEE Transactions on
Software Engineering, vol. 28, no. 2, pp. 183–200,
2002.

[107] J.-D. Choi and A. Zeller, “Isolating failure-inducing
thread schedules,” in ACM SIGSOFT Software Engi-
neering Notes, ACM, vol. 27, 2002, pp. 210–220.

[108] S. K. Sahoo, J. Criswell, C. Geigle, and V. Adve,
“Using likely invariants for automated software fault
localization,” in ACM SIGARCH Computer Architec-
ture News, ACM, vol. 41, 2013, pp. 139–152.

[109] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik, K. H.
Lee, and S. Lu, “Pres: Probabilistic replay with exe-
cution sketching on multiprocessors,” in Proceedings
of the ACM SIGOPS 22nd symposium on Operating
systems principles, ACM, 2009, pp. 177–192.

[110] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and
G. Candea, “Failure sketching: A technique for auto-
mated root cause diagnosis of in-production failures,”
in Proceedings of the 25th ACM Symposium on Oper-
ating Systems Principles (SOSP), Monterey, CA, Oct.
2015.

[111] J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and B.
Mao, “Postmortem program analysis with hardware-
enhanced post-crash artifacts,” in 26th USENIX Secu-
rity Symposium (USENIX Security 17), 2017, pp. 17–
32.

2006 30th USENIX Security Symposium USENIX Association

	Introduction
	Overview
	Real-World Example
	Threat Model

	Design
	Symbolic Execution Along Traced Paths
	``What If'' Questions
	Analysis Modules
	Capturing the Executed Path
	Snapshots & Memory Consistency
	Performance Constraints
	Vex IR Tainting

	Evaluation
	Accuracy on Micro-Benchmarks
	Locating Real-World Exploits
	Consistency to Advisories & Patches
	Runtime & Storage Overheads
	Case Studies

	Discussion & Limitations
	Related Work
	Symbolic Execution
	Root Cause & Crash Dump Analysis

	Conclusion

