
BACKUP TO THE RESCUE: AUTOMATED FORENSIC
TECHNIQUES FOR ADVANCED WEBSITE-TARGETING CYBER

ATTACKS

A Dissertation
Presented to

The Academic Faculty

By

Ranjita Pai Sridhar

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Georgia Institute of Technology

August 2022

© Ranjita Pai Sridhar 2022

BACKUP TO THE RESCUE: AUTOMATED FORENSIC
TECHNIQUES FOR ADVANCED WEBSITE-TARGETING CYBER

ATTACKS

Thesis committee:

Dr. Brendan Saltaformaggio, Advisor
School of Cybersecurity and Privacy
and School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Frank Li
School of Cybersecurity and Privacy
and School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Wenke Lee
School of Cybersecurity and Privacy
and School of Computer Science
Georgia Institute of Technology

Dr. Daniel Genkin
School of Cybersecurity and Privacy
Georgia Institute of Technology

Dr. Mariusz Jakubowksi
Principal Researcher
Microsoft Research

Date approved: July 18, 2022

For my parents, Ramya and Rabindranath Pai Kasturi

And for my dearest husband, Dr. Suhasaurus Rex

ACKNOWLEDGMENTS

I feel fortunate to call myself the first Ph.D. student of Dr. Brendan

Saltaformaggio and I am thankful for his mentorship. He guided me through the

ups and downs of the stressful, yet a self-rewarding Ph.D. journey. I learned the art

of telling the research story by paying attention to detail. I will reserve my deepest

gratitude for his guidance and unconditional support toward my success. He is the

best advisor that I could have asked for, and for that, I am truly grateful.

I am extremely grateful to our collaborator, CodeGuard, for sharing the dataset

with us at Georgia Tech. This research would not be possible without their support.

I am deeply indebted to my seniors, Omar Alrawi and Ruian Duan, who guided

me during the start of this journey. Words cannot express my gratitude to Mingxuan

Yao and Jonathan Fuller, my academic siblings and my best friends. This Ph.D. has

been an exercise in sustained suffering, and your company made it easier to endure.

I am thankful for your friendship and I will cherish the times we spent together with

our families and fur babies.

I am thankful for the unconditional support from my family. My gratitude for

the endless emotional support and encouraging words from my parents, Ramya and

Rabindranath Pai Kasturi, cannot be expressed in words alone. I am thankful for the

love, support, and encouragement from my second set of parents from marriage, Vani

and B.V. Sridhar. I am extremely grateful to Vaishali and Dr. Sudhir Pai Kasturi

for the love, laughter, and prayers; for being my home away from home.

This dissertation could not have existed without my forever cheerleader, my

dearest husband, Dr. Suhas Sridhar. Thank you for believing in me when I lost

hope, for encouraging me to be a better version of myself every day, and for the

endless supply of animal photos to cheer me on. I am proud of you for persevering

and leading by example. I will always love you.

iv

TABLE OF CONTENTS

Acknowledgments . iv

List of Tables . ix

List of Figures . xi

Chapter 1: Introduction . 1

1.1 Dissertation Statement . 1

1.2 Thesis and Contributions . 1

1.2.1 TARDIS . 3

1.2.2 YODA . 3

1.2.3 OBIWAN . 4

1.3 Dissertation Organization . 5

Chapter 2: TARDIS: Rolling Back The Clock On CMS-Targeting
Cyber Attacks . 7

2.1 Preliminary Investigation . 9

2.2 Design . 13

2.2.1 Spatial Element Sequencing 13

2.2.2 Spatial Analysis . 15

2.2.3 Temporal Correlation and Forensic Recovery 21

v

2.2.4 Compromise Window Recovery 23

2.3 Validating our Intuition . 27

2.3.1 Identification of Attack Models 28

2.3.2 Multi-Stage Attack Timeline 31

2.4 Deploying TARDIS in the Wild . 32

2.4.1 The CMS Landscape . 33

2.4.2 Evolution of Attacks . 34

2.4.3 Compromise Window . 37

2.4.4 Existing Attack Mitigation Framework 37

2.4.5 Performance . 40

2.5 Case Study . 40

2.5.1 Case Study 1: A Global View of Attack Movement 40

2.5.2 Case Study 2: “User-Friendly” Remote Control 42

2.6 Limitations . 43

Chapter 3: Mistrust Plugins You Must: A Large-Scale Study Of
Malicious Plugins In WordPress Marketplaces 45

3.1 Preliminary Study: Perilous Economy 47

3.2 Design . 51

3.2.1 Plugin Detection . 51

3.2.2 Malicious Behavior Detection 58

3.2.3 Origin of Malicious Plugins 64

3.2.4 Impact Study . 65

3.3 Validating YODA . 66

vi

3.3.1 Plugin Detection Evaluation 67

3.3.2 Malicious Behavior Evaluation 69

3.4 Deploying YODA . 71

3.4.1 Malicious Behavior Evolution 73

3.4.2 Fueling the Malware Economy 75

3.4.3 Nulled Marketplace Study . 77

3.4.4 Are Infected Plugins Cleaned Up? 80

3.5 Persistence of Malicious Plugins . 82

3.6 Case Studies . 83

3.7 Limitations and Future Work . 85

Chapter 4: The Malware That Keeps On Giving: A Decade-Long
Study Of Obfuscation and Packing On Server-Side Web
Malware . 86

4.1 Background . 88

4.1.1 Types of Obfuscation . 89

4.1.2 Types of Packing . 90

4.2 Methodology . 92

4.2.1 Obfuscation Detection And Categorization 93

4.2.2 Function & Variable Reconstruction 96

4.2.3 Guided Unpacking . 97

4.2.4 Temporal Evolution . 101

4.3 Evaluating OBIWAN . 101

4.3.1 Obfuscation Evaluation . 101

vii

4.3.2 Unpacker Evaluation . 103

4.4 Temporal Evolution of Packed Files 105

4.4.1 Comparing With UnPHP . 106

4.5 Large-Scale Study . 107

4.5.1 Obfuscation & Packing Landscape 109

4.5.2 Do Attackers Reuse Malware? 110

4.5.3 Can AVs Detect Packed Malware? 113

4.6 Case Studies . 116

4.6.1 Popular Malware . 116

4.6.2 Packed Layer Evolution . 117

Chapter 5: Related Work . 120

5.1 Large-Scale Study of Web Attacks . 120

5.2 Causality Modeling . 121

5.3 Web Application Security . 123

5.4 Web Malware Analysis . 123

5.5 Measurement Studies . 124

Chapter 6: Conclusion . 126

References . 128

viii

LIST OF TABLES

2.1 Temporal File Differential Analysis. 11

2.2 Formal Definitions of the State of the CMS Deployment. 13

2.3 Rules to Model Compromised CMS Events as Multi-Stage Attack Phases. 22

2.4 Distribution of Compromises in the Evaluation Dataset of 163 Websites. 28

2.5 Evaluation of the Multi-Stage Attack Phase Models. 29

2.6 Overall Distribution of Compromised Websites and Average File
Counts per CMS. 33

2.7 Attack Phase Distribution Across the 306, 830 Websites. 35

2.8 Effectiveness of the Current Industry Attack Mitigation Framework. . 38

3.1 The Economy of WordPress Plugin Marketplaces. 48

3.2 High-level Dataflow Sequence of the Semantic Malicious Behavior
Models from Source to Sink. 57

3.3 Classes of Suspicious API Sinks. 60

3.4 Plugin Detection Evaluation. 68

3.5 Evaluation of the Malicious Behavior Detection. 70

3.6 Dataset Summary. 71

3.7 Distribution and Temporal Evolution of the Malicious Behaviors
Across all Websites in our Dataset. 72

3.8 The Economy of Malicious Plugin Marketplaces. 75

ix

3.9 Study of Malicious Plugins From Nulled Marketplaces. 78

3.10 The Cleanup and Reinfection Distribution of Malicious Plugins. . . . 81

4.1 Evaluation of OBIWAN’s Obfuscation Categorization 102

4.2 Evaluation of OBIWAN’s Unpacking Module. 103

4.3 Temporally Evaluating Unpacked Files. 105

4.4 Comparing OBIWAN’s Unpacker with UnPHP. 106

4.5 Dataset Summary. 107

4.6 Obfuscation and Packing Landscape In Our Dataset. 108

4.7 Temporal Evolution For Packing Based On Malware Reuse. Here,
PF - Packed Files; R - Reused; RN - Reused and Normalized; IL -
Intermediate Packed Layers; UP - Unpacked Payload 111

4.8 Packing Evolution Based On AV Evasion. Here, PF - Packed Files;
N - Normalized ; IL - Intermediate Packed Layers; UP - Unpacked
Payloads, Subscripta - identified as malicious by AVs 114

4.9 Hashes For The Top 5 Packed Malware and Top 5 Unpacked Payloads
In Our Dataset . 116

4.10 Top-5 Popular Layer 0 Packed Files 116

4.11 Top-5 Popular Unpacked Payloads . 117

x

LIST OF FIGURES

1.1 Interconnection Of The Three Components Of My Web Attack
Forensics Framework. 2

2.1 Three models of temporal infection evolution. 10

2.2 TARDIS Overview. Phase 1 constructs spatial element sets from the
website backup. Phase 2 computes the structural and code metrics for
each individual snapshot. Phase 3 temporally correlates the collected
metrics and labels attack events. Phase 4 verifies the assigned attack
labels and extracts the compromise window. 14

2.3 Outlier detection within the directive length distribution of all code
elements in one snapshot. 18

2.4 Compromise window distribution in CMSs (truncated to 300 days). . 36

2.5 Time to process a CMS backup (seconds) versus total number of files
in the CMS. 40

2.6 Global attack movement in WordPress websites. 41

2.7 GUI backdoor injected in a Drupal website. 43

3.1 YODA Design Overview. 52

3.2 A Typical WordPress Plugin Header. 53

3.3 List of WordPress Plugin APIs. 54

3.4 Google Search Results of a Typical Paid Plugin. 79

3.5 Persistence of Malicious Plugins. 82

xi

3.6 Malicious URLs Created and Updated. 84

4.1 Types of Packing in Server-Side Web Malware. 90

4.2 OBIWAN Pipeline for Obfuscation Detection and Unpacking. 94

4.3 Maximum Packing Layers Seen Each Year 118

xii

SUMMARY

Although CMSs have enjoyed rapid adoption in the industry, the security of these

systems has gone severely under-considered. Despite the significant deployment of

these complex software systems, to date, little research has been done to investigate

and remediate CMS-targeting cyber attacks. For this reason, the vast majority of

the website hosting industry has shifted to a “backup and restore” model of security,

which relies on error-prone anti-virus (AV) scanners to prompt users to roll back to

a pre-infection snapshot. This research revealed that this model is ineffective and

found that the evolution of tens of thousands of attacks exhibited clear long-lived

multi-stage attack patterns.

In order to make a practical impact in this space, I propose that forensic

techniques must focus on the only artifact widely available to CMS owners: the

nightly backups. To this end, this research presents TARDIS, a novel provenance

inference technique which enables the investigation of multi-stage CMS-targeting

attacks. Based on only the nightly backups, TARDIS reconstructs a timeline of the

attack phases and recovers the compromise window, or the period of time during

which the snapshots should not be trusted. I deployed TARDIS on the nightly

backups of over 300K websites and found 20,591 attacks which lasted from 6 to

1,694 days, some of which were still yet to be detected.

Popular content management system (CMS) plugin marketplaces generate over a

billion dollars in revenue every year [1], but little has been done by the research

community to evaluate, assess, and ensure the safety of the consumers (website

owners). Besides, CMS-based websites are almost entirely constructed from plugins

and themes, which place implicit trust on large amounts of un-vetted code with

limitless access to the webserver. This research uncovered that this trust is often

broken for monetary gains and that malicious plugin authors are literally selling

xiii

plugins packed with malware to unsuspecting victims. I developed YODA, an

automated framework to detect malicious plugins and track down their origin.

YODA uncovered 47,337 malicious plugins on 24,931 unique websites. Among

these, $41.5K had been spent on 3,685 malicious plugins sold on legitimate plugin

marketplaces. Pirated plugins cheated developers out of $228K in revenues.

Post-deployment attacks infected $834K worth of previously benign plugins with

malware. Lastly, YODA informs our remediation efforts, as over 94% of these

malicious plugins are still active today.

The findings from TARDIS revealed that when a webserver is compromised

thousands of obfuscated and packed malware files are dropped and executed

undetected alongside the webserver’s existing code. Despite this surprisingly overt

attack style, little research has been done to identify obfuscated/packed files on

webservers, unpack them, and study their evolution over the last decade. This

research studied over 10.1M obfuscated malware collected from over 27K production

websites dating back to 2012. I found that 8.7M of these malware were packed and

highlighted that packing has enabled the attackers to successfully evade malware

detection systems. As part of this study, I developed OBIWAN, a novel dynamic

analysis-based deobfuscation and unpacking methodology, which can improve

server-side malware detection. In fact, OBIWAN revealed that out of 9.2M

unpacked malware payloads captured from exploited webservers since 2020 only

29% were previously unknown, and the rest were naively repacked known

(AV-detectable) malware. by obfuscated malware.

xiv

CHAPTER 1

INTRODUCTION

1.1 Dissertation Statement

The last decade has seen a significant rise in non-technical users gaining a web

presence, often via the easy-to-use functionalities of Content Management Systems

(CMS). In fact, over 60% of the world’s websites run on CMSs. Unfortunately, this

huge user population has made CMS-based websites a high-profile target for

hackers. Worse still, the vast majority of the website hosting industry has shifted to

a “backup and restore” model of security, which relies on error-prone AV scanners to

prompt non-technical users to roll back to a pre-infection nightly snapshot. My

cyber forensics research directly addresses this emergent problem by developing

next-generation techniques for the investigation of advanced cyber crimes.

Driven by economic incentives, attackers abuse the trust in this economy: selling

malware on legitimate marketplaces, pirating popular website plugins, and infecting

websites post-deployment. Furthermore, attackers are exploiting these websites at

scale by carelessly dropping thousands of obfuscated and packed malicious files on

the webserver. This is counter-intuitive, since attackers are assumed to be stealthy.

Despite the rise in web attacks, efficiently locating and accurately analyzing the

malware dropped on compromised webservers has remained an open research

challenge.

1.2 Thesis and Contributions

Before the work in this dissertation, the research community turned to fine-grained

logging to understand the provenance of an attack [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,

14, 15, 16]. Unfortunately, in the webserver ecosystem, these techniques are hardly

1

YODA

TARDIS OBIWAN

Temporal Attack

Progression

Webserver Attack Forensics

Plugin Marketplace Forensics

Malware Distribution

Network

Obfuscated

Malware

Inspired Next Tech

Figure 1.1: Interconnection Of The Three Components Of My Web Attack Forensics
Framework.

deployed in practice due to the notable performance/space overhead incurred by these

solutions [13, 14, 15, 2]. Besides, solving this problem is challenging due to the diverse

range of stakeholders in the website ecosystem. Each has different motivations and

visibilities into this malicious plugin problem. Website owners have full visibility

over the webserver activity, but they rely on naive indicators when installing website

plugins. Hosting providers have no visibility into the plugin installations but need

to ensure their hosting platform remains malware-free. Plugin marketplaces have

visibility over the plugins they host but need a scalable and efficient measurement of

the malicious plugins being sold on their marketplaces. An ideal solution must ensure

ease of use and reliable detection.

This dissertation posits that the already collected webserver nightly backup

snapshots contain all required information to enable automated and scalable

detection of website compromises. In this dissertation, I will present a web attack

forensics framework that leverages program analysis to automatically understand

the webserver’s nightly backup snapshots. This will enable the recovery of temporal

phases of a webserver compromise and its origin within the website supply chain.

Specifically, this framework consists of three technologies that have driven this

paradigm shift in web attack forensics capabilities. Figure 1.1 presents these three

2

components in relation to their investigation subject (webserver plugin marketplace

forensics vs. webserver attack forensics) and how the technologies revealed by each

influenced the development of their successors. Below I will briefly introduce these

techniques, the technical contributions made by each, and the unique challenges

that they overcome.

1.2.1 TARDIS

Over 60% of the world’s websites run on Content Management Systems (CMS).

Unfortunately, this huge user population has made CMS-based websites a

high-profile target for hackers. Worse still, the vast majority of the website hosting

industry has shifted to a “backup and restore” model of security, which relies on

error-prone AV scanners to prompt users to roll back to a pre-infection nightly

snapshot. This research had the opportunity to study these nightly backups for over

300,000 unique production websites. In doing so, I measured the attack landscape of

CMS-based websites and assessed the effectiveness of the backup and restore

protection scheme. To my surprise, I found that the evolution of tens of thousands

of attacks exhibited clear long-lived multi-stage attack patterns. First, I will present

TARDIS, an automated provenance inference technique, which enables the

investigation and remediation of CMS-targeting attacks based on only the nightly

backups already being collected by website hosting companies. With the help of our

industry collaborator, I applied TARDIS to the nightly backups of those 300K

websites and found 20,591 attacks which lasted from 6 to 1,694 days, some of which

were still yet to be detected.

1.2.2 YODA

Modern websites owe most of their aesthetics and functionalities to Content

Management Systems (CMS) plugins, which are bought and sold on widely popular

marketplaces. Driven by economic incentives, attackers abuse the trust in this

3

economy: selling malware on legitimate marketplaces, pirating popular plugins, and

infecting plugins post-deployment. This research studied the evolution of CMS

plugins in over 400K production webservers dating back to 2012. I developed

YODA, an automated framework to detect malicious plugins and track down their

origin. YODA uncovered 47,337 malicious plugins on 24,931 unique websites.

Among these, $41.5K had been spent on 3,685 malicious plugins sold on legitimate

plugin marketplaces. Pirated plugins cheated developers out of $228K in revenues.

Post-deployment attacks infected $834K worth of previously benign plugins with

malware. Lastly, YODA informs the remediation efforts, as over 94% of these

malicious plugins are still active today.

1.2.3 OBIWAN

Webservers remain a popular target for malware due to their outdated antivirus

(AV) solutions and relatively less-technical user base. When a webserver is

compromised thousands of obfuscated and packed malware files are dropped and

executed undetected alongside the webserver’s existing code. Despite this

surprisingly overt attack style, little research has been done to identify

obfuscated/packed files on webservers, unpack them, and study their evolution over

the last decade. This research studied over 10.1M obfuscated malware collected

from over 27K production websites dating back to 2012. My research found that

8.7M of these malware were packed and highlighted that packing has enabled the

attackers to successfully evade malware detection systems. As part of this study, I

developed OBIWAN, a novel dynamic analysis-based deobfuscation and unpacking

methodology, which can improve server-side malware detection. In fact, OBIWAN

revealed that out of 9.2M unpacked malware payloads captured from exploited

webservers since 2020 only 29% were previously unknown, and the rest were naively

repacked known (AV-detectable) malware.

4

1.3 Dissertation Organization

This dissertation will present the evolution of this body of work. I will highlight

the progression of the shifts in web attack forensics capabilities proposed by each

subsequent technology. The overall organization of this dissertation is as follows:

• Chapter 1 has introduced the the forensic benefits and unique challenges of

server-side web attack investigation. I have presented an overview of my

contributions to this area, with a specific focus on moving the research field

away from traditional log-based provenance inference for attack evidence

recovery and instead developing the concepts of spatial-temporal web attack

forensics. For each component within this body of work, I have demonstrated

the research problems they solve and the fundamental principles behind each

technique.

• Chapter 2 explains in detail the motivation, design, implementation, and

evaluation of TARDIS. I will present the landscape of web attack forensics

research before the development of TARDIS, and the many investigation

scenarios which benefit from TARDIS’s powerful new capabilities.

• Chapter 3 introduces YODA, which focuses on identifying the origin of web

attacks revealed by TARDIS. I will explore the malicious plugins that are

responsible for these attacks and identify their malicious behaviors. I will

explain the malware distribution network within the website plugin supply

chain and the role of pirated plugins towards spreading server-side web

malware.

• Chapter 4 presents OBIWAN, my most direct effort to focus on the vastly

ignored analysis of obfuscated and packed server-side web malware. I will

analyze the obfuscation and packing techniques adopted by attackers over the

5

past decade that enabled them to evade malware detection systems. I will

discuss the challenges towards unpacking these malware and OBIWAN’s

guided unpacking technique which accomplishes this task, thus highlighting

the gap in the existing defenses.

• Chapter 5 describes related research efforts which serve as motivation,

background, and technical complements to my work in this dissertation.

• Chapter 6 concludes this dissertation.

6

CHAPTER 2

TARDIS: ROLLING BACK THE CLOCK ON CMS-TARGETING

CYBER ATTACKS

Over 60% of the world’s websites run on Content Management Systems (CMS) [17],

with WordPress controlling nearly 60% of the CMS market [18]. Unfortunately, this

widespread adoption has led to a swift increase in CMS-targeting cyber attacks.

These attacks are made even easier, because CMS deployments are an amalgam of

layered software and interpreters, all with varying degrees of network and system

permission, which execute on the internet-facing web server. Worse still, this research

has uncovered an unnerving trend: in-the-wild compromises of CMS deployments

overwhelmingly exhibit the “low and slow” characteristics indicative of multi-stage

attacks.

Despite the significant deployment of these complex software systems, to date,

little research has been done to investigate and remediate CMS-targeting cyber

attacks. Traditionally, the research community has turned to fine-grained logging to

understand the provenance of an attack [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,

16]. Unfortunately, in the CMS domain, these techniques are hardly deployed in

practice. Specifically, despite recent advances, fine-grained logging solutions still

incur notable performance/space overhead [13, 14, 15, 2] and often require

instrumenting and training with the target systems [6, 11, 3, 16]. Moreover, website

owners often have no control over the underlying web server, because the entire

platform is owned and maintained by a hosting provider (e.g., HostGator [19] or

even a university IT department).

For these reasons, industry standard has long shifted to a “backup and restore”

model of security, offered by popular platforms such as Dropmysite [20],

7

Codeguard [21], GoDaddy [22], Sucuri [23], and iPage [24]. Anti-virus (AV) scanners

are deployed to detect compromises in websites, and nightly backups of the

website’s files are maintained offsite. Unfortunately, these approaches also have

well-known limitations: AV signatures only catch well-known malware, they fail to

detect stealthy multi-stage attacks, and high false alarm rates cause real alerts to be

ignored [25, 26]. Moreover, website owners often (erroneously) revert to the most

recent snapshot which did not trigger an AV alert. In fact, this research has found

that website owners only take action (i.e., rollback to a snapshot) for 31% of true

alerts and only one-third of those rollback to a pre-initial-infection state.

This research had the unique opportunity to study these attack trends in nightly

backups from over 300,000 production websites. In collaboration with CodeGuard1,

we had initially set out to develop a website protection methodology that could replace

the ineffective backup and restore standard. We began by assessing the entire history

of nightly backups for 70 websites which our collaborator identified as having recently

been targeted by cyber attacks. Our preliminary investigation of this dataset (detailed

in §2.1) revealed something we had not expected: the evolution of each attack exhibited

clear multi-stage attack patterns — slowly establishing an initial foothold, quietly

maintaining persistence, lateral movement, cleaning up traces of earlier phases, etc.

Based on this discovery, we turned our attention to how forensic investigators

could recover from these attacks. In order to make a practical impact in this space,

we propose that forensic techniques must focus on the only artifact widely available

to CMS owners: the nightly backups. To this end, this paper presents TARDIS, a

novel provenance inference technique which enables the investigation of multi-stage

CMS-targeting attacks. Based on only the nightly backups, TARDIS reconstructs a

timeline of the attack phases and recovers the compromise window, or the period of

time during which the snapshots should not be trusted.
1One of the largest corporate website security and backup solutions on the market.

8

Through our collaboration with CodeGuard, we used TARDIS to perform a

systematic study of the attack landscape across 306, 830 CMS-based production

websites — unique domains ranging from 38 websites within the Alexa Top 10K and

4,038 in Alexa Top 1M to mom-and-pop e-commerce sites, with nightly backups

covering approximately 1900 days (March 2014 to May 2019). Based on this study,

we uncovered 20, 591 websites (6.7%) which were compromised with advanced

multi-phase attacks. Our empirical measurement revealed several concerning facts:

We found that attacks persisted in CMS websites for a minimum of 6 days and a

maximum of 1694 days, with a median of 40 to 100 days. More than 20% of

WordPress websites, in particular, housed attacks for over a year (likely due to

WordPress’s significant market share). These attacks involved stealthily dropping a

huge volume of malicious code affecting the web server. We found that during an

attack the number of files increased by at least 50%, ranging from visitor-attacking

browser exploits to full-fledged HTML-based remote control GUIs.

2.1 Preliminary Investigation

Our investigation began with 70 websites that were known to have been recently

compromised. We started by asking the key cyber forensics question: How would

an investigator recover the website from these attacks? Unfortunately, CMS website

owners generally lack the expertise and control over the hosting server required to

enable robust forensic logging. Given only these nightly backups, we quickly realized

that an investigator’s visibility is significantly limited.

Inferring Provenance Patterns. In trying to solve this problem, we made our

first key observation: A finite number of identical provenance patterns exist within

the evolution of all the websites. We first found that a file in a given snapshot

can exist in 1 of 3 states: added, modified, or deleted. Figure 2.1 illustrates the

three infection scenarios we observed in the website backups. A file added A can

9

A

(a) Cured (b) Recurring (c) Uncured

…

…

…
A

A M D

D

D

!

!

!

A

A

A M D

D

D

!

!

!

!

!

! !

!

!

!

!

A

A

A A

A

A

M
!

Figure 2.1: Three models of temporal infection evolution.

be flagged as suspicious (denoted by !) by an AV at some point throughout its

life cycle. These files could also be flagged as suspicious (by an AV) after they are

modified M . In some cases, a snapshot rollback is performed to treat the suspicious

files by deleting D them. If the rollback deletes all of the attacker’s files then the

attack is cured, as shown in Figure 2.1(a). In other cases, no action is taken despite

detecting a suspicious file (Uncured in Figure 2.1(c)). Unfortunately, this led to the

discovery that the industry standard of “backup and restore” is entirely insufficient.

We found that an alarming 80% of these websites were in fact still infected — many

website owners had rolled back to a snapshot and patched the vulnerability, but given

their lack of forensic expertise, they were unable to identify a pre-infection snapshot

(leaving initial backdoors in place and allowing the attack to recur).

In order to quickly rollback to a clean snapshot, investigators must recover the

compromise window, or the period of time during which the snapshots should not be

trusted. This is further complicated by the fact that each snapshot contains tens of

thousands of files (11,292 on average), making this investigation a search for needles

in a haystack. Not discouraged, we drilled down into the individual snapshots from a

single Drupal website, W6828862, which will serve as a running example throughout

this paper.

Single Snapshot Metrics. When looking into the individual snapshots from

W682886, we made our second key observation: The complexity of each snapshot
2Website domain is omitted pending responsible disclosure.

10

Table 2.1: Temporal File Differential Analysis.

Date Outlier PHP HTML ASCII XML PNG ZIP

20 Apr - 0 0 +1 0 0 0
21 Apr ! +7 +1 +3 +21 0 0
22 Apr - -2 0 +1 0 0 0
23 Apr - 0 +2 +2 0 0 0
24 Apr - 0 0 +1 0 0 0
25 Apr - +3 -1 +6 0 0 0
05 Jun ! -13 +5 +50 0 +9 +1
07 Jun ! -31 0 +1 0 0 0
08 Jun ! -18 -6 -22 -20 -9 -1
09 Jun - +5 0 0 0 0 0
10 Jun - 0 0 +3 0 0 0
11 Jun - +5 0 +1 0 0 0
12 Jun - +3 -7 -4 0 0 0
13 Jun ! +9 +13 +28 +20 0 +1
14 Jun ! -13 -13 -26 -20 0 -1
15 Jun - 0 0 +1 0 0 0
16 Jun - 0 0 +1 0 0 0

can be reduced to a set of measurements, called spatial metrics, that highlight the

existence of cyber attack evidence. In addition to the state of each file in the

snapshot from before (our first spatial metric), we designed another spatial metric

which measures extension mismatches among the files, i.e. if a file’s internal format

matches the filename’s extension. Similarly, we implemented another spatial metric

to identify UTF-8 based code obfuscation patterns in server-side script files. For

example, in the case of W682886, we found 3 PHP files with obfuscated payloads

disguised as icon files in the 5 June 2018 snapshot which initiated the attack. In the

end, we settled on the 9 spatial metrics detailed in §4.2. These spatial metrics were

effective at highlighting the presence of cyber attack artifacts within a single

snapshot. However, while this was a good first step, it was neither sufficient to

explain the evolution of the attack nor to understand the length of compromise.

Temporal Evolution Of Attack Phases. We collected spatial metrics to

represent each snapshot of W682886, paying specific attention to sudden changes

between pairs of consecutive snapshots. This revealed our third key observation:

Modelling the implicit events which trigger these sudden changes can expose the

attack phases. This led us to plot the temporal progression of the spatial metrics

across all of W682886’s snapshots.

11

Table 2.1 shows one such progression considering only a single spatial metric, i.e.

the file format numbers. The temporal evolution of this metric exposed the first

attack signs. As seen in Table 2.1, sudden changes in the file format metric stand out

on 21 April, 5-8 June, and 13-14 June. We found identical spatial metric outliers in 3

other Drupal websites from 14 April to 21 May 2018, suggesting the attack’s lateral

movement. Canali et.al. [27] also found that web attacks dropped large volumes of

files on the web server, which explains the sudden changes we observed in the file

format metrics. We also observed that these patterns evolved similarly over time —

adding more functionality to the existing malicious code (e.g. it started with only file

read capabilities, and after 8 days evolved to modify files and communicate over an

SSL gateway). Eventually, we saw that these attacks tried to clean up their footprints

by deleting most of the attack files.

Attack Model. These patterns formed the basis of the multi-stage attack model

presented in this paper. Our study found that these attacks consisted of slow and

steady attack patterns starting with establishing an initial foothold, malware

injection, maintaining persistence, lateral movement, and eventually cleaning up any

traces of malicious activity. This was confirmed by our case studies (§2.5), which

provide an intriguing view of this widespread attack evolution.

Taken together, the above key observations drove our design of TARDIS.

Modeling the temporal evolution of the spatial metrics allows TARDIS to infer the

provenance of attack evidence. Further, identifying outliers within that evolution

reveals both the compromise window (starting Apr 21 for W682886) and the

progression of the attack phases. Using TARDIS, forensic investigators know where

to focus their efforts and website owners can quickly revert the website to a clean

snapshot. In §2.3, we will revisit these original 70 websites as manually-investigated

ground truth to evaluate the effectiveness of the TARDIS framework.

12

Table 2.2: Formal Definitions of the State of the CMS Deployment.

Name Symbol Definition Description

Time Ψ = (ψ, ...) Ψ = (Z,+) Time measured in terms of the
snapshot versions.

Space Θ = (θ, ...) Θ = (Z,+) Space of elements that can be
monitored.

Elements V = (el, ...) el = el (θ, ψ, ψ′) Files under investigation within their
life span.

Spatial Metrics M = (m, ...) m = m (θ, ψ) Measurements computed against a
single night’s snapshot of the website
backup attributes.

Labels L = (lb, ...) lb = lb (ψ, θ) An enumerable set of labels describing
the events associated with the security
of the elements.

2.2 Design

TARDIS overcomes the challenges described in §2.1 via a novel provenance

inference technique, using only the nightly backups of the CMS deployment.

Figure 2.2 shows the phases of TARDIS’s operation: First, TARDIS constructs a

temporally ordered set of spatial elements from each snapshot (§2.2.1). It then

computes spatial metrics for each individual snapshot’s elements (§2.2.2). This is

followed by temporally correlating the collected spatial metrics and querying them

against attack models to recover the timeline and label attack events (§2.2.3).

Finally, it verifies the sequence of assigned attack labels and extracts the

compromise window (§2.2.4).

2.2.1 Spatial Element Sequencing

TARDIS extracts the files associated with each night’s snapshot and maps them as

spatial elements (elj (ψi) ∈ Vi) for each snapshot ψi ∈ Ψ. Here, Ψ is the set of all ψi,

the label i denotes the index of the temporal snapshot under analysis, and j denotes

the index of a spatial element in Vi. Basically, ψi is a point in time when the ith

snapshot was taken. Vi is the set of spatial elements (elj) collected at time ψi. For

example, the initial snapshot is collected at ψ0, the next snapshot at ψ1 and so on. At

13

Fi
gu

re
2.

2:
T

A
R

D
IS

O
ve

rv
ie

w
.

Ph
as

e
1

co
ns

tr
uc

ts
sp

at
ia

l
el

em
en

t
se

ts
fro

m
th

e
we

bs
ite

ba
ck

up
.

Ph
as

e
2

co
m

pu
te

s
th

e
st

ru
ct

ur
al

an
d

co
de

m
et

ric
s

fo
re

ac
h

in
di

vi
du

al
sn

ap
sh

ot
.

Ph
as

e
3

te
m

po
ra

lly
co

rr
el

at
es

th
e

co
lle

ct
ed

m
et

ric
s

an
d

la
be

ls
at

ta
ck

ev
en

ts
.

Ph
as

e
4

ve
rifi

es
th

e
as

sig
ne

d
at

ta
ck

la
be

ls
an

d
ex

tr
ac

ts
th

e
co

m
pr

om
ise

w
in

do
w

.

14

snapshot ψ0, the set of elements are represented as V0 = [el0, el1, ...]. These elements

(elj (ψi)) ∈ Vi reside in the space Θ that denotes the monitoring space of all spatial

elements (i.e., all versions of all files hosted on the web server).

While processing each temporal snapshot ψi, a set of initial spatial metrics

(mk (ψi) ∈ Mi) are recorded in the set Mi. Here, the label k denotes the index of

the spatial metrics collected at temporal snapshot ψi. These initial spatial metrics

consists of the file type counts, and the state of each spatial element in terms of

added, modified, or deleted. Mi is further populated with carefully selected

measurements as discussed in §2.2.2. A comprehensive definition of the terminology

used is presented in Table 2.2.

For example, the website W682886’s initial snapshot (ψ0) contains 11, 327 files. All

of these files are mapped as a sequence of spatial elements in V0. As an example of

a single spatial metric, this snapshot also contains 23 different file types (e.g. PHP,

HTML, JS, CSS, etc.). This information is recorded within the spatial metric set M0.

If the backups are collected on a nightly basis for 3 months (e.g., 91 backups), then:

V = [V0,V1, ...,V90]

M = [M0,M1, ...,M90]

V0 = [el0, el1, ..., el11326]

M0 = [num (PHP) = 727, num (CSS) = 829, ...]

2.2.2 Spatial Analysis

The set of spatial elements comprise of various file types (such as PHP, HTML, JS,

CSS, images, plaintext, etc.), each of which requires disparate investigation techniques

to identify attack attributes. To address this challenge, we split spatial analysis to

extract two types of metrics: (1) structural metrics and (2) code metrics.

15

Structural Metrics

With the computed set of spatial elements V and the initial metrics M for each

temporal snapshot, we turn to investigating this set V. Based on our observations

from the preliminary study, we developed a suite of lightweight measurements that

highlight the existence of suspicious elements.

Hidden Files and Directories. Long-lived multi-stage attacks can be

characterized by the attacker’s intent to modify the existing setup and laying low at

the same time. During our preliminary study, we observed that this was achieved by

dropping malicious and/or suspicious elements as a hidden file or by placing them in

a hidden directory to evade first order defenses. TARDIS employs pattern

matching by filtering the typically expected hidden elements (such as .htaccess) and

appends a structural metric Hide(elj(ψi)) to Mi upon finding an element elj ∈ Vi in

a hidden location, because websites did not often employ hidden files or directories.

Extension Mismatch. We also observed that another common tactic used in

CMS-targeting attacks was to disguise a server-side executable as something else.

For example, we commonly observed spatial elements renamed deceptively as an

icon file (e.g. favicon.ico) but containing PHP code to evade less technical CMS

users. TARDIS uses the spatial element’s filename to extract its extension and then

matches it against the inferred file format (e.g., via the file type’s magic number or

other formatting that can identify the type of file). If TARDIS finds a discrepancy

while matching the file type and the file extension for an element elj ∈ Vi, it appends

the structural metric ExtMis(elj(ψi)) to Mi.

Filename Entropy. Another indicator of suspicious activity seen in CMS-targeting

attacks is long, incoherent, or randomly generated filenames. TARDIS measures

the entropy of filenames for all spatial elements elj. A higher entropy indicates a

more random filename that is less likely to be a human-generated benign filename.

16

Entropy is measured by password strength calculation logic [28], which computes

a filename’s “randomness” score by measuring its similarity to several dictionaries,

spatial keyboard patterns (e.g., QWERTY, Dvorak), repetition of a single character,

sequences of numbers or characters, and other commonly used keywords (e.g., l33t).

For TARDIS, the password strength output was analogous to higher entropy (more

randomness) and thus a more suspicious filename.

Since it is not possible to identify an absolute threshold for high entropy in

filenames, TARDIS compares the relative entropy of the spatial elements using the

median absolute deviation (MAD [29]) test. Specifically, instead of computing an

absolute threshold for filename entropy, which is difficult to predict with certainty,

TARDIS considers all the elements in a given temporal snapshot to first find the

median entropy of all elements, followed by computing the median absolute

deviations for each element and eventually checking if the median absolute deviation

is greater than a relative threshold. When a relatively higher entropy is identified

for an element elj ∈ Vi from a temporal snapshot ψi, the structural metric

HEntrp(elj(ψi)) is appended to Mi.

Permission Change. TARDIS uses temporal tracking of each spatial element to

detect permission changes between snapshots. In particular, when the permissions

of spatial elements change from non-executable (read-only, read-write, etc.) to

executable, it raises suspicion since it is unusual for a developer to start with a

non-executable and provide execute privileges to it. An observation from our study

was that multi-stage attacks package shell scripts in a text file and then change the

permissions of the file to explore privilege escalation opportunities. Upon

identifying an element elj ∈ Vi from a temporal snapshot ψi with permission change

equipping it with execute capabilities, TARDIS appends a structural metric

Exec(elj(ψi)) to Mi.

17

Figure 2.3: Outlier detection within the directive length distribution of all code
elements in one snapshot.

Code Metrics

Since we are interested in the investigation of server-side attacks targeting CMSs,

TARDIS analyzes the spatial elements containing code. These collected metrics are

recorded for each snapshot ψi and appended to the spatial metric set M.

Script Directive Outlier Analysis. Most of the server-side source code is either

part of the CMS core, associated plugins, or website-owner developed code. As they

are meant to be maintained by developers, it is unusual to find source code files among

the spatial elements with script directives (parsable instruction sequences) that are

thousands of characters long. Hence, we observed that injecting exceptionally long

and complex lines of obscure code in the spatial elements is a strong hint that can

be leveraged to identify attack behaviors. Our study found that attackers use this

tactic to limit the readability of injected code, delaying immediate reverse engineering

attempts.

Figure 2.3 shows the directive length distribution for all spatial elements

containing server-side code for W682886’s 2 May 2018 snapshot. The x-axis presents

the spatial element index j, and the longest directive length for each of these code

files is plotted along the y-axis. In benign elements (green dot) none of the

directives were more than 500 characters long, whereas most attacker-injected

18

elements (red star) in this snapshot contained directives longer than 1500

characters. There was a mix of benign and malicious elements with maximum

directive length between 500 and 1500 characters, which becomes the suspicious

range (purple diamond).

Despite learning that long directives in spatial elements are suspicious, finding a

threshold for directive length is not feasible due to varied coding styles and practices

followed by different developers. However, it is possible to decide if a spatial element

is suspicious by relatively comparing all the elements in any given temporal snapshot

and performing outlier analysis. We leverage this observation to find suspicious files

with relatively long directives using the median absolute deviation (MAD) previously

described in §2.2.2. Upon detection of the suspiciously long directive lines in a spatial

element elj ∈ Vi from a temporal snapshot ψi, TARDIS appends the code metric

LongLine(elj(ψi)) to the spatial metric set Mi.

Obfuscation Detection. We observe that server-side malware often uses a string

that contains both UTF-8 characters (i.e., wide characters) and traditional 8-bit

characters. While the construction of such a string itself is not malicious, it is a

commonly used tactic to avoid detectors that look for known malicious string/code

snippets. For example, the malicious PHP file disguised as an icon file which we

mentioned earlier is included from the root of the CMS using the following long

UTF-8 (black) coupled with ASCII (red) path to the file:

@include "\x2fmn\x74/s\x74or\x31-w\x632-\x64fw\x31/4\x3505\x327/\x77ww\x2

ecv\x6dar\x61ci\x6eg.\x63om\x2fwe\x62/c\x6fnt\x65nt\x2fmo\x64ul\x65s/\

x61gg\x72eg\x61to\x72/t\x65st\x73/f\x61vi\x63on\x5fbd\x33fd\x35.i\x63

o";

Array map obfuscation is another obfuscation scheme commonly used to evade

defenses [27]. An array map is defined to map each character to a different

character. This map is used to deobfuscate what appears to be a jumbled list of

19

characters to a reverse engineer trying to make sense of this obfuscated spatial

element. For example, in the following code snippet, lnhqvwxeon() is a function

that takes a jumbled character string (in the variable $zvkgw) and uses the array

map in $lyfuf to generate malicious code that gets executed as part of the PHP

eval function:

$lyfuf = Array(’1’=>’G’, ’0’=>’6’, ’3’=>’4’, ’2’=>’L’, ’5’=>’1’, ’4’=>’W’,

’7’=>’y’, ... , ’y’=>’w’, ’x’=>’F’, ’z’=>’l’);

eval(lnhqvwxeon($zvkgw,$lyfuf));

Upon spatial detection of obfuscation in an element elj ∈ Vi from a temporal snapshot

ψi via regex pattern matching for the cases described above, TARDIS appends a code

metric Obfus(elj(ψi)) to Mi indicating the presence of obfuscation in the element elj.

Suspicious Payload Evaluation. In server-side spatial elements, functions such

as eval, base64_decode, and url_decode are commonly paired to execute

previously identified obfuscated code. TARDIS identifies and flags instances of the

eval and base64_decode/url_decode pairing via pattern matching along each

control flow. Upon identifying this code unwrapping technique in an element

elj ∈ Vi from a temporal snapshot ψi, TARDIS appends a code metric

EvDc(elj(ψi)) to Mi indicating unsafe or suspicious code, compressed to avoid more

conventional detectors.

Code Generation Capability. We observed that almost every server-side spatial

element contributing to the multi-stage CMS-targeting attack contained code

generation capabilities such as the use of create_function. Although several

developers use this as part of certain CMS plugins, it is very rarely employed in

ordinary server-side code development. TARDIS scouts for such code generation

capabilities and appends a code metric CodeGen(elj(ψi)) to the spatial metric set

Mi upon finding an element elj ∈ Vi satisfying the constraints.

20

2.2.3 Temporal Correlation and Forensic Recovery

Based on the collected spatial metrics for each snapshot, TARDIS now attempts to

temporally correlate these metrics across snapshots to identify suspicious activities

that evolve within the website. Here, TARDIS is programmed to track developments

over a sliding n − day time window (e.g. n = 20 means track developments in

the spatial metrics by comparing them across 20 days). In this stage, TARDIS

temporally correlates the spatial metric set Mi at any temporal snapshot ψi with the

spatial metrics Mx from all previous temporal snapshots within the sliding window

(i − n < x ≤ i) to capture the persistent adversary relationship and extract the

timeline of events.

Patterns in the metrics M, assigned as a function of spatial elements, are

indicative of long-lived multi-stage attack behaviors which can be detected. We

construct rules to encode these behaviors based on the Boolean composition of the

spatial metrics. These rules are designed to be agnostic to the individual metrics

and are based on the invariants of the phases that long-lived multi-stage attacks go

through. Table 2.3 shows the representative set of rules applied as part of the

current implementation. Further, the temporal correlation of events encapsulating

the patterns in spatial metrics is implemented by considering two consecutive

temporal snapshots at a time. In particular, the 2-tuple ⟨Mi−1,Mi⟩ is passed to

TARDIS’s temporal correlation phase (as shown in Figure 2.2) where it is queried

against the attack models from Table 2.3. An attack label set Li and a severity are

assigned to each temporal snapshot, thus incrementally building the attack timeline.

The assigned severity of the attack labels tells the investigator which of the labels

are more critical than the others.

The rules presented in Table 2.3 capture the overall intuition behind our insights.

For example, our running example W682886 has two cases of obfuscated code injection:

(1) Suspicious obfuscated code injected into an existing unobfuscated element. (2)

21

Ta
bl

e
2.

3:
Ru

le
s

to
M

od
el

C
om

pr
om

ise
d

C
M

S
Ev

en
ts

as
M

ul
ti-

St
ag

e
A

tt
ac

k
Ph

as
es

.

A
tt

ac
k

La
be

l
L

Se
ve

ri
ty

A
tt

ac
k

M
od

el
in

g
R

ul
e

Es
ta

bl
ish

Fo
ot

ho
ld

M
ed

iu
m

E
x
tM

is
(e
l j

(ψ
i
))

∨
[(
e
l j
/∈
V

)∧
[H
E
n
tr
p

(e
l j

(ψ
i
))

∨
H
id
e
(e
l j

(ψ
i
))

]]

O
bf

us
ca

te
d

C
od

e
In

je
ct

io
n

H
ig

h
[(
s
iz
e
(e
l j

(ψ
i
))
>
s
iz
e
(e
l j

(ψ
i
−

1
))

)∨
(M

a
x
L

(e
l j

(ψ
i
))
>
M
a
x
L

(e
l j

(ψ
i
−

1
))

)]
∧
O
b
f
u
s
(e
l j

(ψ
i
))

M
al

w
ar

e
D

ro
pp

ed
H

ig
h

(e
l j
/∈
V

i
−

1
)∧

[O
b
f
u
s
(e
l j

(ψ
i
))

∨
L
o
n
g
L
in
e
(e
l j

(ψ
i
))

∨
E
v
D
c
(e
l j

(ψ
i
))

]

C
od

e
G

en
er

at
io

n
C

ap
ab

ili
ty

Lo
w

C
o
d
e
G
e
n

(e
l j

(ψ
i
))

D
ef

en
se

Ev
as

io
n

H
ig

h
H
id
e
(e
l j

(ψ
i
))

∧
[O
b
f
u
s
(e
l j

(ψ
i
))

∨
E
v
D
c
(e
l j

(ψ
i
))

∨
H
E
n
tr
p

(e
l j

(ψ
i
))

∨
E
x
tM

is
(e
l j

(ψ
i
))

]

Es
ca

la
te

Pr
iv

ile
ge

s
H

ig
h

E
x
e
c
(e
l j

(ψ
i
))

∧
¬
E
x
e
c
(e
l j

(ψ
i
−

1
))

M
ai

nt
ai

n
Pr

es
en

ce
M

ed
iu

m
(S
e
v

(e
l j

(ψ
i
))

=
=
H
ig
h

)∧
(S
e
v

(e
l j

(ψ
i
−

1
))

=
=
H
ig
h

)

A
tt

ac
k

C
le

an
up

M
ed

iu
m

(S
e
v

(e
l j

(ψ
i
−

1
))

=
=
H
ig
h

)∧
[(
S
e
v

(e
l j

(ψ
i
))

=
=
N
o
n
e
)∨

(S
e
v

(e
l j

(ψ
i
))

=
=
L
o
w

)∨
((
e
l j

(ψ
i
))
/∈
V

i
)]

22

Additional obfuscated code appended to an already obfuscated element. Based on

this observation, if an obfuscated spatial element elj (ψi) ∈ Vi increases in size (i.e.

obfuscated attack progression), or if a script directive outlier is flagged in elj (ψi) but

not elj (ψi−1) (i.e. obfuscated code is injected into an existing unobfuscated element),

and the code metric Obfus (elj (ψi)) ∈ Mi, then an attack label “Obfuscated Code

Injection” is appended to the set Li at snapshot ψi. For W682886, we see this label

assigned on 21 April, 7 June, and 13 June 2018.

Note that multiple spatial elements elj (ψi) ∈ Vi can give rise to multiple labels

for each temporal snapshot. For example, there can be three spatial elements

associated with Obfus (elj (ψi)) ∈ Mi (i.e. 3 files with obfuscated code in them),

and four other spatial elements associated with ExtMis (elj (ψi)) ∈ Mi (i.e. four

shell scripts disguised as gifs). In this case, both event labels Obfuscated Code

Injection and Privilege Escalation are appended to the set Li, and the highest

severity of the union of this set Li is assigned to the temporal snapshot ψi. It is also

possible that multiple labels get assigned to a temporal snapshot due to one spatial

element, i.e. an adversary can move a benign file to a hidden directory and inject it

with suspicious obfuscated code. In this case, both Defense Evasion and Obfuscated

Code Injection labels get appended to the set Li, and follow the highest severity

assignment as described earlier.

2.2.4 Compromise Window Recovery

With the attack labels in hand, TARDIS proceeds to extract the compromise

window by parsing consecutive pairs of the 3-tuple of spatial elements, spatial

metrics, and the assigned attack labels (i.e. ⟨V,M,L⟩i). Algorithm algorithm 1

presents the pseudocode for this procedure. Lines 1-3 in Algorithm algorithm 1

describe how it takes the 3-tuple ⟨V,M,L⟩ as input, computes the differential

spatial metrics DiffAttri for each snapshot at ψi from consecutive pairs of

⟨V,M⟩i−1,⟨V,M⟩i (e.g. recall the differential file type information shown in

23

Algorithm 1: Compromise Window Detection
Input: V = [V0,V1, ...,VN−1], M = [M0,M1, ...,MN−1], L = [L0,L1, ...,LN−1],

N = Number of temporal snapshots
Output: SuspiciousRanks = [ψx0 , ψx1 , ..., ψxN−1],

CompromiseWindow = [ψx0 , ψx1 , ..., ψxk
]

// Calculate frequency of each attribute value
1 for ∀ψi ∈ Ψ do
2 DiffAttri ← Vi − Vi−1, for each elj ∈ Vi
3 DiffAttri ←Mi −Mi−1, for each mj ∈Mi

// Verify label sequence
4 if i! = 0 and Li comes after Li−1 then
5 CorrectLabeli = True
6 end
7 end
8 AttrFreq = Frequency of each attribute daj ∈ DiffAttr

// Calculate AVF scores
9 for ∀DiffAttri ∈ DiffAttr do

10 score← 0;
11 for daj ∈ DiffAttri do

// Score for snapshot ψi
12 score← score+AttrFreq[daj]
13 end
14 AV Fscores← score/size(DiffAttri)
15 end
16 SuspiciousRanks← return (sort ψi in order of minimum AV Fscores)
17 for ∀ψi ∈ Ψ do
18 if CorrectLabeli == True then
19 while AV FScores outside CompromiseWindow < AV FScores inside

CompromiseWindow do
20 CompromiseWindow ← compute (range between first and last ψi with

verified Li)
21 end
22 end
23 end
24 return SuspiciousRanks, CompromiseWindow

24

Table 2.1).

As shown in Lines 8-16 in Algorithm algorithm 1, it then computes the attribute

value frequencies (AVF) using the AVF algorithm [30] on the differential spatial

metrics DiffAttri and processes it to rank the temporal snapshots ψi in order of

suspicious activities. The AVF algorithm performs well on categorical data with

multiple attributes, the differential spatial metrics in our case [30]. In a typical AVF

application, the number of anomalies to be detected are pre-programmed. Here,

instead of choosing the number of anomalies to be detected, TARDIS uses the AVF

algorithm to rank the temporal snapshots in the compromise window in the order of

most suspicious to least suspicious.

Before TARDIS outputs the final attack labels for the entire temporal sequence,

it passes the label set L through logical sequence verification of the associated labels

(Lines 4-6 in Algorithm algorithm 1) and assesses their order of appearance. For

example, when the only labels assigned are ‘code generation capability’ and ‘attack

cleanup’, it has been observed that these behaviors arise from benign elements

populated by the web developer and mean no harm. In such cases, the labels are

retained but their severities are reduced to ‘None’. If the label ‘maintain presence’ is

seen on a snapshot prior to any other event label such as ‘establish foothold’ or

‘malware dropped’ or any other high severity modeling rule, since we know that this

event sequence is intuitively not feasible, TARDIS has been programmed (again via

Boolean composition of the previous label rules) to filter out sequences that do not

make logical sense.

Notice that TARDIS’s compromise window is only influenced by the order of 2

out of the 8 labels, i.e. attack cleanup and maintain presence. TARDIS considers

all combinations of the other labels as the beginning of a compromise window. This

makes TARDIS robust against attackers who might try to deploy out-of-order

payloads to confound TARDIS.

25

Once the logical sequence of the assigned labels is verified and the temporal

snapshots are ranked in the order of suspicious activities, TARDIS then identifies

the compromise window — the period between the first and the last temporal

snapshot comprising of suspicious activities with assigned and verified labels L.

Also, the window is chosen such that the AVF score for every temporal snapshot

outside the compromise window is higher than the score for every temporal

snapshot within the compromise window (lines 17 - 21 Algorithm algorithm 1).

This is the period when maximum suspicious activities take place in the website and

help the investigator narrow down the analysis to a smaller window. We find that

these intuitive temporally correlated spatial metrics and the attack models both

align well with the design and work well in practice, as we show in §2.3 and §2.4.

For our website under investigation W682886, from 1 April - 30 June 2018, the

compromise window is identified from 21 April - 16 June 2018. By applying the

AVF algorithm, TARDIS outputs the following temporal snapshots for this website

ranked in order of most suspicious to least suspicious as follows:

<- Most suspicious...............Least suspicious ->

5 June, 13 June, 8 June, 14 June,21 April,..,29 June

This aligns with our earlier visual inspection of the differential file type metrics

presented in Table 2.1.

Note than these attack models are scalable irrespective of the underlying CMS,

i.e. when a new tactic is identified, the TARDIS framework is designed to be highly

modularized and can be easily updated to capture the essence of the new tactic and

the attack label associated with it. Essentially, applying the attack modeling rules

to spatial metrics and incrementally sliding along each temporal snapshot enables

TARDIS to assign appropriate labels L along the compromise window, thus providing

a timeline of the events as part of the long-lived multi-stage attack investigation.

26

2.3 Validating our Intuition

This research began with the key insight that CMS-targeting cyber attacks exhibit

the “low and slow” characteristics indicative of multi-stage attacks. Based on this,

we designed TARDIS to recover the compromise window and reconstruct the attack

timeline. We now perform several micro-benchmarks with a ground truth set of

websites to validate this intuition.

Data Set and Ground Truth. Our preliminary study in §2.1 looked at the

nightly backups of 70 CMS websites which CodeGuard had identified as recently

compromised. We manually investigated these websites and labeled the observed

attack models. We will use these 70 websites again here as ground truth. To these

70 websites, we added the full history of nightly backups from 93 additional CMS

websites, selected randomly from our collaborator’s data. Again, we performed a

manual investigation of these 93 new websites to obtain ground truth (discussed

below). This yielded a total of 163 websites, each of which represents backups

collected nightly during a 13-month period between April 2018 and May 2019.

In order to validate TARDIS’s performance, we manually investigated the 163

websites to obtain ground truth. We first installed a clean version of the CMS locally

and removed any file which had not been modified for each snapshot. We then

searched all the code files for malware payloads and confirmed our findings with

CodeGuard engineers. If our investigation found an attack, we labeled the snapshot

when the attack first appeared. If the attack was cleaned up via a rollback, we labeled

the corresponding snapshot. We then annotated the expected attack labels for every

snapshot within that compromise window. From our 163 websites, 80 were found to

be compromised. We note that this is biased by the original 70 (all of which were

known-compromised) but still provides a varied test suite of benign and malicious

cases.

We identified the CMS platform used by each website using WhatCMS [31] and

27

Table 2.4: Distribution of Compromises in the Evaluation Dataset of 163 Websites.

CMS # of
websites1 #GT2 TARDIS 3

#TP4 #FP5 #FN6

WordPress 92 47 47 1 0
Drupal 23 15 15 1 0
Joomla 17 10 10 0 0
PivotX 9 2 2 0 0
Prestastop 2 0 0 0 0
TYPO3 CMS 8 3 3 1 0
Bourbon 4 1 1 0 0
Contao 3 0 0 0 0
Contenido 5 2 2 0 0
Total 163 80 80 3 0
1: Total number of websites evaluated for each CMS.

2: Total number of compromised websites (Groud Truth)

3: Total number of websites flagged as compromised by TARDIS.

4: True Positive, 5: False Positive, 6: False Negative.

CMS Garden [32]. The CMS market share distribution in this dataset is shown in

Table 2.4. The distribution is roughly similar to the real-world distribution of CMS-

based websites, e.g., a majority of websites are built on WordPress with Drupal and

Joomla a close second and third.

2.3.1 Identification of Attack Models

We then drilled down into the websites identified as compromised. To validate

TARDIS’s attack timeline reconstruction capability, we first ran each website’s

sequence of backups through TARDIS and recorded what attack labels were

assigned to each nightly snapshot. Note that TARDIS did not have nor need access

to our ground truth for investigating the website backups, and it relied only on the

temporal correlation of spatial metrics and attack models for timeline extraction.

We then compared the TARDIS output attack labels with our manually derived

ground truth.

Table 2.5 presents the micro-benchmark results for the 163 websites. The CMS

platform is listed in Column 1. For each CMS platform, the subsequent pairs of

columns show the number of websites which TARDIS marked as containing each

28

Ta
bl

e
2.

5:
Ev

al
ua

tio
n

of
th

e
M

ul
ti-

St
ag

e
A

tt
ac

k
Ph

as
e

M
od

el
s.

C
M

S
O

bf
.

C
od

e
In

je
ct

io
n

M
ai

nt
ai

n
Pr

es
en

ce
C

od
e

G
en

.
C

ap
ab

ili
ty

M
al

wa
re

D
ro

pp
ed

A
tt

ac
k

C
le

an
up

Es
ta

bl
ish

Fo
ot

ho
ld

D
ef

en
se

Ev
as

io
n

Es
ca

la
te

Pr
iv

ile
ge

s
#

#
FP

#
#

FP
#

#
FP

#
#

FP
#

#
FP

#
#

FP
#

#
FP

#
#

FP
W

or
dP

re
ss

17
0

39
1

71
24

46
2

21
4

2
0

42
6

4
0

D
ru

pa
l

6
0

15
0

18
4

13
0

9
0

0
0

12
2

5
0

Jo
om

la
8

1
8

0
13

4
7

1
2

0
0

0
10

1
2

0
Pi

vo
tX

1
0

2
0

2
0

1
0

0
0

0
0

2
0

0
0

Pr
es

ta
st

op
0

0
0

0
1

1
0

0
0

0
0

0
0

0
0

0
T

Y
PO

3
C

M
S

0
0

2
0

3
1

3
0

1
0

0
0

2
0

0
0

Bo
ur

bo
n

0
0

1
0

1
1

1
0

0
0

0
0

1
0

0
0

C
on

ta
o

0
0

0
0

1
1

0
0

0
0

0
0

0
0

0
0

C
on

te
ni

do
2

0
1

0
5

3
2

0
1

0
0

0
2

0
1

0

29

attack label (denoted by #) and the number of those labels which were false positive

cases (denoted by #FP), i.e. our derived ground truth for that website does not

contain that attack label. For example, Row 3 of Table 2.5 shows TARDIS labeled

obfuscated code injection in 8 Joomla-based websites and 1 of them is an FP. Note

also that any attack labels detected in known clean websites were marked as FPs.

From Table 2.5, we make several observations: Taken individually, TARDIS’s

attack models detect the attack labels within compromised websites with high

accuracy. The labels escalate privileges and establish foothold were identified with

zero FPs, as seen in Table 2.5. Also, obfuscated code injection, maintain presence,

malware dropped, and attack cleanup labels saw low FP counts of 1, 1, 3, and 4,

respectively, highlighting TARDIS’s attack model detection accuracy.

Most importantly, when all of these attack models are considered together within a

single website, TARDIS is able to prune individual false positives. TARDIS verifies

the logical sequence of the recorded attack labels, computes the compromise window,

and then tags the website as compromised or not, as discussed §2.2.3. This procedure

pruned 38 of the 39 FPs in the code generation capability label, all 4 FPs in attack

cleanup, all 3 FPs in malware dropped, 8 of the 9 FPs in defense evasion, and the

only FP in obfuscated code injection, effectively removing 94.7% of the FPs listed in

Table 2.5.

Another observation is that the attack tactics vary greatly across CMS platforms,

but a few labels are present in all attacks. In particular, the maintain presence,

malware dropping, and defense evasion labels are seen in all compromised CMSs.

This is confirmed by our ground truth investigation. This may seem intuitive, but

it confirms our premonition that CMS-targeting attacks overwhelmingly exhibit long-

lived multi-stage attack behaviors.

Notice that TARDIS recorded 115 out of the 163 websites with code generation

capabilities (a common tactic used in multi-stage attacks). However, from the Column

30

#FP for code generation capability label in Table 2.5, we find that in 39 of the

websites, these labels were FPs. This can be attributed to the open-source nature of

the CMSs and the varied coding practices followed by CMS plugin developers. The

other significantly higher FP (9 out of 71 websites) is defense evasion; these are due

to the presence of obfuscation used to prevent visibility into paid CMS plugins that

appear like multi-stage attack behaviors at first glance.

2.3.2 Multi-Stage Attack Timeline

Based on our previous runs of TARDIS, we recorded the compromise window

which was reported or “Not Compromised” for each website. We evaluate

TARDIS’s correctness by comparing these with our manually recorded compromise

labels for the 163 websites. The results are presented in Table 2.4.

Table 2.4 shows the CMS platform and its distribution in Columns 1 and 2,

respectively. Column 3 (#GT) presents the ground truth number of compromised

websites in this dataset derived by manual investigation. Columns 4 through 6 show

the number of websites for which TARDIS output a compromise window. Column 4

(#TP) presents the number of websites for which the TARDIS compromise window

output matched the ground truth, and Column 5 (#FP) presents the number of false

positives produced by TARDIS. Here, FP is essentially a “false alarm”, meaning

that TARDIS produced a compromise window, but the website was known to not

be compromised (via our ground truth). Column 6 (#FN) presents the number of

websites that are compromised and not identified by TARDIS.

Overall, TARDIS found a total of 83 websites infected with multi-stage attacks.

Interestingly, more than 50% of these attacks targeted WordPress CMS, as seen in

Table 2.4. In addition to the 70 known-compromised websites from §2.1, TARDIS

found the 10 additional attacks in the added set of 93 websites. TARDIS reported

an attack timeline that matched our ground truth for these 80 compromised

websites. Manual verification confirmed the correctness of this result. To the best of

31

our knowledge, we did not find any websites that contained an attack that was

missed by TARDIS, thus showing a zero FN count.

Notice that TARDIS produced 3 FPs, i.e. Column 4 from Table 2.4 shows 3

websites (one from WordPress, Drupal, and TYPO3 CMS). Our manual investigation

revealed that all 3 websites contained user-developed security plugins with obfuscated

code, similar to the tactic used by attackers, which caused TARDIS to output a

compromise window for these websites. Note that there are several publicly available

security plugins that contain obfuscated code (Sucuri, Wordfence, etc.), but TARDIS

can handle such well-known benign obfuscation cases by checking if it belongs to a

CMS security plugin with licensing information.

2.4 Deploying TARDIS in the Wild

After validating that TARDIS’s analysis accurately captures the attack labels in

CMS-based website backups, we worked with CodeGuard to deploy TARDIS on a

significant portion of their data set. We leveraged this access to nightly backups from

306, 830 unique websites (spanning from March 2014 to May 2019) to empirically

measure the health of CMS-based websites in the real world. In this section, we

document our findings from using TARDIS to understand the threat landscape with

respect to CMS-based websites. We are also in the process of working with CodeGaurd

to inform the website owners of our findings and remediate the identified attacks.

Experimental Setup. We used a fleet of Amazon Web Services (AWS) Elastic

Compute (EC2) r5.2xlarge instances with 8 virtual CPUs and 64 GB of RAM. These

instances are supervised by the AWS Batch job scheduling engine to run TARDIS

on hundreds of website backups in parallel.

We used several tools to assist in the investigation: Our CMS classification is built

on top of WhatCMS [31] and CMS Garden [32]. TARDIS is written in Python (2500

lines of code) and leverages zxcvbn [28] for entropy estimation in the injected element

32

Table 2.6: Overall Distribution of Compromised Websites and Average File Counts
per CMS.

CMS Number of
Websites

Comp.
Websites

Total Avg.
Files Count

Only Comp.
CMS

Only Benign
CMS

WordPress 295,774 19,260 10,981.9 19,072.7 10,418.4
Drupal 1,340 215 17,760.0 22,288.7 16,894.5
Joomla 4,115 563 20,950.0 32,391.5 19,136.5
PivotX 509 27 28,739.7 42,075.9 27992.7
Prestashop 464 86 28,665.3 43,032.4 25,396.6
TYPO3 CMS 81 4 31,044.5 71,984.0 28,917.8
Contenido 4,543 436 16,709.8 25,851.5 15,739.3
Contao 4 0 7,634.0 NA 7,634.0

names and Pandas [33] for data analysis.

2.4.1 The CMS Landscape

Table 2.6 presents the distribution of compromises in the 306, 830 websites. Columns

1 and 2 show the CMS platform and its distribution, respectively. Column 3 shows the

number of websites marked as compromised by TARDIS, i.e., the websites for which

TARDIS outputs multi-stage attack labels and a compromise window. Columns 4

through 6 show the total average number of files (“spatial elements”) for each CMS,

the average number of files in compromised websites, and the average number of files

in only the benign websites, respectively.

Table 2.6 provides interesting insights into the attack landscape of CMSs. As seen

in Column 2, the majority of the websites use WordPress as their underlying CMS.

In this dataset, we see that 96% of the total websites use WordPress, higher than

real-world trends [18]. This is due to the high market share of WordPress users in

CodeGuard’s production set. From Column 2 in Table 2.6, it is evident that, except

for Contao, all CMSs in this dataset are victims of multi-stage attacks. In total, we

found 20, 591 compromised websites. There were 19,260 WordPress websites alone

infected with these attacks (6.5% of the total WordPress websites). Interestingly,

more than 16% of Joomla, 13% of Drupal, 18% of Prestashop, and 9% of Contenido

websites were victims to multi-stage attacks. This goes to show that not only do

33

these attacks target CMSs, but they target popular and the less popular CMSs alike.

In this dataset, about 5% of PivotX and TYPO CMS3 websites were compromised by

long-lived multi-stage attacks, showing that these CMSs might not be popular attack

targets due to their smaller market share.

As seen in Column 4 from Table 2.6, almost all CMSs contain tens of thousands of

files on an average. However, an interesting metric is to compare the average number

of files in compromised CMSs with those in benign CMSs. Upon comparing Columns 5

and 6, it becomes evident that invariably the attacks inject an extremely large number

of files into the CMS (which we also observed during our manual investigation). As

highlighted in Table 2.6, almost all the compromised websites see a 50% or more

increase in files. The highest bloat in the number of files is seen for TYPO3 CMS

with a 150% increase in the average number of files upon compromise. WordPress

stands second, which sees an average increase of 80%.

2.4.2 Evolution of Attacks

Table 2.7 presents the distribution of attack models in the 20, 591 websites that

TARDIS identified as compromised. Rows 1 through 8 present these outputs for

all the attack labels assigned by TARDIS. Recall that the assignment of these labels

is described in Table 2.3. Columns 2 through 8 show the number of websites marked

as compromised by TARDIS for each CMS. A reading from Row 4 of Table 2.7 can

be interpreted as follows: After running TARDIS on a total of 295,774 WordPress

websites in our dataset, it found 13,317 compromised websites with code generation

capability. Lastly, Row 9 in Table 2.7 presents the total number of compromises from

each CMS for comparison.

From Table 2.7, it is evident that the code generation capability is the most

common tactic, seen in more 70% of all attacks, regardless of the underlying CMS.

From Row 1 of this table, we see that it is not common to identify the establish

foothold label in all CMSs, mainly due to the nature of our dataset. However, when

34

Ta
bl

e
2.

7:
A

tt
ac

k
Ph

as
e

D
ist

rib
ut

io
n

A
cr

os
s

th
e

30
6,

83
0

W
eb

sit
es

.

Ph
as

es
W

or
dP

re
ss

D
ru

pa
l

Jo
om

la
Pi

vo
tX

Pr
es

ta
sh

op
T

Y
PO

3
C

M
S

C
on

te
ni

do
C

on
ta

o

Es
ta

bl
ish

Fo
ot

ho
ld

33
9

3
34

0
1

0
22

0
O

bf
.

C
od

e
In

je
ct

io
n

1,
62

9
19

29
1

0
0

39
0

M
al

wa
re

D
ro

pp
ed

7,
22

3
14

1
52

8
11

80
0

26
5

0
C

od
e

G
en

.
C

ap
ab

ili
ty

13
,3

17
18

8
51

0
27

86
4

42
0

0
D

ef
en

se
Ev

as
io

n
12

,4
91

79
63

0
0

0
18

1
0

Es
ca

la
te

Pr
iv

ile
ge

s
12

,0
78

72
55

17
6

4
17

6
0

M
ai

nt
ai

n
Pr

es
en

ce
1,

70
4

27
45

1
0

0
37

0
A

tt
ac

k
C

le
an

up
3,

79
5

53
12

3
6

6
0

84
0

To
ta

lN
um

be
r

of
C

om
pr

om
ise

d
W

eb
sit

es
19

,2
60

21
5

56
3

27
86

4
43

6
0

35

identified, it is a robust metric that confirms a multi-stage attack. It is also

interesting to note that more than 20% of all such attacks attempt to clean up their

traces after accomplishing the attack motive. However, not all multi-stage attacks

actively hide their presence. As seen from Row 5 of Table 2.7, more than 60% of

compromised WordPress websites try to evade defenses by following the popular

hidden file/directory or the disguised file approaches. Conversely, the popular

defense evasion techniques are not widely seen in compromised websites belonging

to other CMSs. This could be attributed to the less-technical nature of the website

owner due to which the adversaries do not spend resources on active hiding during

the attack.

A significant portion of these attacks (8%) use obfuscation techniques to make

it harder for the website owners to reverse engineer the injected code. Since the

hosted websites cannot be taken down immediately upon detecting any traces of

suspicious activity, by the time incident response can understand the obfuscated code,

the adversary would have completed reconnaissance in the websites (as presented in

Figure 2.4), achieved their goals, and moved towards attack cleanup.

 Figure 2.4: Compromise window distribution in CMSs (truncated to 300 days).

36

2.4.3 Compromise Window

The most important finding from this dataset was the length of compromise in CMS-

based websites. Once attacked, multi-stage attacks persist in the websites for long

periods of time. Figure 2.4 shows the compromise window distribution from the

TARDIS output for each of the compromised CMSs. Note that this is a truncated

version of the box plot to improve readability. Not shown in this figure: More than

20% of attacks on WordPress websites persist between 300 to 1694 days. As seen

from Figure 2.4, most attacks in WordPress websites persist for around 40 days, as is

evident from the median of the box-plot for WordPress. In comparison, the median

length of the attacks is longer in Joomla and PivotX in the range of 75 to 85 days.

In more than 4000 WordPress websites, these attacks persist anywhere between 3

months and 4.5 years. It is the multi-stage attacks belonging to this quartile (top

25%) that pose the most significant threat to website visitors: The dropped files

simply lurk in the websites, many of which aim to exploit website visitors.

Among all CMSs, an average multi-stage attack persists the longest in Joomla,

for 3 months on an average. Further, for websites that use more popular CMSs

such as WordPress, Joomla, and Drupal, the attacks likely persist longer since the

adversaries see a wider opportunity base and get a better return on the investment

of their resources. Conversely, the less popular CMSs, TYPO3 CMS and Prestashop,

are not only targeted less by persistent attacks, but those attacks also do not persist

for as long. This can be attributed to the higher opportunity cost and lower returns

for targeting an attack toward less popular CMSs.

2.4.4 Existing Attack Mitigation Framework

Recall, the current industry standard is a naive “backup and restore” model in

conjunction with an integrated AV. Once a compromise is detected by the AV, the

website owners are prompted to rollback to a previous clean snapshot. We extracted

37

Table 2.8: Effectiveness of the Current Industry Attack Mitigation Framework.

CMS Infected
Websites1

AV
Alerts2 Rollbacks3 Reinfects4

WordPress 19,260 52 17 7
Drupal 215 9 4 4
Joomla 563 28 7 7
PivotX 27 0 0 0
Pretashop 86 0 0 0
TYPO3 4 0 0 0
Contenido 436 2 1 1
Contao 0 0 0 0
Total 20,591 91 29 19
1: # of websites compromised for each CMS, 2: # of websites

with AV alerts, 3: # of websites with attempted rollbacks,

4: # of websites with reinfections after the rollbacks.

the AV reports for the dataset of 306, 830 websites and instrumented TARDIS to

record the number of user-initiated rollbacks and reinfections post rollback. The

results are presented in Table 2.8. Note that TARDIS has no knowledge of the AV

reports and relies only on its attack models for timeline reconstruction. Table 2.8

shows that AVs are ineffective in identifying almost all infected websites thus

reaffirming our claim that AV signatures only catch well-known malware, and they

fail to detect stealthy multi-stage attacks.

Columns 1 and 2 present the CMS platforms and the number of compromised

websites from each CMS. Column 3 shows the number of infected websites from each

CMS that triggered AV alerts. Column 4 presents the number of websites with AV

alerts that attempted to rollback to a previous version in order to mitigate the threat

identified by the AV. Column 5 presents the number of websites that attempted

rollbacks and remained infected or were reinfected. As expected, the distribution of

the AV alerts and the rollbacks reflect the market share of the CMSs in CodeGuard’s

production set, which we consider representative of CMSs at large.

Rollbacks. As presented in Table 2.8, we find it extremely concerning that among

the 20,591 websites identified as compromised with long-lived multi-stage attacks by

38

TARDIS, only 91 websites see AV alerts. More so, because the website owners are

alerted to rollback to a clean snapshot only when an AV alerts the website owner

about a suspicious activity. This low number of AV alerts (i.e. less than 1% of the

total number of compromises) is the reason why the “backup and restore” model is

proving to be ineffective and these attacks persist for a significant time period.

Among the 91 websites that trigger AV alerts, not all of them take action. As

seen in Table 2.8, only 29 of these 91 websites attempt a rollback to a pre-AV-alert

snapshot to recover the website from the attack. Moreover, AVs are infamous for

generating false alerts causing threat alert fatigue [25] — another reason why true

AV alerts are ignored, perhaps explaining why only 29 of the 91 websites attempted

rollbacks.

Reinfections. As seen from Table 2.8, of the 29 websites that attempted rollbacks

to recover from an attack, TARDIS found reinfections in more than 65% of these

websites. We imagine this was quite confusing to the attacker to find the website

files rolled back but their original backdoors persisted. This confirms the long-held

belief that AVs are unreliable. Not only are they missing a vast majority of the

attacks, but a strong dependence on AVs is making the existing “backup and

restore” technique largely ineffective. These numbers reaffirm the motivation behind

TARDIS’s design — the need for a systematic provenance inference technique in

the space of nightly backups. We hand-verified the websites with rollbacks and

found that our intuition was correct: In every case of reinfection, the rollback

snapshot was inside the compromise window (identified by TARDIS) causing a

reinfection. Of all the compromised websites, only 10 websites managed to rollback

outside of the compromise window, thus remediating the infections. This confirms

that TARDIS’s provenance inference is essential for compromised website

investigation.

39

2.4.5 Performance

Figure 2.5: Time to process a CMS backup (seconds) versus total number of files in
the CMS.

Figure 2.5 shows the time taken by TARDIS to measure all the attributes for

306, 830 websites versus the size of the websites in terms of the number of files.

TARDIS linearly assesses each temporal snapshot to provide a timeline of events

and event labels for the entire website with acceptable overhead. While this overhead

scales with the number of files in the website (regardless of the size of these files),

the increase is minimal as is seen from the gradual slope of the plot in Figure 2.5.

The worst-case for TARDIS, i.e., the maximum time taken, was to process 1859

snapshots (an average of 100,000 spatial elements) is close to 3500s. As an offline

forensics technique, we consider this to be quite reasonable.

2.5 Case Study

2.5.1 Case Study 1: A Global View of Attack Movement

Beyond the investigation of individual websites, deploying TARDIS within

commercial website backup platforms [20, 21, 22, 23, 24] can provide a global view

of the evolution of attack campaigns. During our experiments, we found identical

40

provenance evolution across 5 different WordPress websites between September and

November 2018. In all of these websites, the adversary uses similar tactics of

disguised obfuscated code injection (O) in 28 PHP files in different locations over 5

days, followed by 83 instances of malware dropped (M) to inject backdoor

functionalities, then maintaining presence (P) for about 2 months, and eventually

attempting attack cleanup (C) to remove all traces of those steps. In each of these

cases, the dropped malware disables all error logging functionalities and fetches

payloads from a remote server (active at the time of investigation) which it executes

on the victim web server. It also collects the output buffers, sends them back to the

remote server, and finally re-enables error logging. These actions were programmed

to run every 48 hours.

Figure 2.6: Global attack movement in WordPress websites.

Interestingly, as shown in Figure 2.6, each of these websites exhibited the same

attack phase evolution and persistence for the same duration. All of these websites

belong to different unique small businesses that just happen to build their website

upon WordPress. Once the first WordPress website (W1413857) was attacked, another

WordPress website (W0697120), completely unrelated to the initial website, exhibits

the exact same injection 6 days later. This is followed by 3 other infections in three

websites (W1438887, W1467224, W1532897) within the next 10 days. In all five of

these websites, the obfuscated code injection phase lasts for 5 days, malware dropped

phase for 1 day, maintain presence 51 to 56 days, and finally, the attack is cleaned up

41

by deleting all the injected files. Since this attack was not known to the AV, none of

the attacks were flagged and the website owners did not attempt rollback.

Future Deployment. We are currently working with CodeGuard to deploy

TARDIS at a global level in their backup framework to detect and track large scale

attack trends. This has required expanding TARDIS to enable cross-website

modeling and correlation.

2.5.2 Case Study 2: “User-Friendly” Remote Control

In a Drupal-based website, investigation of the backups for a 3 month period (Feb

2019 - Apr 2019) revealed the existence of the following phases.

23 Feb Obfuscated Code Injection

24 Feb - 3 Mar Maintain Presence

4 Mar Malware Dropped & Defense evasion

6 Mar Escalate Privileges

7 Mar - 12 Apr Maintain Presence

13 Apr Attack Cleanup

The integrated AV at the backup site never triggered an alert, keeping the

website owner in the dark about the attack. The compromise window identified by

TARDIS showed that the adversary injected obfuscated PHP code starting 23

February 2019 and maintained presence for the next few days until 3 March 2019.

Starting 4 March 2019, the attacker dropped malware and used defense evasion

methods: They disguised a PHP file as an icon file and uploaded a backdoor shell

inside a hidden directory. On March 6, the attackers injected a full-fledged graphical

user interface (GUI) for the backdoor, giving them full control of the website as

shown in Figure 2.7. All of these files remained in the website for over a month. On

13 April 2019, TARDIS found that the attackers deleted the earlier injected

malware to hide their previous footprints. The timeline provided by TARDIS

reveals that multi-stage attack activities persisted in this website during a period of

42

3 months and provides a compromise window (23 February to 13 April 2019)

outside of which the website can be safely rolled back. Manual investigation

revealed that the CVE-2018-7600 [34] vulnerability, insufficient input sanitation on

Form API (FAPI) AJAX requests, was exploited by the attacker. Note that this

vulnerability was not patched until a month after this attack began.

:
Figure 2.7: GUI backdoor injected in a Drupal website.

2.6 Limitations

The accuracy of inferring the provenance of attacks is limited by the granularity of

the backups. The current industry norm is to collect website backups nightly [20,

21, 22, 23, 24]. We have shown that this is sufficient for recovering the timeline of

an attack. However, if a fast-paced attack goes through multiple stages in between

two consecutive backups, TARDIS would only have visibility into files at the time of

the backups. Essentially, TARDIS enables website owners to calibrate between the

granularity of taking backups (i.e., making TARDIS more accurate) versus requiring

43

a deeper manual inspection when an attack does occur.

As these multi-stage attacks evolve, TARDIS’s spatial metric identification

rules might need to change over time. This evolution is expected, and TARDIS’s

modular nature makes adding new spatial metrics straightforward. Further,

TARDIS’s methodology of temporal correlation of spatial metrics should stand the

test of time, as it was designed agnostic to the individual metrics and is based on

the invariants of the phases which multi-stage attacks go through.

44

CHAPTER 3

MISTRUST PLUGINS YOU MUST: A LARGE-SCALE STUDY OF

MALICIOUS PLUGINS IN WORDPRESS MARKETPLACES

Many modern websites are almost entirely constructed from plugins and themes,

which place implicit trust on large amounts of un-vetted code with limitless access

to the webserver. Our research uncovered that this trust is often broken for

monetary gains and that malicious plugin authors are literally selling plugins packed

with malware to unsuspecting victims. Worse still, we found that most malicious

plugins sold on popular plugin marketplaces do not employ evasion or obfuscation

techniques, preferring to brazenly hide in plain sight.

Popular content management system (CMS) plugin marketplaces generate over a

billion dollars in revenue every year [1], but little has been done by the research

community to evaluate, assess, and ensure the safety of the consumers (website

owners). Past research studied malicious apps in the Google Play Store [35],

malicious extensions on the Chrome Web Store [36, 37], and malicious packages in

package registries [38]. Prior work also exposed malicious behaviors on webservers,

such as the presence of vulnerabilities [39, 40], webshells [41], and backdoors [42],

but none analyzed the underlying plugins which lead to many of these attacks.

Further, the complexities of prior research solutions have prevented the average

CMS-user from adopting them.

CMS website owners often rely on simple indicators such as plugin popularity,

ratings, and reviews on the plugin marketplaces to determine that a plugin is safe to

install on their website [43]. The diligent CMS-user may consult freely available [44]

or commercial [45, 46] plugin vulnerability scan databases before installing a plugin.

Unfortunately, these sources provide neither complete nor robust measures of security.

45

Driven by economic incentives, attackers buy the codebase of popular free plugins, add

malicious code, and wait for plugin users to auto-update [47]. In such cases, none of

the commonly used simple indicators can help prevent malware from infiltrating the

website.

Our research performed a global measurement of the malicious WordPress plugins

ecosystem. We worked with CodeGuard1, to analyze the WordPress plugins in over

400,000 unique webservers dating back to 2012. We uncovered 47,337 malicious plugin

installs on 24,931 unique websites. Even worse, 3,685 of these plugin instances were

sold on legitimate plugin marketplaces. Tracking the webservers and plugins over 8

years gave us a unique vantage point to study the temporal evolution of malicious

plugins from a global perspective. We found that the number of malicious plugins

on websites has steadily increased over the years, and malicious activity peaked in

March 2020. Shockingly, 94% of the malicious plugins installed over those 8 years are

still active today.

Throughout our study, we found that solving this problem is challenging due to

the diverse range of stakeholders in the CMS plugin ecosystem. Each has different

motivations and visibilities into this malicious plugin problem. Website owners have

full visibility over the webserver activity, but they rely on naive indicators when

installing plugins. Hosting providers have no visibility into the plugin installations

but need to ensure their hosting platform remains malware-free. Plugin marketplaces

have visibility over the plugins they host but need a scalable and efficient measurement

of the malicious plugins being sold on their marketplaces. An ideal solution must

ensure ease of use and reliable detection since plugins could be malicious anywhere

in this supply chain: from the source marketplace to a post-deployment web attack

(i.e., fake plugin injection).

To address these challenges, we developed YODA, an automated framework to
1One of the largest corporate website security and backup solutions on the market.

46

identify malicious plugins and their origin. Towards usability, this can be integrated

as part of the webserver hosting platform or deployed by the plugin marketplace.

Website owners are often unaware of the plugins installed or injected into their

website, so when deployed by a hosting provider, YODA starts by detecting a

webserver’s (possibly hidden) plugins. YODA also crawls popular CMS plugin

marketplaces to identify each plugin’s provenance, ownership, and global impact.

Using YODA, website owners and hosting providers can identify malicious plugins

on the webserver; plugin developers and marketplaces can vet their plugins before

distribution.

Our 8-year study using YODA revealed several concerning facts: While the

website owners trusted the plugin ecosystem and spent a total of $7.3M on only the

plugins in our dataset, we found that this trust is often broken for the attackers’

monetary gains. Attackers impersonated benign plugin authors and spread malware

by distributing pirated plugins. YODA found 1,354 instances of pirated plugins

responsible for one of the largest known malvertising campaigns [48], many of which

are still active today. Furthermore, $41.5K was spent on malicious plugins sold on

legitimate plugin marketplaces, and plugins that cost a total of $834K were infected

post-deployment by attackers. We hope that YODA can regulate and reinstate the

trust between all stakeholders in the plugin ecosystem. Lastly, we have made

YODA’s source code available at: https://cyfi.ece.gatech.edu/

3.1 Preliminary Study: Perilous Economy

Plugins are groups of files that work together to add aesthetic features and

functionalities to a CMS website. Upon each visit to the website, the CMS loads all

active plugins (i.e., executes plugin code) on the webserver. Our Dataset. Our

collaboration with CodeGuard furnished access to the nightly backups of over 400K

unique WordPress websites. These backups contain the server-side files and their

47

https://cyfi.ece.gatech.edu/

M
ar

ke
tp

la
ce

#
Pl

ug
in

s
D

ow
nl

oa
ds

R
an

ge
C

os
t

of
Pl

ug
in

s
M

on
ey

Sp
en

t
To

ta
l

U
ni

qu
e

M
in

.
Av

g.
M

ax
.

M
in

.
Av

g.
M

ax
.

D
at

as
et

G
lo

ba
l

Free
Plugins

W
P

Pl
ug

in
s

[4
9]

5,
27

6,
45

0
27

,4
30

14
7.

5M
26

0M
-

-
-

-
-

W
P

T
he

m
es

[5
0]

50
6,

34
2

5,
45

0
3

29
3K

7.
4M

-
-

-
-

-
G

ith
ub

[5
1]

1
44

8,
32

4
5,

15
5

0
3

9
-

-
-

-
-

Paid
Plugins

C
od

eC
an

yo
n

[5
2]

2
38

,0
60

2,
42

8
1

1.
2K

9K
$2

$3
2

$1
,1

04
$1

.2
M

$8
2.

6M
T

he
m

eF
or

es
t

[5
3]

61
,5

74
5,

83
7

1
29

.6
K

61
1K

$2
$8

4
$4

99
$5

.1
M

$3
1.

3M
W

PM
U

D
EV

[5
4]

3
5,

98
4

11
0

55
.4

K
1.

4M
10

.5
M

$1
5

$6
3

$1
90

$3
70

K
$9

6.
4M

ED
D

[5
5]

4
13

,1
23

24
5

-
-

-
$6

$4
9

$1
99

$6
43

K
-

To
ta

l
5,

78
2,

78
3

43
,6

21
1

93
9K

26
0M

$2
$6

3
$1

,1
04

$7
.3

M
$2

10
.3

M
1:

Si
nc

e
G

it
hu

b
do

es
no

t
pr

ov
id

e
th

e
re

po
si

to
ry

do
w

nl
oa

d
in

fo
,w

e
us

ed
th

e
nu

m
be

r
of

st
ar

s
as

a
m

ea
su

re
of

po
pu

la
ri

ty
.

2:
W

e
fo

un
d

a
pl

ug
in

,C
ho

co
D

ro
ps

[5
6]

,o
n

C
od

eC
an

yo
n

fo
r

$1
0,

00
0,

00
3.

Si
nc

e
th

is
is

an
ou

tl
ie

r,
it

ha
s

be
en

ex
cl

ud
ed

he
re

.

3:
W

P
M

U
D

E
V

ch
ar

ge
s

a
$1

5
m

on
th

ly
su

bs
cr

ip
ti

on
to

us
e

an
y

pl
ug

in
on

th
is

m
ar

ke
tp

la
ce

.
T

he
pr

ic
e

ra
ng

e
re

fle
ct

s
th

e
ye

ar
ly

co
st

.

4:
D

ow
nl

oa
ds

ra
ng

e
w

as
no

t
pu

bl
ic

ly
av

ai
la

bl
e

fo
r

E
D

D
an

d
ha

s
be

en
ex

cl
ud

ed
in

th
is

ta
bl

e.

Ta
bl

e
3.

1:
T

he
Ec

on
om

y
of

W
or

dP
re

ss
Pl

ug
in

M
ar

ke
tp

la
ce

s.

48

version-controlled changes collected from July 2012 to July 2020. They give YODA

the vantage point of both an individual website owner as well as a hosting provider

(i.e., access to the webserver files). This allows us to retroactively deploy YODA

over 8 years by executing YODA on each nightly backup for every website. Note

that CodeGuard anonymized the website owner profiles — only a random ID and

the URL were linked to each website backup. Furthermore, we only analyzed the

webserver files with no database access. All websites in our study are CodeGuard’s

active clients, i.e., if a client stops using CodeGuard’s service all their data is

immediately deleted, thus we will not have access to it.

Responsible Disclosure. The individual website-owners are anonymized by

CodeGuard. However, all of CodeGuard’s customers agree to their Privacy Policy

whereby their data may be shared with third-parties to help CodeGuard safeguard

their websites. Since we cannot directly contact the affected victims, we have

alerted CodeGuard about our findings and they are processing the disclosure.

Plugin Marketplaces. WordPress plugins and themes generate millions of

dollars in sales every year [1]. These plugins2 are either created by an individual or

teams of developers, including WordPress themselves. After detecting the plugins in

our dataset (5.7M of them), we performed a preliminary study to understand the

scale of this economy. We measured the plugin downloads and price data in July

2020 for the plugins in our dataset. This required scraping and cross-correlating

data from the plugin code and online marketplaces. Table 3.1 lists the plugin

marketplaces, the total number of plugins, and the unique number of plugins from

these marketplaces in our dataset. As seen in Table 3.1, thousands of plugins are

freely available on the WordPress repositories [49, 50] and software development

platforms, such as Github [51]. In rare cases (below 0.5% in our dataset), some

plugins are available on multiple marketplaces.
2Plugins and themes are together referred to as plugins.

49

Paid versions of the plugins are sold through marketplaces, e.g., ThemeForest [53],

CodeCanyon [52], and Easy Digital Downloads (EDD) [55]. Here, individual plugins

are sold for as little as $2, while the bestselling plugins are valued at around $63.

Table 3.1 Columns 4-6 highlight the plugin popularity in terms of the number of

downloads. WP Plugins [49] is the most popular marketplace overall, with 7.5M

average downloads per plugin. Some marketplaces do not sell individual plugins and

instead provide a subscription service for all plugins at a flat rate. For example,

WPMU DEV [54] has a $49/month subscription and is the most popular paid plugin

marketplace in our dataset with 1.4M average downloads per plugin. Less-popular

plugins are also directly available from freelance developers or small businesses [57,

58, 59].

Since plugin marketplaces do not provide any price history, we used the reported

download counts and the prices from July 2020 to estimate the money spent on these

plugins. Table 3.1 shows that website owners from our dataset alone spent $7.3M at

plugin marketplaces, and we estimate the revenue earned by these plugins globally to

be over $210M based on a conservative estimate of the reported download counts. We

found several plugins sold with an extended license for more developer support time.

We considered the regular support pricing to estimate a lower-bound for spending in

the plugin ecosystem. Our estimate is also confirmed by themeshunter.com, one of

the biggest WordPress themes catalogue on the market [60].

Nulled Marketplaces. Since most paid plugin marketplaces do not offer a trial

option, several marketplaces started a “try before you buy” initiative.

Unfortunately, this gave rise to pirated “trial plugin” marketplaces, referred to as

nulled marketplaces. Nulled plugins are pirated versions of originally paid plugins,

freely distributed via nulled marketplaces (unbeknownst to the original creator).

Generally, these plugins have been hacked or contain modified code to cause user

harm or collect sensitive user data and made to work indefinitely without a license

50

key [61]. Our study has found that, more often than not, nulled plugins introduce

malicious code onto webservers (§3.4.3).

Insufficient Market Oversight. While these marketplaces are growing rapidly,

the regulations to assess plugins are minimal. For example, as mentioned in Table 3.1,

our study found a CodeCanyon plugin for $10,000,003 [56] with a note from the

plugin author to not buy the plugin. The fact that the plugin author was able to

set the price so high, to dissuade downloaders, rather than legitimately removing the

listing underscores how little oversight these marketplaces provide. We also found

that attackers include malicious behaviors in plugins then sell them on reputable

plugin marketplaces, such as the WordPress repository. A report by Wordfence [47],

a leading WordPress malware scanner, found nine popular plugins updated at source

(i.e., the WordPress plugin store) with malicious code as part of a coordinated spam

campaign (see §3.6). It is more urgent now than ever to study the impact of this

problem and address the challenges toward securing the plugin ecosystem.

3.2 Design

Figure 3.1 shows an overview of the YODA pipeline. YODA first conducts Plugin

Detection (§3.2.1). Hosting providers and website owners can deploy this to detect

plugins on their websites. But, marketplaces or plugin developers can skip directly

to YODA’s Malicious Behavior Detection (§3.2.2) for a given plugin. Next, YODA

identifies the Origin of Malicious Plugins (§3.2.3). Finally, it performs an Impact

Study (§3.2.4) to understand the scale and impact of the plugin economy.

3.2.1 Plugin Detection

YODA detects all of the webserver’s plugins by identifying the plugin root and all

the associated files that belong to the plugin. Reliably detecting plugins based on

the webserver files alone can be challenging because CMSs provide limited guidelines

leading to a lack of code consistency. CMS-users (plugin developers, website owners,

51

M
et

ad
at

a A
na

ly
si

s

W
eb

si
te

B

ac
ku

ps
C

od
e A

na
ly

si
s

AS
T

Sy
nt

ac
tic

A
na

ly
si

s

Se
m

an
tic

A
na

ly
si

s

!"
#$
%&
'

Pl
ug

in
 D

et
ec

tio
n

M
al

ic
io

us
 B

eh
av

io
r D

et
ec

tio
n

O
ri

gi
n

of
 M

al
ic

io
us

 P
lu

gi
ns

M
al

ic
io

us
B

eh
av

io
rs

Pl
ug

in
M

et
ad

at
a

Pl
ug

in
-N

am
e t

o
U

RL
 T

ra
ns

la
tio

n

Im
pa

ct
 S

tu
dy

UR
L

M
ar

ke
tp

la
ce

 S
cr

ap
in

g:

Ec
on

om
y

Im
pa

ct
 M

et
ric

s

•
Le
gi
tim

at
e	M

ar
ke
tp
la
ce

•
Nu
lle
d	
M
ar
ke
tp
la
ce

•
In
je
ct
ed
	P
lu
gi
n

•
In
fe
ct
ed
	P
lu
gi
n

Fi
gu

re
3.

1:
Y

O
D

A
D

es
ig

n
O

ve
rv

ie
w

.

52

and attackers) often customize their plugins and do not follow coding guidelines.

CMSs provide directories to maintain plugins and themes, but users often place them

in random locations on the server, so we cannot solely rely on the directory structure

to reliably detect plugins.

To address these challenges, YODA performs (1) metadata analysis to identify

the plugin root files and (2) code analysis to identify all of the associated files as part

of the plugin (shown in Figure 3.1).

Metadata Analysis. YODA parses the comments from all of the server-side code

files and performs regular expression matching to identify the plugin root files (i.e.,

files containing the plugin header, a specially formatted block comment that contains

metadata about the plugin). This ensures that bad coding practices and possibly

hidden plugins injected by attackers do not go undetected.

Figure 3.2: A Typical WordPress Plugin Header.

A typical plugin header is shown in Figure 3.2. It is a specially formatted

PHP/CSS block comment that contains metadata about the plugin, such as its

name, author, version, license, etc. At the very least, the header comment must

contain the Plugin Name. An attacker could try to evade YODA’s plugin detection

by dropping the plugin header. However, this would work against the attacker:

without a valid plugin header containing at least the Plugin Name metadata, the

plugin will never get loaded by WordPress core and hence remain dormant on the

53

webserver.

has_filter, add_filter, apply_filters,
apply_filters_ref_array, do_action_ref_array,
remove_filter, remove_all_filters,
doing_filter, has_action, add_action, do_action,
remove_action, remove_all_actions, doing_action,
register_uninstall_hook, current_filter,
register_deactivation_hook, did_action,
register_activation_hook

Figure 3.3: List of WordPress Plugin APIs.

WordPress plugins are installed in dedicated plugin directories on the webserver.

Figure 3.3 shows the plugin-specific API calls commonly used in WordPress plugins

and themes. These are called Hooks that enable one piece of code to interact/modify

another piece of code at specific, pre-defined spots, thus helping the plugin interact

with the WordPress core.

It is up to the website owner to set the plugin’s user access permissions [62].

Based on these permissions, the website owner controls the directories that a plugin

can access for read, write, and execute. Plugins can either be manually updated or

set to auto-update upon which WordPress downloads and installs any updates from

the plugin store. However, WordPress cannot automatically update plugins from

3rd-party marketplaces. These need to be manually updated. Since most plugins

have both read and write permissions in the plugin installation directory, a malicious

plugin can scan for other plugins to inject malicious code, thus infecting it. Malicious

plugins installed outside the plugin installation directory can use a CMS account or

webshell to first change the access permissions (such as in SSO Backdoor attacks)

and then infect other plugins.

Note that WordPress only identifies and loads plugins with a header, and all

plugins must contain a single plugin root. If an attacker tries to evade YODA’s

detection by dropping the header, the plugin will not be loaded by the WordPress

54

core and remain dormant on the webserver. For every plugin root, YODA extracts

and records the plugin metadata from the header, including the plugin name, plugin

URI, author name, author URI, and plugin version. As we will see later (§3.3.1), we

use this plugin version to understand how many CMS-users maintain their plugins

updated to the latest version.

Code Analysis. With the plugin root files identified, YODA proceeds to find all

associated plugin files Pi, i.e., Pi = {fi1 , fi2 , ...} where fij
is the jth file in plugin Pi.

To do this, YODA generates and parses the abstract syntax tree (AST) of all of the

server-side code files in parallel and sub-directories of the plugin root. Since several

CMS-users customize their plugins either by using configuration files or explicitly

modifying the PHP code, YODA will detect fij
based on three scores, listed in

decreasing order of importance. We use constant weights (3, 2, and 1) coupled with

inverse exponentials to rank these scores since it is a common approach for ranking

program modules [63]. While we could have chosen any decreasing range, we found

that this combination produced distinct ranges that identify plugin files from non-

plugin files.

1. Header Score. The existence of a plugin header nj in a file fij
(computed

during metadata analysis) is used to derive the header score hj (weight = 3). Here,

nj can take values 1 (for plugin root with a single header) or 0 (for the associated

files with no header). However, the header score is included in the reliability score

with the highest weight to ensure a group of plugin-like files with no header is not

incorrectly identified as a plugin.

Header Score hj = 3 ∗ nj

2. Reference Score. YODA uses the number of reference calls mj linking other

files as part of the plugin to derive the reference score rj (weight = 2). Each score

55

is a sum of the individual contributions from all of the linked files towards the entire

plugin. This contribution is scaled by an integer weight in the numerator to model

the importance of linked files and an exponential in the denominator to account for a

large number of referenced files. Here, the exponent x starts with nj to further ensure

the reference score contribution is lower than the header score.

Reference Score rj =
nj+mj−1∑

x=nj

2
2x

3. API Score. The number of occurrences of plugin-specific API calls lj (the

full list of APIs is shown in Figure 3.3) is used to derive the API score aj (weight =

1). Since APIs alone are insufficient to detect a plugin, lj is scaled using a weight

of 1 (numerator). Here, the exponent x starts with nj +mj to ensure the API score

contribution is lower than the header and reference scores.

API Score aj =
nj+mj+lj−1∑

x=nj+mj

1
2x

The sum of all three scores for all plugin files in parallel and sub-directories of

the plugin root is divided by the upper bound of this sum to calculate the reliability

score Ri for each plugin Pi.

∀ plugin files fij
∈ Pi,

Reliability Score Ri =

∑
fij

(hj + rj + aj)

2 ∗max(hj, rj, aj)
∗ 100%

The reliability score is a measure of the likelihood of a group of files being part

of a plugin. If this score is greater than 95% for a group of files, YODA detects it

as a plugin. We set the strictest possible threshold because we found that for a true

positive plugin this score is always >98% and <55% otherwise.

An additional challenge (a special case of the above) is child plugins. They are

extensions of the original plugin that enable the website owners to add customization,

56

M
al

ic
io

us
B

eh
av

io
r

Se
m

an
tic

M
od

el
s

W
eb

sh
el

l
S
u
p
er

_
G
lo
ba
l[
in
p
u
t]
→
E
x
ec

Po
st

In
je

ct
io

n
(U
R
L
∈
B
la
ck
li
st

)∧
(U
R
L
→
D
ow
n
lo
a
d
→
A
d
d
_
P
os
t)

In
pu

t
G

at
in

g
S
u
p
er

_
G
lo
ba
l[
p
a
ss
w
or
d
]→

C
on
d
it
io
n
a
l
→
E
x
ec

SS
O

B
ac

kd
oo

r
C
re
a
te

_
U
se
r
→
C
h
n
g
_
U
se
r_
P
er
m
→
R
eg
is
te
r_
U
se
r
→
R
ed
ir
ec
t_
N
ew
U
se
r_
A
d
m
in

_
U
R
L

Li
br

ar
y

Fu
nc

tio
n

Ex
ist

s
C
on
d
it
io
n
a
l
→
F
u
n
c_
E
x
is
ts
→
C
re
a
te

_
F
u
n
c

Sp
am

In
je

ct
io

n
(U
R
L
∈
B
la
ck
li
st

)∧
(U
R
L
→
D
ow
n
lo
a
d
→
A
d
d
_
C
on
te
n
t)

C
od

e
O

bf
us

ca
tio

n
(J
u
m
be
d
_
O
bf
u
s
∨
L
on
g
_
L
in
e)
∨

(D
ec
od
e
→
E
x
ec

)
B

la
ck

ha
t

SE
O

C
on
d
it
io
n
a
l
→
S
E

_
B
ot
s
→

(U
R
L
∈
B
la
ck
li
st

)∧
D
ow
n
lo
a
d
→
R
ep
la
ce

_
C
on
te
n
t

D
ow

nl
oa

de
r

(U
R
L
∈
B
la
ck
li
st

)∧
(U
R
L
→
D
ow
n
lo
a
d
)

Fu
nc

tio
n

R
ec

on
st

ru
ct

io
n

(S
tr

1,
S
tr

2,
..
,S
tr
N

)→
C
on
ca
t
→
C
re
a
te

_
F
u
n
c

In
se

rt
U

se
r

C
re
a
te

_
U
se
r
→
R
eg
is
te
r_
U
se
r

M
al

ve
rt

isi
ng

(U
R
L
∈
B
la
ck
li
st

)∧
(U
R
L
→
D
ow
n
lo
a
d
→

(R
ed
ir
ec
t
∨
I
n
se
rt

_
P
op
u
p
))

Fa
ke

Pl
ug

in
C
on
d
it
io
n
a
l
→
S
u
p
er

_
G
lo
ba
l[S
tr

]→
D
ec
od
e
→
E
x
ec
→
D
el
et
e_
P
a
y
lo
a
d

C
ry

pt
om

in
er

(U
R
L
∈
B
la
ck
li
st

)∧
(U
R
L
→
D
ow
n
lo
a
d
→
F
il
e_
R
W
→
C
h
n
g
_
F
il
e_
P
er
m
→
E
x
ec

)

Ta
bl

e
3.

2:
H

ig
h-

le
ve

lD
at

afl
ow

Se
qu

en
ce

of
th

e
Se

m
an

tic
M

al
ic

io
us

Be
ha

vi
or

M
od

el
s

fro
m

So
ur

ce
to

Si
nk

.

57

i.e., modify functionalities without having them disappear after an upgrade. YODA

handles child plugin detection by recursively searching through plugin sub-directories

to find plugin roots and storing them as separate child plugins under their respective

parent plugins.

Effective Plugin State. Since YODA can retroactively run on temporal webserver

snapshots, it records the effective plugin state in each of these snapshots. For each

plugin, YODA uses the individual file states of all plugin files, i.e., added (‘A’),

modified (‘M’), no change (‘NC’), or deleted (‘D’) to derive the effective plugin state

that could also take one of the four values: A/M/NC/D. If all individual plugin file

states are added, deleted, or no change, then the effective plugin state is ‘A’, ‘D’, or

‘NC’, respectively. All other individual file state combinations produce an effective

plugin state ‘M’.

3.2.2 Malicious Behavior Detection

Preliminary Study. We started by analyzing all plugins from 85

known-compromised website backups taken between April 2018 and June 2020.

CodeGuard provided this subset based on signature-based AV alerts for well-known

web malware. We also referenced all reports of malicious plugins being removed

from popular marketplaces between 2013-2018 [64, 65, 47, 66] to identify and collect

available malicious plugin samples. Since most of the removed plugins were not

accessible on the marketplaces, we used the plugin name and version to scan our

dataset and collect all additional malicious plugin samples3.

We manually investigated all the plugins from above and identified 14 distinct

malicious behaviors, listed in Table 3.2 Column 1. We will describe the modeling of

these behaviors in the rest of this section. We also found that each of these behaviors

had multiple implementations and using rule-based syntactic detection alone would

quickly leave the rules obsolete. Further, state-of-the-art web malware detection relies
3Available at: https://cyfi.ece.gatech.edu/.

58

https://cyfi.ece.gatech.edu/

on structure-aware semantic features (e.g., code implementations of webshell features)

within a single code file [67, 68]. Existing techniques do not consider the interactions

between file groups. This is necessary because attackers distribute malicious behavior

implementations across multiple plugin files, thus evading existing techniques.

YODA addresses these challenges by employing both syntactic features (e.g., file

meta-data, sensitive APIs) and context-aware semantic features of all plugin code

files (e.g., AST with resolved file dependencies).

Syntactic Analysis. Syntactic analysis uses data flow analysis to identify

suspicious APIs being used as sinks in plugin code files. YODA generates the AST

for all of the plugin code files and parses it to record the sensitive API classes

summarized in Table 3.3. These APIs will later form the sinks for semantic dataflow

analysis. Table 3.3 shows the notations used for the classes of suspicious sinks and

the API class description. For example, the Decode class denotes decode functions

such as base64_decode, json_decode. The list of these sinks was identified by

studying past research as well as industry reports of malicious plugins being

removed from popular marketplaces between 2013-2018 [64, 65, 47, 66]. YODA

may miss identifying sinks that are based on novel implementations of the attack

behaviors such as updates to the PHP language. Since this is a rare event, YODA’s

models can be updated easily when necessary.

Plugins can have inter-file dependencies that invoke suspicious APIs indirectly.

An intuitive solution for handling inter-file dependencies is to analyze each plugin

code file together with its dependencies, but this may lead to the repeated analysis of

common dependencies and possible resource exhaustion given too many dependencies.

Therefore, to increase efficiency and reduce failures YODA eliminates the inter-file

dependencies by recursively replacing the dependencies with their respective ASTs

via modularized API usage analysis which analyzes each dependency only once. This

also handles the case of cyclic dependencies if any.

59

Classes of
Suspicious Sinks Suspicious API description

Exec Execute code
File_RW File read/write
Decode Decode functions
Download Download from URLs
Create_Func Define function from string inputs
SE_Bots References to search engine botnames
Chng_File_Perm Changes the file permissions
Chng_User_Perm Changes the user permissions
Create_User Creates a default user account
Register_User Registers a user account to the CMS
Add_Post Adds a new post
Inseert_Popup Adds code to display a popup
Add_Content Appends content to HTML metadata
Replace_Content Replaces old content with new content
Func_Exists Check if a function exits
Redirect Redirects to the URL passed as input
Delete_Payload Deletes the downloaded payload
Redirect_NewUser
_Admin_URL Redirects to the new user’s admin URL

Table 3.3: Classes of Suspicious API Sinks.

The dynamic nature of the PHP language (e.g., dynamically evaluating code) can

introduce challenges to accurately detecting the suspicious sinks. If the malicious

plugin generates new code that was not available during static AST generation, then

YODA cannot access the sinks in the new code. However, we found that the tactic

of function splitting to evade pattern-based detectors was more prevalent than new

code generation. YODA handles function splitting by concatenate the individual

function pieces defined in the AST to reconstruct the intended function. Lastly, if

the plugin uses an external input for function creation (e.g., new code fetched from a

URL), YODA cannot reconstruct the entire function at the AST-level.

YODA then analyzes all of the plugin code files to collect syntactic measurements,

specifically: (1) the number of files and filetypes in a plugin, (2) the effective plugin

state (described in §3.2.1), (3) the longest code-line length (termed Long_Line) and

(4) the presence of UTF-8 encoded characters or obfuscation patterns [42, 69] such

as a combination of ‘0’s and ‘O’s (termed Jumbled_Obfus). These measurements

will be used to detect the code obfuscation behaviors in semantic analysis (Table 3.2).

60

Semantic Analysis. The presence of suspicious APIs alone does not equate to

malicious plugin behavior. To ensure that the malicious behaviors are detected

across multiple plugin files, YODA performs context-aware semantic analysis. In

the dependency resolved ASTs, it marks all the sensitive APIs identified earlier as

sinks and performs targeted inter-procedural backward slicing on the AST from

each sink to the predefined sources using php-ast [70]. These source-sink dataflows,

called ‘semantic models’ are summarized in Table 3.2.

Note that YODA’s models are both composable and extensible. For some

dataflows, the sinks can also act as an intermediate node. For example, Download

is a sink for the downloader malicious behavior and an intermediate node for the

blackhat SEO, post injection, malvertizing, and spam injection behaviors. Since

attackers extend existing techniques, this composability allows YODA to scale with

evolving malware. Further, as new malware behaviors emerge (e.g., the recent trend

of SSO Backdoor), analysts can easily extend YODA’s models by composing

existing primitive models with new API sinks used in the attack. Next, we describe

each of the semantic models from Table 3.2.

1. Webshell. The plugin takes executable code as input via superglobal variables

(“Super _Global [input]” in Table 3.2) which is then passed to an Exec sink that

executes this code on the webserver.

2. Post Injection. The plugin code contains a URL that has been Blacklisted

as malicious by VirusTotal [71] or URLHaus [72], and it Downloads content from

this URL and inserts it as a WordPress post (Add_Post). We found that the URLs

used by attackers are not always flagged as malicious by VirusTotal or URLHaus.

We identified randomly generated strings used as throwaway domain names (e.g.,

www.fatots.top, www.gacocs.com) to deliver malicious content to these plugins.

We provide this full list as part of the YODA source code.

3. Input Gating. Attackers protect their injected code based on a predefined

61

password. Here, the ‘password’ parameter in a super global variable

(Super_Global [password]) is set, it is conditionally evaluated, and code is executed

(Exec) based on the conditional evaluation success. While this may appear like

harmless password-protected code execution, benign plugins store client credentials

in the website’s database and do not employ only hard-coded passwords.

4. SSO Backdoor. Attackers are abusing the single sign on feature to create a

backdoor via user accounts with admin privileges. Here, the plugin creates a user

object (e.g., Create_User via $user = array(

‘user_login’ => $uname,‘user_pass’ => $pword)), changes the user

permissions to provide administrator privileges, registers this user with the CMS

(e.g. Register_User via wp_user_insert), and finally redirects all requests to this

new user’s admin URL.

5. Library Function Exists. If the plugin finds a missing library function

(Conditional→ Func _Exists), it locally implements the function (Create _Func)

to redefine it. While it is common to check if a function exists, benign plugins do not

reimplement library functions but instead include the library.

6. Spam Injection. The plugin code contains a blacklisted URL (VirusTotal,

URLHaus, or in-house curated URL list), and it Downloads content from this URL

and injects the downloaded content to the HTML output (Add_Content) each time

the website is loaded.

7. Code Obfuscation. The plugin contains (1) jumbled obfuscation patterns

(Jumbed_Obfus), (2) long lines of code with over 50 code instructions in the same

line (Long_Line) during syntactic analysis, or (3) encoded strings passed to Decode

and Exec sinks. These are the 3 predominant categories of code obfuscation seen in

our study. YODA could identify different obfuscation variants, and the detection

module is made available as part of the YODA source code.

8. Blackhat SEO. Attackers employ conditional checks to detect if the website is

62

being loaded by search engine bots (SE_Bots), e.g., googlebot, bingbot,

baiduspider. They Download SEO campaign content from a URL ∈ Blacklist and

replace concealed HTML elements (Replace_Content) in the plugins with this

downloaded content. This impacts the website’s indexing by search engines.

9. Downloader. The plugin Downloads content from URL ∈ Blacklist. Note

that, if YODA finds Download as an intermediate sink for other attack behaviors, it

assigns the appropriate attack behavior and does not flag the plugin as a downloader.

10. Function Reconstruction. To evade signature- based AVs, attackers break

suspicious function names to substrings (Str1, Str2, ..) that can then be concatenated

to form the function name. Attackers then use PHP’s Create_Func to create a

function that internally performs an eval() or executes this function.

11. Insert User. The plugin creates a user object (Create_User) and registers this

user account with the CMS (Register_User). Benign plugins hardly add new user

accounts to the CMS. Different from SSO backdoor, this user is created for one-time

use and this user’s contents are not loaded each time a web page is requested.

12. Malvertizing. Attackers monetize plugins to serve malicious ads. The plugin

Downloads content from a URL ∈ Blacklist and redirects website visitors to a

malicious site or inserts a downloaded popup (Redirect∨Insert_Popup in Table 3.2).

13. Fake Plugin. Attackers inject full-fledged plugins that not only give backdoor

access but also run malicious code each time the website is loaded. In particular, fake

plugins receive encoded payloads (generally using base64 decoding) from superglobal

variables (Super_Global[Str]), Decode and Exec this payload, and then delete it

(Delete_Payload).

14. Cryptominer. The plugin Downloads a mining script from a

URL ∈ Blacklist, writes it to a file (File_RW), changes the file permission to

executable, and then Execs the file.

63

3.2.3 Origin of Malicious Plugins

YODA then determines the origin of these malicious behaviors. This helps

understand the different attacker entry points within the CMS ecosystem. Our

preliminary study uncovered that the malicious plugin behaviors originate from one

of these four sources.

1. Nulled Plugin Marketplace. Nulled plugins commonly include multiple

malicious domains (adds redundancy during domain takedown) to download malicious

content on the webserver. If YODA records downloader, malvertizing, or spam

injection behaviors when the effective plugin state was ‘A’, and if the plugin contains

multiple redundant blacklisted URLs, it is categorized as nulled based on its behavior.

Also, if the plugin name contains nulled marketplace metadata (e.g., “Shared on

VestaThemes.com”), it is categorized as nulled based on its metadata. Note that not

all metadata-based nulled plugins are malicious (§3.4.3).

2. Legitimate Plugin Marketplace. YODA marks the malicious origin as a

legitimate plugin marketplace if: (1) one or more malicious behaviors are seen when

the effective plugin state is ‘A’; or (2) the effective plugin state is ‘M’ due to plugin

version and/or author change4. Since some nulled plugins masquerade as legitimate

plugins, YODA first categorizes nulled plugins with redundant malicious domains

and excludes them from the legitimate marketplace category.

3. Injected Plugin. If YODA finds (1) fake plugin behavior when the effective

plugin state was ‘A’, or (2) fake plugin and code obfuscation behaviors when the

effective plugin state is ‘M’, the plugin is categorized as an injected plugin. Note,

plugins with code obfuscation are not always injected plugins. Only if the plugin did

not originate from nulled or legitimate marketplaces, then YODA marks it as an

injected plugin since these plugins are not sold on marketplaces.
4The effective state can be ‘M’ for several reasons such as code customization by the website

owner, code injected by an attacker, etc. Still, the plugin version or the plugin author does not
change.

64

4. Infected Plugin. We found that malicious plugins on the webserver tried to

increase the attack’s coverage by hijacking other plugins. If YODA found malicious

behaviors in a plugin with effective plugin state ‘M’ in an already compromised

website (i.e., it has one or more malicious plugins prior to the snapshot under

analysis), it is marked as infected. If it was infected when the effective plugin state

was ‘A’, YODA may incorrectly label an infected plugin as originating from a

legitimate marketplace. This is resolved via cross-website verification.

Cross-Website Verification. Using backups from over 400K web servers, we

employ cross-website verification as an additional guarantee for the malicious origin

categorization applied at a single-website level. Note, legitimate marketplace, nulled

marketplace, and injected plugin categories are mutually exclusive. However,

plugins from all of these categories can be infected by other malicious plugins on the

webserver. YODA performs a cross-website comparison of all malicious plugins

originating from legitimate or nulled marketplaces. In particular, if the identified

malicious behaviors are common across all websites, then the labeled categorization

is validated as correct. Otherwise, they will be correctly relabeled as infected

plugins.

3.2.4 Impact Study

The origin of malicious plugins in §3.2.3 reveals the broad attacker platforms used

to victimize CMS users. To understand the scale of this impact on the plugin

marketplaces, YODA extracts the impact metrics associated with each plugin (i.e.,

monetary impact in terms of plugin cost and popularity impact in terms of the

number of downloads) by mapping the plugins in our dataset to the plugin

marketplace it originated from. We chose the 7 most popular plugin markets —

three unpaid (WordPress Plugins, WordPress Themes, and Github) and four paid

(ThemeForest, CodeCanyon, WPMU DEV, and Easy Digital Downloads) — to

perform this study. This can be challenging because the impact metrics extraction

65

varies between markets due to the lack of code consistency.

To address this, we reverse-engineered the plugin-name-to-URL translation for

these marketplaces, and YODA was programmed to scrape the impact metrics.

YODA first constructs the URL to visit by appending the plugin name (e.g.,

twentytwenty) to the market-specific URL (e.g., https://wordpress.org/ themes/)

and performs a GET request on the effective URL

(e.g.,https://wordpress.org/themes/twentytwenty) to determine if the plugin is in

the marketplace. For some marketplaces (e.g., CodeCanyon), the required URL

cannot be constructed solely from the plugin name. To address this, a search query

is constructed using the plugin’s name. The search results are parsed to find if the

target plugin exists in the marketplace. This impact metrics extraction can be

extended to other marketplaces by updating YODA with the new

plugin-name-to-URL translation and scraping patterns.

After obtaining the plugin’s marketplace listing (i.e., a successful GET request

response), the impact metrics extraction is similar across marketplaces, specific only

to the web page formatting. All available metadata on the listing is stored in a

database for easier queries. This metadata consists of the plugin’s latest version,

plugin rating, cost, and the number of sales and downloads, which when applied to

a large-scale study, reveal the impact of these plugins on the community. This data

will be used to infer any correlations that may exist between malicious plugins, their

cost, and their popularity.

3.3 Validating YODA

To validate YODA’s design considerations, we used 120 unique WordPress websites

collected between Apr 2018 and Feb 2021. 60 were compromised with web-attacks as

classified by pattern-based AV and the remaining 60 were randomly chosen unbiased

websites. We used this dataset to establish ground truth and validate YODA’s

66

accuracy in detecting plugins and malicious plugin behaviors on a local workstation

running Ubuntu 16.04 with 32GB memory and 8 x 3.60GHz Intel Core i7 CPUs.

3.3.1 Plugin Detection Evaluation

Ground Truth. We first evaluate YODA’s plugin detection. As mentioned in

§3.2.1, website owners often customize their plugins, either using configuration files

or explicitly modifying the PHP code. Thus, it is difficult to verify that a detected

plugin matches a known plugin from the marketplace. To evaluate YODA, we need to

determine if each plugin that YODA detected is either: (1) an exact match (EM), (2)

a true positive match with customization (C), (3) a false positive (FP), i.e., YODA

labeled a non-existent plugin, or (4) a false negative (FN), i.e., YODA missed labeling

a group of files as a plugin.

We used YODA to identify an initial list of plugins in all 120 website backups.

This list contained EMs, Cs, or FPs (per above). To determine which, we created a

ground truth plugin set by downloading these plugins from the plugin marketplaces.

We also contacted the authors of paid plugins found in our dataset and received all

versions of these plugins as well. We compared all the files (via MD5 hash) for each

plugin detected by YODA against the files for the same version of the plugin within

the ground truth set. If 100% of the files from the ground truth plugin matched those

in the detected plugin, we classify it as an EM (Table 3.4 Column 3). Greater than

90% match is considered a true positive with customization (C, Column 4). If the

comparison led to a less than 90% match, we classified this plugin as an FP (Column

5). In fact, customized plugins rarely differ by more than one file (we found only 8

instances of multi-file customization in our dataset), thus a 90% match is so strict

that it is less favorable to YODA, but we aim to aggressively flag any FPs. We

manually investigated all mismatches.

To check for the FNs, we pulled every version of all freely available plugins from

67

Total #Websites: 120 Total #Plugins: 3,168

Plugin Name #Y TP FP FN3 LVm LVMEM1 C2

Yoast SEO 47 27 18 2 0 26 38
Contact Form 7 41 28 12 1 0 23 28
Wordfence Security 37 30 6 1 0 3 26
Manage WP - Worker 34 20 14 0 0 14 23
Add From Server 31 19 12 0 0 16 24
Shield Security 29 12 16 1 0 4 13
WP Rocket 27 10 15 2 0 10 12
MainWP Child 25 18 6 1 1 11 19
Easy WP SMTP 24 12 12 0 0 9 13
Amazon Web Services 20 18 2 0 0 6 17
Simple Social Icons 19 19 0 0 0 15 15
WP Offload S3 Lite 18 17 0 1 0 7 14
Jetpack 17 10 6 1 0 2 12
Sharedaddy 15 12 2 1 0 13 13
Akismet Anti-Spam 14 13 1 0 0 1 11
Total Top 15 398 265 122 11 1 160 278
Total Overall 3,168 2,240 889 39 3 728 2,060
1: #W where the plugin exactly matches the ground truth plugin.

2: #W with customized plugins correctly identified by YODA.

3: #W with customized plugins incorrectly identified by YODA.

Table 3.4: Plugin Detection Evaluation.

the WordPress SVN5 plugin repository. We also added all versions of the free and

paid plugins from above. We then compared all file hashes from the downloaded

plugins against the files in each website. If 90% or more of the plugin’s files match

files in the website and YODA did not mark the group of files as a plugin, we count

this is as an FN.

Detection Results. In the 120 websites, YODA found a total of 3,168 plugin

instances (#Y). Table 3.4 summarizes the results for all plugins and drills down into

these results for the top 15 plugins based on their popularity in our dataset. Of the

3,168 plugin instances in Table 3.4, YODA correctly detected 3,129 (i.e., 2,240 +

889) plugins. 2,240 of these plugins exactly matched the ground truth dataset, and
5WordPress uses SVN to maintain version-controlled plugins.

68

889 plugins were customized — a TP rate of 98.7%.

We manually verified all the plugins marked as FP and found that only 11 of

the 39 plugins were actually FPs (i.e., a group of files incorrectly identified as a

plugin). Here, the website owner copied the plugin root file (containing plugin APIs

and missing referenced files) to their home directory (likely part of customization

or backup), misleading YODA into identifying a group of files as a plugin. The

remaining 28 of the 39 plugins either redefined the base WordPress APIs or replaced

them entirely with custom APIs; such heavy customization in a single file put them

below the strict 90% match. Thus, despite using a strict measure for FPs, the FP rate

is reasonable (1.2%). The 3 FNs we found were due to the website owners deleting

the plugin header as part of customization. Since the header holds the highest weight

for determining a plugin group, YODA missed identifying these plugins.

We now use this dataset and the plugin version extracted by YODA to understand

if CMS-users keep their plugins updated to the latest version. Columns 7 and 8 show

the number of websites that had the plugins at the latest minor version (LVm) and

the latest major version (LVM). For example, if the latest plugin version on the

marketplace is 4.3.6 and it matches our dataset plugin version, we count it as LVm. If

our dataset plugin version is 4.3.2, since the major version (i.e., 4.3) is still up to date,

we count this as LVM .6 Only 40% (160 of 398) of the top 15 plugins and 23% (728 of

3,168) of all plugins were updated to the latest minor version. From Column 8, we

find that about 70% (278 of 398) of the top 15 plugins and 65% (2,060 of 3,168) of

all plugins are updated to the latest major version. Over 35% of all plugins used are

clearly outdated.

3.3.2 Malicious Behavior Evaluation

Ground Truth. After establishing confidence in YODA’s plugin detection, we

now evaluate the accuracy of identifying malicious plugins. We eliminated the 39 FP
6Latest major version includes all latest minor versions.

69

Total #Websites: 120 Total #Plugins: 3,132
Malicious Behavior #W #GT #Y TP FP FP

Code Obfuscation 15 28 28 28 0 0
Webshell 19 23 26 23 3 0
Function Reconstruction 7 16 18 16 2 0
Downloader 7 12 14 12 2 0
Library Function Exists 10 13 14 13 1 0
Input Gating 4 13 13 13 0 0
Fake Plugin 3 7 7 7 0 0
Spam Injection 3 6 6 6 0 0
Malvertising 2 5 5 5 0 0
Insert User 2 3 3 3 0 0
Blackhat SEO 1 2 2 2 0 0
Post Injection 1 2 2 2 0 0
SSO Backdoor 1 2 2 2 0 0
Cryptominer 1 1 1 1 0 0
Total Malicious Plugins1 61 84 89 84 5 0
Total Benign Plugins 120 3,048 3,043 3,043 0 5
1: This is not the sum of the columns, but the total #websites

and #plugins in the evaluation dataset with malicious behaviors.

Table 3.5: Evaluation of the Malicious Behavior Detection.

and included the 3 FN plugins from the same 3,168 plugins from above, and our team

manually verified the server-side code files in all 3,132 plugins and tagged them with

corresponding malicious behavior labels.7 We then ran YODA’s malicious behavior

detection on all of these plugins and compared the labels assigned by YODA with

the manually derived labels. The results are presented in Table 3.5.

Detection Results. In our dataset of 3,168 plugins across 120 websites, YODA

reported 61 websites (#W) containing 89 plugin instances (#Y) that exhibit malicious

behaviors whereas our manually labelled ground truth (#GT) showed that only 84

plugins across these websites were malicious. Recall, our dataset has 60 websites with

known-compromises (i.e., web attacks detected), and 58 of these websites contained

malicious plugins. In addition, YODA found 3 websites containing malicious plugins

in the 60 randomly chosen websites. The malicious behaviors reported by YODA
7YODA did not have access to our manually derived labels.

70

matched our ground truth for plugins from these 61 websites (i.e., TP). Based on our

manual verification, we did not find any plugins that contained malicious behaviors

missed by YODA, thus showing zero FNs.

Table 3.5 shows YODA produced FP detections for 8 behavior instances in 5

plugins. Our manual investigation revealed that 4 of these plugins used a

combination of behaviors that resembled webshells (i.e., executing decoded content)

and checking if the library function base64_decode exists and redefining it if not.

Our investigation confirmed that these plugins did not show any outright malicious

activity, but this rarely-benign code implementation misled YODA. Also, 2 plugins

were falsely labeled as downloaders, due to VirusTotal falsely blacklisting the

extracted URLs as malicious. This gives us confidence that YODA accurately

detects plugins and malicious behaviors. Table 3.5 also summarizes the benign

plugins in this dataset that we verified were not malicious.

3.4 Deploying YODA

#Websites 410,122
Min. Duration 102 days Min. #Plugins 1
Avg. Duration 406 days Avg. #Plugins 49
Max. Duration 3,259 days Max. #Plugins 68

Table 3.6: Dataset Summary.

We deployed YODA on the full dataset of 410,122 unique WordPress websites’

nightly backups (Table 3.6). This dataset provides a realistic view of the plugin

ecosystem because over 37% of the world’s websites and over 63% of CMS-based

websites run on WordPress [18]. It also allows us to retroactively deploy YODA over

8 years. The backups contain an average of 406 day-snapshots per website. Many

backups went all the way back to 2012, representing some of the earliest customers of

CodeGuard. Each website had between 1-68 plugins, with an average of 49 plugins

per website. This high average shows that most website owners place unwarranted

71

M
al

ic
io

us
Be

ha
vi

or
#

W
#

P
IR

1
Fi

rs
t

Se
en

Te
m

po
ra

lE
vo

lu
tio

n
M

ar
ke

tp
la

ce
In

je
ct

ed
N

ul
le

d
In

fe
ct

ed
(0

7-
20

12
-0

7-
20

20
)

#
W

#
P

#
W

#
P

#
W

#
P

#
W

#
P

W
eb

sh
el

l
7,

92
1

10
,2

79
1.

3
Ju

l2
01

2
10

12
85

4
99

4
16

0
23

2
7,

11
7

9,
94

3
C

od
e

O
bf

6,
75

2
10

,0
64

1.
5

A
ug

20
12

0
0

40
9

55
8

1,
05

5
1,

21
4

5,
50

9
8,

81
9

In
pu

t
G

at
in

g
5,

92
8

23
,1

40
3.

9
Ju

l2
01

2
0

0
47

50
3,

44
5

7,
82

1
5,

58
8

20
,6

84
D

ow
nl

oa
de

r
2,

31
4

5,
94

4
3.

6
M

ar
20

14
15

1
28

8
19

20
1,

54
0

2,
68

3
1,

56
2

4,
25

4
Sp

am
In

je
ct

io
n

1,
20

2
3,

72
3

3.
1

O
ct

20
16

1,
16

6
3,

45
2

0
0

0
0

36
27

1
Li

b
Fu

nc
Ex

ist
s

2,
23

3
3,

57
6

1.
6

A
ug

20
12

25
29

5
5

15
4

24
1

2,
19

5
3,

47
5

Bl
ac

kh
at

SE
O

1,
35

8
1,

71
4

1.
3

O
ct

20
13

86
86

8
21

53
4

65
0

85
7

1,
42

1
Fa

ke
Pl

ug
in

1,
12

1
1,

33
6

1.
2

Ju
l2

01
4

0
0

1,
12

1
1,

33
6

0
0

0
0

Fu
nc

R
ec

on
st

63
6

92
9

1.
5

Ja
n

20
16

3
3

52
54

12
13

57
9

89
0

In
se

rt
U

se
r

35
7

1,
53

1
4.

3
D

ec
20

15
0

0
26

6
26

6
2

6
29

2
1,

49
0

Po
st

In
je

ct
io

n
28

1
1,

40
7

5.
0

M
ay

20
16

0
0

26
6

26
6

1
1

31
5

1,
41

5
M

al
ve

rt
isi

ng
91

5
1,

35
4

1.
5

M
ay

20
17

12
13

0
0

89
4

1,
33

0
13

13
SS

O
Ba

ck
do

or
19

1
90

5
4.

7
M

ay
20

19
2

2
0

0
36

91
19

0
87

9
C

ry
pt

om
in

er
4

4
1.

0
Ju

l2
01

8
0

0
4

4
0

0
0

0
To

ta
l2

24
,9

31
47

,3
37

1.
9

Ju
l2

01
2

1,
34

5
3,

68
5

1,
20

1
2,

81
4

5,
24

4
8,

52
5

18
,0

34
40

,5
33

1:
In

fe
ct

io
n

R
at

io
(I

R
)

is
th

e
ra

ti
o

of
#

P
to

#
W

,s
ho

w
s

a
m

ea
su

re
of

in
fe

ct
io

n
sp

re
ad

.

2:
T

hi
s

is
no

t
th

e
su

m
of

th
e

co
lu

m
ns

,b
ut

th
e

to
ta

l#
w

eb
si

te
s

an
d

#
pl

ug
in

s
w

it
h

m
al

ic
io

us
be

ha
vi

or
s

in
ou

r
da

ta
se

t.

Ta
bl

e
3.

7:
D

ist
rib

ut
io

n
an

d
Te

m
po

ra
lE

vo
lu

tio
n

of
th

e
M

al
ic

io
us

Be
ha

vi
or

s
A

cr
os

s
al

lW
eb

sit
es

in
ou

r
D

at
as

et
.

72

trust in plugins to keep their websites up and running.

Experimental Setup. We used Amazon Web Services (AWS) Elastic Compute

(EC2) r5.2xlarge instances with 8 virtual CPUs and 64 GB of RAM to run YODA

on the website backups. These instances were supervised by the AWS Batch job

scheduling engine to deploy YODA on hundreds of backups in parallel.

3.4.1 Malicious Behavior Evolution

YODA found malicious plugin instances (#P) in 24,931 of the 410,122 websites

(#W), shown in Table 3.7. As expected, over 10K malicious plugin instances used the

age-old web attack techniques: webshells and code obfuscation. The infection ratio

(IR, the ratio of #P to #W) shows a measure of infection spread. Several malicious

behaviors have IR >3, implying that multiple plugins within the same website contain

these same malicious behaviors. Closer inspection revealed that these are due to

plugin-to-plugin infection: a single malicious plugin on the webserver infects multiple

benign plugins, replicating the behavior.

Dating back to 2012, we studied the evolution of these malicious behaviors.

Since the absolute number of websites in our dataset increased over time, in

Table 3.7 Temporal Evolution, we plot the newly infected websites as a percentage

of all malicious websites to remove dataset bias. While some attack behaviors were

popular since late 2012, other behaviors such as spam injection (2016), malvertising

(2017), and SSO backdoor (2019) were introduced recently. However, it is

interesting to note that regardless of when they were first introduced, all of these

behaviors are still prevalent in present-day malicious plugins. A closer look at the

absolute values of the newly introduced malicious behaviors reveals that the number

of malicious plugins peaked in March 2020, which notably coincides with the

COVID-19 outbreak.

Thousands of malicious plugins originated from legitimate plugin marketplaces.

Table 3.7’s Marketplace Columns show their distribution (i.e., number of websites

73

#W and number of plugins #P with malicious behaviors). Row 2 shows that none

of these plugins use code obfuscation techniques — despite being sold on legitimate

marketplaces they brazenly hide in plain sight. Attackers (rightly) assume that an

average website owner will not inspect the plugin code before installing it on their

webserver. In fact, we found instances of well commented malicious code in 2,379 of

the 3,452 plugins that performed spam injection originating from legitimate plugin

marketplaces. Evidently, these plugins enabled illegal monetization via blackhat SEO,

downloader, and spam injection in 86, 288, and 3,452 plugin instances, respectively.

Attackers exploited the scalable CMS infrastructure to inject malicious plugins

into websites. Table 3.7’s Injected Columns show that the injected plugins aim to gain

and maintain access to the webserver. They are injected without the website owners’

knowledge and over 80% of these plugins had fake plugin behaviors (1,336), webshells

(994), or obfuscated code (558). Although cryptomining is gaining popularity, we only

found 4 injected cryptominer plugins on 4 websites revealing its infancy in pervading

the CMS landscape.

We found 8,525 malicious nulled plugin instances in our dataset that exploit

human vulnerabilities to rapidly spread malware. Table 3.7’s Nulled Columns show

that over 91% (7,821 of 8,525) of these plugin instances used input gating (i.e.,

password-protecting the publicly accessible code) to thwart competing attackers

from introducing malicious payloads. We also found that the plugins introduced

after December 2018 primarily employed downloader, blackhat SEO, and

malvertizing behaviors in 2,683, 650, and 1,330 plugin instances, respectively, to

infect other benign plugins.

It was concerning that over 40K plugin instances were infected post-deployment.

Table 3.7’s Infected Columns show that these plugins portray a variety of malicious

behaviors. Most attackers employ behaviors such as webshells, obfuscation, and

downloaders in 9,943, 8,819, and 4,254 plugin instances, respectively. Interestingly,

74

over 50% (20,684 of 40,533) of these plugins employed input gating showing

attackers’ diligence in marking their conquered territories.

3.4.2 Fueling the Malware Economy

Markeplace Malicious Downloads Range Cost
#P #U1 %M2 Min. Avg. Max.

Legitimate Marketplace
WP Themes 523 62 1.1% 7.7K 336K 3.6M -
WP Plugins 1,583 69 0.25% 4 945K 25M -
Github 0 0 0% - - - -
WPMU DEV 132 2 1.8% 54K 510K 524K $25.8K
CodeCanyon 164 10 0.4% 1 40 73 $6.8K
ThemeForest 195 22 0.37% 9 20K 213K $8.9K
EDD 0 0 0% - - - $0
Subtotal 2,597 165 0.38% - - - $41.5K
Nulled Plugins
WP Themes 1,074 59 1.08% 11K 203K 5.7M -
WP Plugins 146 43 0.16% 65 4K 37K -
Github 0 0 0% - - - -
WPMU DEV 4 1 0.9% 572K 572K 572K $2.3K
CodeCanyon 2,085 122 5.02% 1 70 570 $82.3K
ThemeForest 3,059 223 3.82% 3 12K 213K $142K
EDD 39 3 1.2% - - - $1.3K
Subtotal 6,407 451 1.03% - - - $228K
Infected Plugins
WP Themes 9,776 1,864 34.2% 1 367K 7.4M -
WP Plugins 8,049 6,520 23.8% 2 4M 260M -
Github 15 1 0.01% 2 2 2 -
WPMU DEV 450 9 8.2% 187K 2M 10.5M $88.2K
CodeCanyon 1,873 469 19.3% 1 62 563 $59.9K
ThemeForest 5,858 1,072 18.4% 2 10K 213K $264K
EDD 634 57 23.3% - - - $422K
Subtotal 26,655 9,992 22.9% - - - $834K
1: #U: Number of unique malicious plugins, 2: %M: Percentage

of the plugins on the marketplace that were flagged as malicious

Table 3.8: The Economy of Malicious Plugin Marketplaces.

Next, we turned our attention to the economic drivers of these malicious plugins.

Table 3.8 categorizes our results based on the origin of malicious behaviors, i.e.,

legitimate marketplaces, nulled marketplaces, and infected plugins.

75

Table 3.8 begins with malicious plugins originating from legitimate plugin

marketplaces. About 70% of these (2,597 of 3,685) were found on 5 of the 7 most

popular marketplaces. Our dataset alone constituted over $41K in purchases of

malicious plugins from legitimate marketplaces. We found 62 unique malicious

plugins from WP Themes and 69 from WP Plugins (unpaid marketplaces),

contributing to 1.1% and 0.25% of these marketplaces, respectively (%M Column).

Furthermore, the malicious plugins from these marketplaces are extremely popular,

averaging 336K and 945K downloads per plugin. We also found 34 unique malicious

plugins sold on paid marketplaces.

Nulled plugins impersonate plugins from legitimate marketplaces. YODA

extracts their popularity and cost from legitimate marketplaces. The cost represents

the explicit losses incurred by the legitimate plugin authors. About 75% of the

malicious nulled plugins (i.e., 6,407 of 8,525) in our dataset contain legitimate

counterparts in these 7 popular marketplaces. Since nulled marketplaces distribute

plugins free of cost, we did not expect to find plugins from unpaid marketplaces.

Surprisingly, we found a total of 102 plugins from WP Plugins and WP Themes sold

on nulled marketplaces. As expected, we also found that over 77% (349 of 451) of

the nulled plugin counterparts were sold on paid marketplaces. Attackers

impersonated 122 and 223 best-selling plugins from CodeCanyon and ThemeForest,

respectively. Overall, the website owners from our dataset alone contributed to

$228K in explicit loss to the plugin authors. This shows that attackers are

successfully targeting psychological human vulnerabilities and the less-technical

CMS users are installing pirated plugins.

Finally, Table 3.8 considers the origin of post-deployment infected plugins. About

65% of the infected plugins (i.e., 26,655 of 40,533) were downloaded from these 7

popular marketplaces. Since the plugins from WP Plugins and WP Themes are

widely used, they are also commonly infected. 34.2% and 23.8% of plugins from

76

WP Themes and WP Plugins became victims of plugin infections. Despite paying

a premium for plugins from paid marketplaces, a significant number of these were

found to be infected, i.e., 8.2% of WPMU DEV, 19.3% of CodeCanyon, 18.4% of

ThemeForest, and 23.3% of EDD. The website owners spent a total of $834K on these

plugins, only to find them compromised. This encapsulates the additional implicit

cost of malware cleanup incurred by installing malicious plugins from legitimate and

nulled marketplaces.

3.4.3 Nulled Marketplace Study

Since nulled plugins require some tampering with the WordPress backend (too

complex for the typical CMS user), we did not expect to find many nulled plugin

instances in our dataset. Surprisingly, Table 3.9 reveals 6,223 websites had at least

one nulled plugin. We found that these plugins are gaining popularity by optimizing

for search engine ranking.

A Google search for any “____ WordPress plugin/theme free download” almost

always has a nulled marketplace in the top five results. Figure 3.4 shows the search

engine results for one of the popular WordPress themes, DooPlay, normally priced at

$80 [80]. Here, the highlighted four of the top five results on Google search lead us to

nulled marketplaces that are known for distributing malicious plugins and themes. In

Nov 2019, WordFence alerted the community about a rouge blackhat SEO malware

campaign via nulled malicious plugins and themes [48]. Despite this knowledge, the

attackers have successfully maintained their ranks on the search engine results.

Table 3.9 shows the nulled marketplaces extracted from the plugin metadata.

If YODA identifies a plugin as nulled based on its behavior alone and if it cannot

extract a nulled marketplace from the plugin metadata, we categorize the marketplace

as ‘Unknown’. Table 3.9 shows vestathemes.com as the most popular nulled plugin

marketplace in our dataset, with 3,177 plugin instances (#P) downloaded across 2,398

websites (#W). Recall from §3.2.3, not all nulled plugins portray malicious behaviors.

77

N
ul

le
d

M
ar

ke
tp

la
ce

#
W

#
P

#
M

W
1

#
M

P2
%

M
1st

Se
en

1st
M

al
.

Se
en

Po
pu

la
r

M
al

.
Pl

g.
C

os
t

#
In

st
an

ce
s

ve
st

at
he

m
es

.c
om

2,
39

8
3,

17
7

2,
28

3
3,

05
7

96
.2

%
A

ug
20

14
Ju

l2
01

8
Fl

at
so

m
e

[7
3]

$5
9

19
5

w
w

w
.th

em
es

24
x7

.c
om

98
9

1,
36

3
92

8
1,

28
2

94
.1

%
M

ar
20

16
M

ar
20

16
W

PB
ak

er
y

Pa
ge

Bu
ild

er
[7

4]
$6

4
14

0
w

w
w

.w
pl

oc
ke

r.c
om

84
1

1,
03

5
82

9
1,

01
7

98
.3

%
N

ov
20

13
Ja

n
20

14
Fo

rm
C

ra
ft

[7
5]

$3
6

80
w

w
w

.jo
jo

-t
he

m
es

.n
et

13
3

14
1

10
9

11
7

82
.9

%
Fe

b
20

16
Fe

b
20

16
G

ra
vi

ty
Fo

rm
s

[7
6]

$5
9

9
th

em
e1

23
.n

et
12

7
14

4
12

7
14

4
10

0%
D

ec
20

13
D

ec
20

13
W

P
R

ob
ot

5
[7

7]
$8

9
9

m
afi

as
ha

re
.n

et
12

1
14

9
11

7
14

2
95

.3
%

Ja
n

20
14

D
ec

20
15

Be
T

he
m

e
[7

8]
$5

9
9

w
w

w
.w

pt
ry

.o
rg

79
99

79
98

98
.9

%
A

pr
20

20
A

pr
20

20
W

oo
dm

ar
t

[7
9]

$5
9

3
th

em
lo

t.n
et

60
65

60
65

10
0%

D
ec

20
14

D
ec

20
14

Be
T

he
m

e
[7

8]
$5

9
4

U
nk

no
w

n
1,

90
6

2,
60

3
1,

90
6

2,
60

3
10

0%
O

ct
20

16
O

ct
20

16
Fl

at
so

m
e

[7
3]

$5
9

25
2

To
ta

l1
6,

22
3

8,
77

6
5,

24
4

8,
52

5
97

.1
%

N
ov

20
13

D
ec

20
13

Fl
at

so
m

e
[7

3]
$5

9
48

3

1:
#

M
W

:T
he

nu
m

be
r

of
w

eb
si

te
s

w
it

h
m

al
ic

io
us

nu
lle

d
pl

ug
in

s,
2:

#
M

P
:T

he
nu

m
be

r
of

m
al

ic
io

us
nu

lle
d

pl
ug

in
s.

3:
T

he
to

ta
lh

er
e

is
no

t
th

e
su

m
of

th
e

co
lu

m
ns

,b
ut

th
e

to
ta

l#
W

an
d

#
P

fr
om

nu
lle

d
m

ar
ke

tp
la

ce
s

in
ou

r
da

ta
se

t.

Ta
bl

e
3.

9:
St

ud
y

of
M

al
ic

io
us

Pl
ug

in
s

Fr
om

N
ul

le
d

M
ar

ke
tp

la
ce

s.

78

Figure 3.4: Google Search Results of a Typical Paid Plugin.

Columns 4-5 present the number of websites (#MW) containing malicious nulled

plugins (#MP). Overall, over 97% of all nulled plugins deliver malicious behaviors

(%M). In particular, 100% of the plugins we saw from theme123.net, themelot.net,

and ‘Unknown’ marketplace were malicious.

Interestingly, the ‘Unknown’ marketplaces have distributed over 31% of all

malicious nulled plugins (2,603 of 8,525) in our dataset. They impersonate the

79

plugin author entirely and hide that they were downloaded from a nulled source as

opposed to the other nulled marketplaces in Column 1. A comparison of the plugin

header from an ‘Unknown’ nulled plugin and a legitimate marketplace plugin did

not reveal any differences. Only after matching the code files were we able to tell a

nulled malicious plugin apart from the legitimate plugin. However, since the website

owners cannot compare the nulled plugin’s code to the paid legitimate plugin, it is

impossible for them to identify the nulled plugin as malicious. However, YODA can

detect malicious plugins by only analyzing its code files.

Table 3.9 also shows that most nulled marketplaces have been around for a long

time, since 2013-2014. However, over 50% of the marketplaces displayed malicious

behaviors starting in 2016. In particular, the ‘Unknown’ marketplaces have

attempted to spread malware since 2016 and have been successful through 2020.

The most popular nulled plugins cost between $36 and $89, with an average of $59

per plugin. 447 of the 483 popular malicious nulled plugin instances were

Flatsome [73], a WordPress theme that would normally cost the website owner $59

and provided pre-defined layouts for user-friendly e-commerce shop features.

3.4.4 Are Infected Plugins Cleaned Up?

Lastly, Table 3.10 studies the plugin clean-up statistics to understand how attackers

are evading website owners. Very few website owners (2,697 of 24,931 or 10.8% of

the compromised websites overall) attempt to clean up the malicious plugins on their

webserver. We hypothesize that those website owners are unaware of the malicious

plugins or they cannot correlate malware side-effects (such as server slowdown) with

the plugins. As seen in Table 3.10, 24.1% of websites with malicious plugins from

legitimate marketplaces are cleaned up, the highest rate by far. Only 6.7% of nulled

plugins are cleaned up, which further strengthens our hypothesis (§3.5) that despite

much later adoption, nulled plugins provide robust persistence for attackers.

Of the 2,697 websites that attempted to clean up 7,042 malicious plugins, 12.5%

80

M
al

ic
io

us
O

rig
in

M
al

ic
io

us
C

le
an

ed
U

p
R

ei
nf

ec
te

d
St

ill
In

fe
ct

ed

#
W

#
P

#
W

%
W

#
P

#
W

%
W

#
P

#
W

%
W

#
P

M
ar

ke
tp

la
ce

1,
34

5
3,

68
5

32
4

24
.1

%
38

9
32

9.
9%

32
1,

09
0

81
.0

%
3,

32
7

In
je

ct
ed

1,
20

1
2,

81
4

16
9

14
.1

%
22

1
21

12
.4

%
41

1,
06

7
88

.8
%

2,
60

8
N

ul
le

d
5,

24
4

8,
52

5
35

3
6.

7%
47

1
63

17
.8

%
81

5,
00

3
95

.4
%

8,
11

5
In

fe
ct

ed
18

,0
34

40
,5

33
2,

17
4

12
.1

%
5,

96
2

25
4

11
.7

%
55

1
16

,8
81

93
.6

%
34

,9
56

To
ta

l1
24

,9
31

47
,3

37
2,

69
7

10
.8

%
7,

04
2

33
6

12
.5

%
70

5
23

,5
77

94
.6

%
40

,7
87

1:
T

he
to

ta
lh

er
e

is
no

t
th

e
su

m
of

th
e

co
lu

m
ns

,b
ut

th
e

to
ta

l#
W

an
d

#
P

in
ou

r
da

ta
se

t.

Ta
bl

e
3.

10
:

T
he

C
le

an
up

an
d

R
ei

nf
ec

tio
n

D
ist

rib
ut

io
n

of
M

al
ic

io
us

Pl
ug

in
s.

81

of the websites (336 of 2,697) were reinfected. Interestingly, nulled plugins were

most consistently reinfected (17.8% or 63 of 353 websites). Plugins downloaded

from legitimate marketplaces show the least rate of reinfection (9.9%). This can be

attributed to community engagement in identifying malicious plugins on legitimate

marketplaces. Such plugins are either purged from the marketplace or their authors

are forced to remove the malicious code.

Lastly, we measured the websites that remained infected up to the time of writing.

Despite cleanup efforts, over 94% of all websites with malicious plugins remained

infected. This proves that CMS plugins have provided a reliable webserver infiltration

vector for nearly a decade.

3.5 Persistence of Malicious Plugins

1 2 5 10 20 50 100 200 500 1,000 2,000

Persistence	(Days)

Marketplace

Injected

Nulled

Infected

204

209

189

196

176

177

131

159

380

525

232

325

Figure 3.5: Persistence of Malicious Plugins.

To understand the persistence patterns of malicious plugins, Figure 3.5 shows

a box plot measuring the number of days malicious plugins were identified on the

webserver, categorized by their origin. The median persistence ranges between 189-

209 days. Thus, over 50% of the malicious plugins persist for over 6 months. We also

noted that over 80% of the remaining malicious plugins (those that persisted for less

than 6 months) were introduced during Feb - Mar 2020 and persisted through the

82

end of our study. This confirms our previous observation (Table 3.10) that 94% of

the malicious plugins in our dataset installed over 8 years are still active today.

Popular plugins on legitimate marketplaces mostly introduce malicious behaviors

via plugin updates. Thus, we assumed that these behaviors would be cleaned up

with updates8 as well. As seen from Figure 3.5, malicious plugins from legitimate

marketplaces are not immediately identified at source and persist for 176 - 380 days.

Recall from §3.3.1, over 60% of the website owners do not enable auto-updates and

use outdated plugin versions. If these website owners happen to install a malicious

version of a plugin from a legitimate marketplace, it persists for months or years.

Figure 3.5 also shows that the persistence of nulled plugins (131 - 232 days) is

shorter compared to other origins. This can be attributed to the fact that even though

nulled marketplaces existed since 2013, they gained popularity around 2018, and their

blackhat SEO campaigns accelerated in early 2019. We found that once nulled plugins

are installed on the webserver, they are rarely removed (§3.4.4). The website remains

compromised since the website owner is unaware of the plugin’s malicious intentions.

So despite much later adoption, 25% of these plugins persist for over 232 days.

Notably, it is the injected plugins that win the persistence war. Over 75% of these

plugins remain active for at least 177 days, and over 25% of these plugins persist for

at least 525 days. This proves that injected plugins are never noticed by the website

owners, who typically use GUIs to manage their CMS.

3.6 Case Studies

1. Malvertizing URLs. Discovered in 2019, the largest known malvertizing

campaign downloaded content from malicious domains in plugins to the

webserver [48]. To understand the lifecycle of these domains, we extracted 352

URLs from all malvertizing plugins in our dataset and analyzed the domain creation
8The marketplace takes down community-identified malicious plugins or mandates reverting the

malicious behaviors.

83

20
13

-10

20
17

-06

20
18

-04

20
19

-01

20
19

-08

20
20

-02

20
20

-08

20
21

-02

Time

0

20

40

UR

Ls

 Created
Updated

Figure 3.6: Malicious URLs Created and Updated.

date, last updated date (i.e., registration renewed), and their registrars. Figure 3.6

shows the distribution of URLs created and updated over time. The majority of

these URLs were created in 2018, but attackers are re-registering the same URLs

with peak activity in 2021. Thus, the malvertizing campaign is still active

(confirmed by their use in recent malicious plugins) and has evaded detection. In

fact, only 56 of these URLs were no longer registered at the time of writing. We

believe that these were throwaway URLs generated for a short targeted attack. We

also found 38 of these URLs captured by the internet archive [81], further

supporting our hypothesis.

2. Spam Injection Insights. Starting in 2016, a prolific spammer bought and

updated several WordPress plugins for a coordinated spam campaign over a 4.5-year

period [47]. Hoping to find how widespread this campaign was among our dataset,

we drilled down into the spam injection plugins YODA detected. Apart from

downloading malicious spam content from the spammer’s own domains onto the

webserver, we discovered these same plugins also collected details on visitors to the

infected website, such as URL, IP, user agent, and other attacker-defined variables.

Of the 3,723 spam injection plugins, 94% sent back IP and user agent using the

PHP superglobal variables. Of these, 66% encoded the IP using

$_SERVER[‘REMOTE_ADDR’] and 34% used $_SERVER[‘SERVER_ADDR’]. These

plugins also sent attacker- defined variables ‘p’ (set to 2, 29, or 9) and ‘v’ (set to

84

11 or 18). While we cannot accurately decipher what these variables mean, we

speculate that they identify the spammer’s campaign and distribute profits similar

to affiliate tracking. 6% of the plugins did not send any data back to the attacker.

Interestingly, these where all the earliest cases that appeared in late 2016.

3.7 Limitations and Future Work

Additional CMS Platforms. YODA can accurately detect malicious plugins on

WordPress-based websites. However, scaling to other CMSs only requires updating

YODA’s plugin detection and semantic models. YODA’s modularity enables porting

to other platforms by reviewing the API documentation of the target CMS. We leave

handling other CMSs as future work.

Static Behavior Detection. Since YODA relies on static analysis, it carries the

limitations of static analysis. Like any static data flow analysis framework, YODA

can identify obfuscated code but it cannot detect malicious behaviors within the

obfuscated code. YODA could be augmented with dynamic analysis [82, 69] to

achieve better coverage of dynamic PHP code.

Semantic Model Evasion. Since the semantic models rely on data flows, they

cannot be evaded by rearranging code, inserting junk code, or splitting the attack

behavior across files. That said, attackers can try to evade YODA in two ways:

(1) evolve to entirely new behaviors (e.g., the recently introduced SSO Backdoor

behavior) or (2) novel implementations of known attack behaviors (via new PHP

APIs). Such evolution is expected, and in both cases, new semantic models can be

crafted for the new data source-sink combinations.

85

CHAPTER 4

THE MALWARE THAT KEEPS ON GIVING: A DECADE-LONG

STUDY OF OBFUSCATION AND PACKING ON SERVER-SIDE

WEB MALWARE

Most modern websites are built on content management systems (CMS) by non-

technical users [83]. Recent research reported that attackers are exploiting these

websites at scale by carelessly dropping thousands of obfuscated and packed malicious

files on the webserver [42, 84]. This is counter-intuitive, since attackers are assumed

to be stealthy. However, our study found that oversights in our existing defenses

in the domain of exploited webservers have made the attackers lazy. Put simply,

weak defenses are making attackers respond with simple and incremental offenses. In

fact, our study revealed that out of 9.2M unpacked malware payloads captured from

exploited webservers since 2020 only 29% were previously unknown, and the rest were

naively repacked known malware.

Several research solutions analyzed packing in client-side web malware (i.e.,

executes in the visitor’s browser) via static [85, 86] and dynamic analysis [87, 88, 89,

90]. On the contrary, little research has been done on packing and obfuscation

schemes in server-side web malware (i.e., they execute on the exploited webserver)

despite their increasing presence. In fact, several studies acknowledged the presence

of obfuscation in exploited production websites [42, 84, 91]. However, due to the

limitations of server-side malware analysis, packing/ obfuscation analysis was left

for future work. Starov et. al. [92] focused on studying packed server-side webshells

alone using honeypots for data collection and relied on UnPHP [93], a commercial

PHP unpacker, to unpack and deobfuscate packed malware. We found (in §4.3.2)

that UnPHP does not keep up with evolving malware packing techniques. None of

86

these works studied how obfuscation and packing techniques evolved over time for

server-side web malware.

Most modern website owners are less-technical and the stakes for securing their

websites are low [42]. As such, they are either unaware of the thousands of dropped

packed malware, do not have the resources to fix the compromise, or are unmotivated

to take action. The webserver security industry has begun selling products that

rely on pattern-matching, entropy analysis, or static analysis at best [94]. To make

matters worse, attackers frequently inject packed malware payloads into benign code

files within the CMS framework [95]. This increases the complexity of analysis for

defenders who must also distinguish malware from benign code. In §4.5.1, we compare

packed server-side malware to traditional Windows malware packing schemes and

find that server-side dynamic code generation enables superior polymorphism that

can evade the existing defenses [96, 91].

This research had the unique opportunity to collaborate with CodeGuard, one of

the largest website backup service providers on the market, who furnished us with

access to the nightly backup snapshots of over 500K unique production websites

maintained since 2012. We began by assessing a subset of 85 websites from this

dataset that our collaborator identified as compromised. Our preliminary

investigation revealed that 65 of these websites contained packed files. Further

analysis of these packed files revealed something we had not expected: attackers did

not use sophisticated techniques such as multi-threading, environmental awareness

tests, nested conditional branches, confusing automated analyses, and timing-based

evasion. Instead, they relied on simple ciphers and encoding schemes coupled with

the ever- present dynamic code generation to create polymorphic variants of the

same payload year after year.

Webserver security research and practice is essentially stuck in the past

(confounded by re-packed old malware) without an actionable understanding of

87

obfuscated and packed server-side malware. To this end, we developed OBIWAN,

an automated dynamic analysis-based deobfuscation and unpacking framework that

unpacks code layers to reveal the malware payloads, which can then be passed to

existing detection systems. When deployed at scale, OBIWAN explicitly helps the

website owners, hosting providers, and backup service providers identify packed

malware on their servers as well as commercial anti-viruses (AV) to improve their

server-side malware detection. It also implicitly helps search engines and advertising

agencies since most server-side web malware on compromised websites perform

blackhat SEO and ad frauds [97].

We deployed OBIWAN on CodeGuard’s dataset and performed a large-scale

retroactive decade-long study of obfuscated and packed server-side web malware. This

study found over 10.1M obfuscated malware across over 27K websites, and 8.7M of

these malware used packing. Our research highlighted that packing enables attackers

to evade malware detection systems successfully. In fact, 63% of the deepest unpacked

layers of the malware payload were identified as malicious by VirusTotal [98]. Our

research also revealed that commercial server-side unpacking tools cannot reliably

unpack malware. UnPHP [93] could only unpack 14.5% of the obfuscated malware

unpacked by OBIWAN. We hope that the insights from this study can help us

improve defenses and put up a stronger fight against webserver malware. We will

release a representative subset of unique obfuscated files identified in our dataset

after anonymizing any PII.

4.1 Background

To derive the types of obfuscation and packing complexities of server-side web

malware, we performed a preliminary study by analyzing obfuscated and packed

web malware. To this end, we chose 65 known-compromised website backups

identified by CodeGuard as our preliminary analysis dataset. We identified

88

obfuscated files on these websites using techniques proposed by past work [42, 91].

We found that these websites had a total of 6,939 obfuscated server-side code files

and 826 unique files. We manually analyzed these 826 files to understand common

obfuscation techniques used by attackers. We then tried unpacking these by

dynamically running them in an interactive sandbox environment which helped us

understand the common packing tactics.

Obfuscation vs. Packing. To differentiate between packing and other forms of

anti-reversing in server-side web malware, we consider packing only when the original

server-side code is already present in the packed file but is not present in its ready-

to-execute form (i.e., it is encrypted, compressed, or otherwise transformed). In

other words, the instructions to execute are later recovered and executed at runtime.

Conversely, obfuscation is when the server-side malware is ready-to- execute, but is

hard to understand for humans and/or automated tools. Mantovani et. al. [99] used

a similar definition for obfuscation and packing in Windows binary executables. It is

important to note that attackers could use both obfuscation and packing in the same

code file.

4.1.1 Types of Obfuscation

Prior work [100] for web client-side obfuscation proposed a taxonomy for

obfuscation categories. While the high-level definitions apply to server-side web

malware, we wanted to confirm if attackers indeed used similar obfuscation

techniques while considering the unique aspects of server-side code and data

manipulation techniques. We manually analyzed the 826 files and confirmed 4 types

of obfuscation.

1. Randomized Obfuscation. Attackers either (1) randomly insert instructions

that preserve the code semantics or (2) repackage the malicious code for each victim

with a randomized comment string within the code blocks, thus making the anti-

malware solutions based on static signatures useless.

89

Type I

0

1

0

1

2

1

0 2_0(1)

2_1(1)

2_2(1)

0

1 2_0(1)

2_1(1)

0

1
2_0(1)

2_1(1)

3(2_0)

Type II Type III Type IV Type V

Figure 4.1: Types of Packing in Server-Side Web Malware.

2. Data Obfuscation. To hinder automated analysis, attackers use string

manipulation tactics unique to server-side code. One common tactic is to obfuscate

function and variable names by mapping ASCII characters to an alternate list of

characters, and then reconstruct them. This increases the overhead of deciphering

the underlying PHP code.

3. Encoding Obfuscation. Attackers use common encoders such as

base64_encode, urlencode, or custom encoders to hide the malicious payload

making it difficult to decipher. Furthermore, AVs cannot infer malicious code blocks

that use encoders because these encoders can also be used within legitimate code.

4. Environmental Obfuscation. Attackers rely on PHP environment-specific

interactions to hide inputs required to unpack or decrypt the malware payload, thus

thwarting code readability. For example, malware authors often abuse PHP-specific

semantics such as global variable definitions to obfuscate malware.

Based on these definitions, we found that the 826 obfuscated files contained 382,

551, 435, 117 files with randomized, data, encoding, and environmental obfuscation,

respectively.

4.1.2 Types of Packing

Attackers use packing (i.e., transforming an executable code block and combining it

with transformation logic into a single code file) to evade defenses. Listing 4.1 shows

the pseudo-code for the most simple form of packed malware. Typically, packed

malware contains an encoded or encrypted malware payload and decoding logic to

decode the malware payload. Since the payload is decoded during execution, it resides

90

in memory and easily evades static analysis.

begin

E = [encoded malware payload]

K = extract_key()

M = decode_malware_payload(E, K)

execute(M)

end

Listing 4.1: Simple Packed Malware

We analyzed the 826 obfuscated files in a sandbox environment to identify packing.

We wanted to study the complexities and in turn, gain an actionable understanding

towards improving defenses against packed malware. We noted that 818 of these

were packed and 8 were obfuscated without packing. Ugarte et. al. [101] provided

a taxonomy of Windows malware packers based on the levels of complexity in the

reconstruction of the target payload. This study assumed packing in the context of

compiled executables. We translated the packing types to interpreted languages used

in server-side web malware by considering the dynamic code generation capability

unique to server-side code. To illustrate, Figure 4.1 shows the packing types seen in

server-side web malware. The black rectangles represent the encoded, encrypted, or

transformed code, the hatched rectangles represent the unpacking routine via dynamic

code generation, and the red rectangles represent the unpacked malware payload.

1. Type I/Single Layer. This is the simplest case where a single unpacking or

single dynamic code generation routine is executed before transferring the control to

the unpacked malware payload program which resides in the first layer.

2. Type II/Multi-layer Linear. The unpacking routine is repeated multiple times

sequentially to extract the malware payload. For example, layer 0 has an unpacking

routine that extracts layer 1, which in turn generates the malware payload in layer 2.

91

3. Type III/Multi-layer Cyclic Tail Transition. In cyclic unpacking, there are

backward transitions between the a layer and its predecessor. This is similar to the

multi-layer linear unpacking, except the unpacking routine is executed in a loop.

4. Type IV/Multi-layer Cyclic Interleaved Single Frame. The unpacking

routine has multiple backward transitions from several deeper layers that were

generated from the same predecessor layer. Malware frequently use these interleaved

transitions to set several intermediate variables necessary to unpack the final

malware payload.

5. Type V/Multi-layer Cyclic Interleaved Multi- Frame Incremental. This

is similar to Type IV, except the malware payload is unpacked incrementally. From

all the Type V cases in our preliminary study, we found that malware incrementally

unpacked function definitions for use in the subsequent layers.

By applying these definitions to our preliminary study dataset of 818 packed files,

we found 47, 181, 33, 371, and 186 files with packing types I-V, respectively. Besides,

when OBIWAN is applied on a temporally distributed dataset, it will reveal attack

tactic evolution. Thus, it is both urgent and important to measure the obfuscation

and packing types temporally and at scale.

4.2 Methodology

To understand the temporal evolution of web-based malware obfuscation over the

last decade, we present OBIWAN, an automated obfuscation detection and

unpacking framework. As shown in Figure 4.2, OBIWAN takes the webserver

backup snapshots as input and analyzes the code files on every single snapshot. It

first identifies the presence of obfuscation, and categorizes them into the 4 classes of

obfuscation types (discussed in §4.1.1) by applying static analysis techniques.

OBIWAN then dynamically analyzes these obfuscated files to identify instances of

packing. It also collects the unpacked code layers and collects telemetry on each of

92

these layers such as the number of layers, the type of packing, hashes for each of the

code layers, etc. OBIWAN then temporally correlates all of the collected results

and metadata to extract web malware evolution patterns.

4.2.1 Obfuscation Detection And Categorization

We surveyed previous research on obfuscated web malware [42, 91]. While none of the

previous works focused solely on studying obfuscation, we replicated their techniques

to detect obfuscated code files in our dataset. In particular, OBIWAN identifies

the presence of meaningless variables and functions, several code statements residing

on a single line, encoding functions, code generation functions, string manipulation

functions, multiple PHP blocks within a single code file, etc., for all code files in the

nightly backups. With obfuscated code files identified for each snapshot, OBIWAN

categorizes them and labels them with the obfuscation type used.

1. Randomized Obfuscation. OBIWAN generates the abstract syntax tree

(AST) of the obfuscated code file, and tracks the code statements to find variables that

are defined but not used within the code file. OBIWAN also scans for randomized

comment strings inserted within the code files that change the code hash for each

distributed variant. OBIWAN eliminates the false alarms from developers who forget

to remove unused variables by ensuring that both randomization techniques are found

in a given obfuscated file as confirmed by our preliminary study.

2. Data Obfuscation. OBIWAN parses the AST to identify the data

manipulation tactics such as (1) array mapping, i.e., remapping ASCII characters to

an alternate list of characters which are then used to define the encoded payloads;

(2) the use of unicode characters to define payloads, function, and variable names;

(3) string manipulation tactics such as splitting the suspicious function names to a

list of discrete strings, and concatenating them together at runtime.

3. Encoding Obfuscation. Here, OBIWAN identifies all encoders used within

the code file, including library encoders such as base64_encode, urlencode, etc.,

93

W
eb

si
te

B

ac
ku

ps

O
bf

us
ca

tio
n

D
et

ec
tio

n
&

C

at
eg

or
iz

at
io

n

O
bf

us
ca

tio
n

D
et

ec
tio

n
PH
P

O
bf

us
ca

tio
n

C
at

eg
or

iz
at

io
n

•
R

an
do

m
iz

ed
•

D
at

a
•

En
co

di
ng

•
En

vi
ro

nm
en

ta
l

O
bf

us
ca

tio
n

Ty
pe

s

Fu
nc

tio
n

&
 V

ar
ia

bl
e

R
ec

on
st

ru
ct

io
n

U
nc

on
st

ru
ct

ed

Fu
nc

tio
ns

/V
ar

ia
bl

es

R
ec

on
st

ru
ct

ed

Fu
nc

tio
ns

/V
ar

ia
bl

es

PH
P

D
yn

am
ic

 E
xe

cu
tio

n
&

 U
np

ac
ki

ng

La
ye

r T
yp

e
A

ss
ig

nm
en

t
U

np
ac

ke
d

La
ye

rs

G
ui

de
d

U
np

ac
ki

ng

. .
 .

Te
m

po
ra

l
E

vo
lu

tio
n

O
bf

us
ca

tio
n

&

Pa
ck

in
g

Tr
en

ds

C
ro

ss
-W

eb
si

te

C
or

re
la

tio
n

Tr
en

ds

•
Ty

pe
 I

•
Ty

pe
 II

•
Ty

pe
 II

I
•

Ty
pe

 IV
•

Ty
pe

 V

Fi
gu

re
4.

2:
O

B
IW

A
N

Pi
pe

lin
e

fo
r

O
bf

us
ca

tio
n

D
et

ec
tio

n
an

d
U

np
ac

ki
ng

.

94

and custom encoders using xor operations. If OBIWAN finds string concatenation

operations within the AST, it reconstructions them (§4.2.2) and re-scans for all

encoders within the code file.

4. Environmental Obfuscation. OBIWAN analyzes the AST to first identify all

inputs to the obfuscated code file. If any of these inputs rely on PHP environment-

specific interactions such as inputs from superglobal variables, or inputs from within

the webserver filesystem, OBIWAN labels it as environment obfuscation.

Obfuscation is used both by web developers to prevent intellectual property

theft and by attackers to hide their malicious payloads. This research focuses on

malware obfuscation. Therefore, OBIWAN eliminates the benign files that are

obfuscated for code protection. One lazy solution to eliminate benign obfuscation

from malicious obfuscation is to identify commercial obfuscator signatures (e.g.,

Zend Guard encoder and obfuscator [102], ionCube encoder [103]). This is because

benign code files typically rely on commercial solutions for obfuscation and

attackers used custom obfuscation techniques. However, attackers have also evolved

to use commercial obfuscators, thus making the commercial obfuscator detection an

unreliable indicator.

To address this challenge, we analyzed the obfuscated files from a subset of our

dataset to identify commonly used benign obfuscation patterns that are different

from obfuscated malware. We found that, invariably, all benign obfuscation was

employed by websites built on content management systems, and they either used (1)

encoding obfuscation alone with well-known library functions such as base64_encode

or (2) commercial obfuscators. Also, malicious Based on this observation, OBIWAN

eliminated the benign obfuscated files from the malicious ones by identifying if (1) it

used a single obfuscation type, typically encoding obfuscation and (2) the obfuscated

code included commercial obfuscator signatures or headers.

95

4.2.2 Function & Variable Reconstruction

A common challenge encountered across malicious obfuscated files is that they often

take advantage of the dynamic nature of PHP to construct function and variable

names during execution. This ensures that the visibly suspicious activities such as

downloading malicious content from an external server, or exfiltrating data from the

webserver remain hidden to the website owner or AVs who employ static analysis

techniques at best to analyze web malware. Often times the static analysis

techniques look for code patterns [42] or specifically named dataflow sinks [84] to

uncover malicious behavior.

To address this challenge, when OBIWAN parses at the AST and finds

instances of functions and variables that are resolved at runtime, and statically

performs function and variable reconstruction as shown in Figure 4.2. In particular,

it iterates over the AST to replace the dynamically constructed functions and

variables. First, it finds all assignment statements that create a variable or a

function name which are later referenced in the obfuscated code file. It then

traverses the AST and evaluates the right-hand-side of these assignments, and

replaces the corresponding AST nodes with the computed value. OBIWAN

replaces each function or variable name in the order that it was encountered it in

the original AST, thus incrementally modifying the AST during traversal. Note that

OBIWAN accounts for assignments to the same variable on different lines by using

the json-encoded AST, which also encapsulates the line number information. This

also replaces all future assignments of these functions or variables with its

reconstructed value.

While evaluating the right-hand-side of assignments can be a risky technique, as

it executes code contained in a malicious file without first understanding the

behavior of the code, the vast majority of assignment statements contain simple

string concatenation or other benign operations that do not pose a risk to the

96

execution environment. To mitigate the risks of disrupting the webserver,

OBIWAN ensures that the code statements that are being computed only perform

data manipulation operations. Also, OBIWAN performs all analyses in a

sandboxed environment that contains a bare bones PHP interpreter with no

internet connection. We found that this technique is effective at revealing the

behavior of otherwise difficult to analyze malware, thus the benefits of executing

small portions of potentially malicious code outweighs the risks of transforming

otherwise impossible to classify malware into easily detectable programs.

4.2.3 Guided Unpacking

After resolving all of the functions and variables in the obfuscated code file,

OBIWAN then identifies the presence of packing by dynamically executing it in a

containerized environment. In particular, OBIWAN sends the obfuscated (and

potentially packed) file to the containerized environment, which in turn returns the

nested layers extracted during the unpacking process. The top layer represents the

packed file, and the deepest layer represents the fully unpacked file. If the dynamic

execution does not return any additional layers, it could indicate 2 possibilities: (1)

the obfuscated file only uses obfuscation techniques that thwart the readability of

the file and does not generate dynamic code, or (2) OBIWAN does not have access

to the inputs necessary to navigate to the conditional branches that generate nested

layers. OBIWAN records these as packed for further inspection.

OBIWAN’s dynamic execution environment contains a modified PHP interpreter

that hooks into the dynamic code execution functions (e.g., eval, create_function,

etc.) to collect code layers that are dynamically generated by the packed file. The

interpreter executes the code file, and when it finds a dynamic code execution function,

it collects the code input to this function and records it as a code layer. Note that

OBIWAN also verifies that the data recorded as a code layer are indeed additional

code blocks by generating its AST.

97

For example, Listing 4.2 shows a simple packed webshell. When OBIWAN

executes this, it hooks at the dynamic code execution function, i.e., eval(), and

collects the input to this function. In this case, the base64 decoded result shown in

Listing 4.3 is the input to eval(). The original packed code is labeled as Layer 0,

and the unpacked code is labeled as Layer 1. While this was a simple example,

OBIWAN can successfully unpack both all 5 types of packing listed in §4.1.2. Since

the entire context of the website being analyzed is mounted into the containerized

environment, OBIWAN can also resolve inter-file dependencies as well as

inter-layer dependencies.

<?php

eval(base64_decode("PD9waHAKICAgIGlmKGlzc2V0

KCRfR0VUWydjbWQnXSkpCiAgICB7CiAgICAgICAgc

3lzdGVtKCRfR0VUWydjbWQnXSk7CiAgICB9Cj8+");

?>

Listing 4.2: Simple Packed Webshell

<?php

if(isset($_GET["cmd"]))

{

system($_GET["cmd"]);

}

?>

Listing 4.3: Simple Unpacked Webshell

Packing Type Assignment. We identify the original packed malware as the 0th

layer in its packing tree, or its layer ID (L_ID) is 0. To assign packing types, for every

98

generated layer, OBIWAN records if (1) the transitions between them are linear or

cyclic, (2) if the loops generated the layers, and (3) if a layer is a malware payload or

an intermediate layer. Based on these measurements, it assigns the packing types as

described in §4.1.2. To distinguish between intermediate layers and malware payloads,

OBIWAN checks all of the functions used in each layer. If the functions in a layer

only perform the unpacking routine (i.e., dynamic code generation and decryption

or decoding), then OBIWAN assigns it as an intermediate layer. Functions that

perform all other activities are marked as the malware payload. Note that in Type

V packing, both malicious functions and unpacking routines can co-occur.

For linear transitions between layers, the layers are identified based on its depth,

i.e., its L_ID = L_IDprev +1. However, when there are cyclic transitions, the L_ID

always encapsulates the predecessor layer that generated it in parenthesis. If a layer

generates multiple layers, the L_ID also encapsulates the number that records this

multiplicity. Figure 4.1 shows the layer IDs assigned for the cyclic packing cases (i.e.,

Types III, IV, and V). For the Type V example shown in Figure 4.1, L_ID 1 has

two unpacking routines which generates layers 2_0(1) and 2_1(1). This means that,

these 2 unpacked layers are at depth 2, multiplicity 0 and 1, respectively, and were

extracted from the predecessor layer 1. However, at layer depth of 3, there is only a

code frame extracted, and hence the multiplicity is dropped.

One challenge that became apparent while designing the unpacker is the inflation

in the number of packed files, i.e., it could produce packed layers from files that are

dependencies of the original packed file, which could lead to (1) flagging benign code

files with malicious packed file dependencies as malicious, and (2) double counting

the packed layers across multiple files. To address this, OBIWAN records the

source filename and enumerates all dynamic code executor invocations, which allows

it to differentiate the invocations from the top-level packed files and those from its

dependencies during the course of the execution. In addition, OBIWAN also has a

99

timeout mechanism designed carefully to optimize for performance.

1 <?php /*ynlpnweob*/

2 if (!defined('ALREADY_RUN_1bc2...'))

3 {

4 define('ALREADY_RUN_1bc2...', 1);

5

6 $dhezhdfhb = 3784;

7 function wmcjryjhyl($rrnulyr, $adesgv){$pvagpw = ''; for($i=0; $i <

strlen($rrnulyr); $i++){$pvagpw .= isset($adesgv[$rrnulyr[$i]]) ?

$adesgv[$rrnulyr[$i]] : $rrnulyr[$i];}

↪→

↪→

8 $gbnkuskbz="base" . "64_decode";return $gbnkuskbz($pvagpw);}

9 $ofotqmhu = 'e6rSCVsqXDnhbzQ5YCcnboZHbnn'.

10 ...

11 ...

12 $qphnzynoi = Array('1'=>'h', '0'=>'w', '3'=>'F', '2'=>'t', '5'=>'0',

'4'=>'L', ..., 'x'=>'5', 'z'=>'2');↪→

13 eval/*ynlpnweob*/ (wmcjryjhyl($ofotqmhu, $qphnzynoi));

14 }

15 ?>

Listing 4.4: Obfuscated and Packed Code Snippet

Listing 4.4 shows a code snippet for an obfuscated packed file. In particular, I

present this to highlight the semantically irrelevant features used by attackers. For

example, the variable $dhezhdfhb has been defined but is unused. Similarly, attackers

also inject random comments. In Line 1 and Line 13, attackers used the same random

string (/*ynlpnweob*/) in a comment which helps them easily evade hash-based

detection systems.

100

4.2.4 Temporal Evolution

OBIWAN identified obfuscated code files, categorized them, and unpacked them to

capture the code layers. Since OBIWAN performed these analyses on all

server-side backup files from the nightly snapshots dating back to 2012, this gives us

the unique vantage point to study how obfuscation and unpacking techniques have

evolved over time. In particular, OBIWAN summarizes the overall trends in the

types of obfuscation used to inform the existing defenses. It also captures metadata

for all obfuscated files and its unpacked code layers. In particular, it records the file

hashes as well as the normalized file hashes (after removing randomization

obfuscation) and cross-correlates across websites to understand the prevalence of

any large-scale malware campaigns and their persistence. OBIWAN also compares

how packing techniques have evolved over time. It performs a cross-website

temporal correlation to identify if any of the previously known malware payloads

are repackaged and redistributed over time. This helps us assess the state of the

current defenses and provide recommendations to strengthen them.

4.3 Evaluating OBIWAN

Before deploying OBIWAN at scale, we evaluate its design considerations. We chose

65 unique websites with packed files from our preliminary study. To this set, we added

35 randomly selected unbiased websites from our collaborator’s dataset, giving us a

total of 100 websites’ nightly backups collected between April 2018 and March 2022

(a total of 12,554 nightly snapshots). We use these 100 websites as our evaluation

dataset to establish ground truth. For this evaluation, we used a local workstation

running Ubuntu 16.04 with 32GB memory and 8 x 3.60GHz Intel Core i7 CPUs.

4.3.1 Obfuscation Evaluation

Ground Truth. We first evaluate OBIWAN’s obfuscation categorization. To do

this, we use OBIWAN to identify and categorize obfuscated files in our dataset of

101

Total #Websites: 100 (65 bad + 35 unbiased)
Total #Files: 1,537,948
Total #Obfuscated Files: 7,849

Obfuscation
Type #W #Obf. Files

GT OBW TP FP FN
Randomization 39 3,635 3,638 3,635 3 0
Data 43 5,260 5,299 5,260 39 0
Encoding 44 4,094 4,109 4,094 15 0
Environment 38 1,144 1,212 1,144 68 0
Total1 67 7,849 7,849 - - -
1:This is not the sum of the columns, but the total
#websites and #files with code obfuscation.

Table 4.1: Evaluation of OBIWAN’s Obfuscation Categorization

100 websites’ nightly backup snapshots. We evaluate if it correctly categorizes the

obfuscated files per the description in §4.2.1. As shown in Table 4.1, of the

1,537,948 files across 100 websites, OBIWAN identified 7,849 obfuscated files. Our

team manually analyzed these files and tagged them with the corresponding

obfuscation types for each file to obtain the ground truth. Note that any obfuscated

file can belong to more than one category. To the best of our knowledge, OBIWAN

did not produce any FNs as our team skimmed the remaining code files and could

not find any obfuscated file OBIWAN missed.

Detection Results. In our dataset of 7,849 obfuscated files across 100 websites,

OBIWAN reported a total of 67 websites (#W) with obfuscated files. Table 4.1 drills

down into the different obfuscation types in this dataset. Columns GT and OBW

show the number of ground truth files and those detected by OBIWAN, respectively,

for each obfuscation category. Columns TP, FP, and FN present the corresponding

true positive, false positive, and false negative numbers. OBIWAN labeled 3,638

files as randomized obfuscation with 3 FPs (Row 1). All 3 FPs belonged to the same

website. After further analysis, we determined that the flagged randomized string was

not a typical random string used for hash change; instead, it appeared to be a typo in

102

Initial Dataset: GT Total #Packed Files: 892
Initial Dataset TP: 868 Initial Dataset FN: 24

Packed Files Packed Layers
GT OBW TP FP FN GT OBW TP FP FN

Type I 51 48 48 0 3 51 48 48 0 3
Type II 194 193 193 0 1 736 733 733 0 3
Type III 36 33 33 0 3 258 247 247 0 11
Type IV 392 395 392 3 0 1,341 1,352 1,341 11 0
Type V 199 199 199 0 0 763 763 763 0 0
Total 872 868 865 3 7 3,149 3,143 3,132 11 17

Table 4.2: Evaluation of OBIWAN’s Unpacking Module.

one of the comments. Data and encoding obfuscation were most commonly used by

attackers. OBIWAN labelled 5,299 and 4,109 files as data and encoding obfuscation

with 39 and 15 FPs, respectively (Row 2 and Row 3). It also categorized 1,212

files as environmental obfuscation, with 68 FPs (Row 4). For all of these cases, the

FPs originated from the data manipulation found in benign code to which attackers

appended obfuscated code blocks as part of the compromise.

4.3.2 Unpacker Evaluation

Dataset. Of the 7,849 obfuscated files, we eliminated 1,012 files that were not

packed, i.e., they thwart code readability without generating new code dynamically.

To identify duplicate files in the remaining 6,837 file dataset, we uniformly reformatted

each file by removing semantically irrelevant features such as comments and unused

variables. This resulted in our unpacker evaluation dataset of 892 unique packed files.

Ground Truth. When a file is packed, OBIWAN can either (1) unpack it

entirely and generate all the hidden code layers, (2) partially unpack it, or (3)

cannot unpack it. To generate the ground truth for OBIWAN’s unpacker, we first

used it to generate all of the unpacked layers. We manually investigated these

layers, particularly by looking for the presence of any dynamic code generation

instances that were not executed within each layer. During the unpacking process, if

103

OBIWAN did not encounter any dynamic code generation instance, we can safely

conclude that it did not unpack the input file. When a dynamic code generation

instance was not executed in any of the intermediate layers, it is likely that

OBIWAN only partially unpacked it. For all the files that were either partially

unpacked or not unpacked, we tried to manually unpack them by forcing execution

of the unreachable code blocks in a sandbox. Based on this, we derived the ground

truth for OBIWAN’s unpacker by tagging each of the original packed files with its

corresponding packing type (introduced in §4.1), and the number of expected layers

it should generate. We ran OBIWAN’s unpacker on all of these files and compared

the packing types and the number of unpacked layers with the manually derived

labels.

Detection Results. Table 4.2 presents the unpacker evaluation results. In our

initial dataset of 892 (GT) packed files, OBIWAN successfully unpacked 868 files

(TP). Since OBIWAN did not fully unpack 24 files, we mark these as FNs. Of the

24 files, it partially unpacked 16 files and failed to unpack 8 files. OBIWAN could

not unpack these files because they contained dynamic code generation instances that

were not in the execution path and relied on attacker input configuration. However,

we found that input-dependent unpacking behavior was uncommon and seen in about

2% of the ground truth packed files.

The first half of Table 4.2 details the number of packed files corresponding to

packing complexity Types I-V. Of the 892 packed files, we could derive the packing

types ground truth for only 872 files. We could not assign packing types for 20 of

the 24 files that relied on attacker inputs for successful unpacking. We manually

unpacked 4 of the partially unpacked files by forcing the execution along the path

validated by attacker input and found that 3 of these used Type I packing (Row 1

Column 5) and 1 used Type II packing (Row 2 Column 5). We found that OBIWAN

correctly assigned the packing types for 865 of the 868 files (Total Row, Column

104

3) that it successfully unpacked. It incorrectly categorized 3 Type III files (Row 3

Column 5) as Type IV (Row 4 Column 4). This is because these Type III files first

unpacked a code layer and then unpacked the malicious payload within a loop of a

single iteration.

The second half of Table 4.2 shows the layers generated by unpacking each of

the packing types. OBIWAN extracted a total of 3,143 layers (Total OBW Packed

Layers). Since OBIWAN missed identifying 4 packed files (3 Type I FN and 1

Type II FN), it also missed the layers these packed files generated. We manually

unpacked them and found that these files generated a total of 3 Type I layers (Row 1

Column 10) and 3 Type II layers (Row 2 Column 10). Note that OBIWAN correctly

extracted all of the 11 layers from the 3 Type III packed files it originally misclassified

as Type IV (Row 3 Column 9 and Row 4 Column 10). From Table 4.2, the overall

accuracy of labeling the packing types is 99.1%. Thus we conclude that, OBIWAN

can accurately unpack and label the packed files.

4.4 Temporal Evolution of Packed Files

Total #Packed Files: 892
Year #Packed

Files #Layers #L/PF #Reused
Layers

2018 265 609 2.3 -
2019 198 594 3.0 129
2020 179 752 4.2 153
2021 138 678 4.9 121
2022 88 510 5.8 92
Total 868 3,143 3.6 495

Table 4.3: Temporally Evaluating Unpacked Files.

Table 4.3 shows all the temporal distribution of the 868 files unpacked by YODA

between 2018 and 2022. In particular, it shows the number of packed files and the

number of layers generated from these packed files corresponding to the year they

105

Total #Packed Files: 892
Unpacker #Unp. Files Time/File #Timeouts

OBIWAN 868 0.2 s 18
UnPHP 126 128 s 766

Table 4.4: Comparing OBIWAN’s Unpacker with UnPHP.

first appeared in our dataset. Column #Reused Layers shows the number of layers

that appear in a given year and were previously seen in previous years in this dataset.

As seen in Table 4.3, the number of reused layers is never more than the number of

packed layers. We investigated the reused files and found that attackers only reuse

the deepest layers containing the malware payload, and using different encoding and

packing methods to evade detection. Also, from the Column #L/PF (the average

number of layers generated by the packed files), it is evident that even though the

malware payloads are reused, the number of packed layers has increased over time

from 2.3 in 2018 to 5.6 in 2022.

4.4.1 Comparing With UnPHP

Since many research solutions to unpack server-side web malware are not publicly

available, the research community has relied on commercial solutions such as

UnPHP [93]. We used OBIWAN and UnPHP to unpack the unique, packed files in

our evaluation dataset and compared their performance (Table 4.4). While

OBIWAN could successfully unpack 868 of the 892 packed files in our dataset,

UnPHP could only unpack 126 files. UnPHP’s API takes 128s on average to unpack

a file, whereas OBIWAN takes 0.2s. We assigned a 30 minute timeout per file for

both unpackers and found that OBIWAN exited with a timeout for only 18 files

and exited without a timeout by partially unpacking 6 files. Conversely, UnPHP

timed out for 742 files and did not produce any unpacked layers. Thus, we can

confirm that OBIWAN’s performance is superior to the widely accepted unpacker.

106

4.5 Large-Scale Study

#Websites: 501,003 Duration: 2012 - 2022
Min. Duration 96 days Min. #Files 0.4K
Avg. Duration 682 days Avg. #Files 16.7K
Max. Duration 3,717 days Max. #Files 397K

Table 4.5: Dataset Summary.

Dataset. Our dataset consists of 501,003 unique websever backups collected

between 2012 and 2022, as summarized in Table 4.5. The backups contain an

average of 682 day-snapshots per website. Many backups were collected since 2012,

with a maximum of 3,717 day-snapshots per website. Each website has between 400

to 379K files, with an average of 16.7K files per website. I built upon

cmsscanner [104] to detect the underlying CMS the website owners used. I

improved it to support detection of additional popular CMSs on the market such as

Square Space, Shopify, Big Commerce, and Woo Commerce. In particular, I scan

the local filesystem of the server-side backup snapshots to identify the obvious

indicators such as metadata headers and tags. When these are unavailable, I use the

less obvious indicators such as the directory structure, code patterns, and

non-open-source function calls to identify the CMS platform. This improved

cmsscanner is available at: https://cyfi.ece.gatech.edu/.

Table 4.6 presents the number of websites (#W) using the CMSs in Column 1.

Over 73% of the websites in our dataset are built on WooCommerce, WordPress, and

Big- Commerce1. This follows the in-the-wild CMS trend; over 60% of CMS-based

websites are built on WordPress [83]. We deploy OBIWAN on this dataset to perform

a decade-long retroactive study of obfuscation and packing types in server-side web

malware.
1WooCommerce and BigCommerce and e-commerce platforms built on the WordPress core.

107

https://cyfi.ece.gatech.edu/

C
M

S
#

W
#

O
W

#
O

F
#

F/
W

O
bf

us
ca

tio
n

Ty
pe

#
PF

Pa
ck

in
g

Ty
pe

#
L

#
L/

PF
R

nd
.

D
ta

.
En

c.
En

v.
I

II
II

I
IV

V
W

oo
C

om
m

er
ce

16
0,

44
1

8,
02

2
2.

2M
27

6
87

2K
1.

2M
1.

1M
48

1K
1.

8M
10

5K
40

2K
72

K
81

6K
41

7K
8.

9M
4.

9
W

or
dP

re
ss

10
6,

62
0

6,
93

0
2.

9M
42

5
1.

2M
1.

7M
1.

4M
66

3K
2.

6M
12

1K
58

2K
10

5K
1.

2M
63

4K
15

.2
M

5.
8

Bi
g

C
om

m
er

ce
10

0,
56

3
4,

23
8

2.
0M

48
2

1.
4M

1.
9M

1.
6M

75
3K

1.
9M

93
K

41
3K

74
K

83
6K

44
2K

15
M

8.
1

Sh
op

ify
46

,3
28

1,
00

9
10

2K
10

1
41

K
59

K
49

K
23

K
73

K
6.

4K
16

K
2.

9K
33

K
15

K
16

8K
2.

3
M

ag
en

to
8,

42
4

99
6

46
0K

46
2

18
8K

26
7K

22
2K

10
4K

36
8K

14
K

82
K

15
K

16
6K

92
K

1.
5M

4.
1

Sq
ua

re
Sp

ac
e

6,
68

5
13

3
31

K
23

2
15

K
21

K
18

K
8K

24
K

1.
4K

5.
4K

97
3

11
K

5.
6K

11
4K

4.
7

Jo
om

la
2,

78
0

33
8

24
K

72
14

K
20

K
17

K
8K

20
K

1.
3K

4.
4K

78
8

9K
4.

3K
71

K
3.

6
D

ru
pa

l
2,

05
6

30
8

78
K

25
5

41
K

58
K

48
K

23
K

54
K

2.
5K

12
K

2.
2K

24
K

13
K

23
9K

4.
4

Pr
es

ta
sh

op
1,

95
2

97
65

K
66

4
26

K
37

K
31

K
14

K
46

K
2.

3K
10

K
1.

8K
21

K
11

K
30

6K
6.

7
Pi

vo
tX

1,
42

8
62

13
K

21
3

5.
4K

8K
6K

3K
10

K
50

0
2.

3K
41

7
4.

7K
2.

5K
45

K
4.

3
C

on
ce

rt
e5

48
4

31
34

9
11

14
2

20
1

16
8

79
28

0
17

63
12

12
6

62
92

4
3.

3
N

ex
tc

lo
ud

61
4

57
2

14
3

23
3

33
1

27
6

12
9

48
7

12
10

9
20

22
0

12
6

2.
8K

5.
8

T
Y

PO
3

C
M

S
37

2
39

3
19

7
16

0
22

7
18

9
89

33
5

19
75

14
15

1
76

90
5

2.
7

M
at

om
o

24
1

20
20

8
11

9
5

17
0

6
0

8
3

14
0

8.
2

U
nk

no
w

n
63

,1
20

5,
61

7
2.

1M
37

1
1.

3M
1.

8M
1.

5M
71

0K
1.

8M
93

.9
K

39
3K

71
K

79
7K

41
6K

12
M

6.
7

To
ta

l
50

1,
00

3
27

,7
88

10
.1

M
36

2
5.

1M
7.

2M
6.

0M
2.

8M
8.

7M
44

1K
1.

9M
34

6K
3.

9M
2.

1M
54

M
6.

2

Ta
bl

e
4.

6:
O

bf
us

ca
tio

n
an

d
Pa

ck
in

g
La

nd
sc

ap
e

In
O

ur
D

at
as

et
.

108

4.5.1 Obfuscation & Packing Landscape

Table 4.6 presents the overall results after deploying OBIWAN on our dataset.

OBIWAN found a total of 10.1M+ obfuscated files (#OF) across 27,788 websites

(#OW). Even though WooCommerce has the highest number of obfuscated

websites (8K), we find that WordPress has the highest number of obfuscated files in

our dataset. Column 4 (#F/W) shows that Prestashop, BigCommerce, WordPress,

and Magento have a high ratio of obfuscated files per obfuscated website. This

means that the attackers have more control to introduce redundancy in these

websites while dropping obfuscated files when compared to other CMSs.

Columns 5-8 in Table 4.6 show the Obfuscation Type distribution. Of the 10.1M

obfuscated files, total of 5.1M, 7.2M, 6M, and 2.8M files contained randomized, data,

encoding, and environmental obfuscation, respectively. When we analyzed individual

obfuscated files, we found that attackers often used multiple obfuscation techniques

in a single file; data obfuscation was commonly seen in tandem with randomized or

encoding obfuscation. Regardless of the underlying CMS, most of the websites had

a majority of files with data and encoding obfuscation. This shows that attackers

heavily rely on data manipulation techniques to evade detection.

The second half of Table 4.6 shows the distribution of packed files in our dataset.

Of the 10.1M obfuscated files, OBIWAN found a total of 8.7M packed files; 1.4M

files were not packed and only used obfuscation techniques that did not generate any

dynamic code. OBIWAN then categorized these packed files based on the packing

types I-V (described in §4.1.2). The vast majority of the packed files either use

multi-layer linear (Type II), multi-layer cyclic interleaved single-frame (Type IV),

or multi-frame incremental (Type V) packing. The 8.7M packed files generated a

total of 54M layers (#L) upon unpacking. Packed files in BigCommerce and Matomo

CMSs had the highest average number of layers per packed file (#L/PF) of 8.1 and

8.2, respectively. This means that on average, every packed file generated 8 layers on

109

unpacking. While this is true on average, we found few packed files with a maximum

of 48 layers per packed file.

Comparing with Windows Malware Packing. Ugarte et al. [101] showed

the distribution of packing types in traditional Windows malware. Over 50% of the

traditional Windows malware use Type III packing. In comparison, less than 4%

of the server-side web malware (346K of 8.7M) use Type III packing. Due to the

ease of dynamic code generation for interpreted languages, server-side web malware

rely on the less frequently used packing types in traditional Windows malware. No

more than 14% of the Windows malware use Type IV packing, and less than 1% use

Type V packing. Conversely, these packing types are the norm for server-side web

malware — 45% use Type IV (3.9M of 8.7M), and 24% use Type V packing (2.1M of

8.7M). We find that Type VI packing for Windows malware at a page, function, and

basic block granularity does not translate to server-side web malware since all packing

happens at a code block level. Only 12% of Windows malware use multi-layer linear

Type II packing, whereas almost 22% of server-side web malware (1.9M of 8.7M) use

Type II packing. We note that 25% of Windows malware use the simplest Type I

packing. However, only a little over 5% of server-side web malware (441K of 8.7M)

rely on Type I packing. While it may appear that the sever-side web malware use

sophisticated packing techniques, it is in fact, the opposite. As we will see later (in

§4.5.2), attackers leverage the dynamic nature of interpreted languages to achieve

superior polymorphism using minimal effort.

4.5.2 Do Attackers Reuse Malware?

Next, we turned our attention to studying the temporal distribution of packed files to

understand if attackers reuse packed malware. Table 4.7 presents the summary. Over

the last decade, our dataset had a total of 8.7M packed files (#PF) that generated

41M intermediate packed layers (#IL) and 12.5M unpacked malware payloads (#UP).

From this table, it is clear that attackers have consistently used packing over time.

110

Ye
ar

Pa
ck

ed
Fi

le
s

In
te

rm
ed

ia
te

La
ye

rs
U

np
ac

ke
d

Pa
yl

oa
d

#
PF

#
R

PF
%

R
PF

#
R

N
PF

%
R

N
PF

#
IL

#
R

IL
%

R
IL

#
R

N
IL

%
R

N
IL

#
U

P
#

RU
P

%
RU

P
#

R
N

U
P

%
R

N
U

P
20

12
13

K
-

-
-

-
25

.1
K

-
-

-
-

15
.7

K
-

-
-

-
20

13
78

K
4.

7K
6.

0%
5.

5K
7.

0%
15

3K
34

.1
K

22
.3

%
34

.3
K

22
.4

%
82

.6
K

24
.0

K
29

.0
%

24
.1

K
29

.2
%

20
14

13
4K

9.
9K

7.
4%

12
.1

K
9.

0%
33

0K
73

.2
K

22
.2

%
73

.2
K

22
.2

%
16

2K
54

.9
K

33
.8

%
55

.1
K

33
.9

%
20

15
20

8K
14

.1
K

6.
8%

19
.7

K
9.

5%
61

9K
12

7.
2K

20
.5

%
12

8.
3K

20
.7

%
25

8K
89

.2
K

34
.6

%
89

.4
K

34
.7

%
20

16
23

5K
12

.4
K

5.
3%

68
.0

K
29

.0
%

87
5K

41
0.

7K
46

.9
%

41
1.

0K
47

.0
%

27
9K

11
3K

40
.5

%
11

5K
41

.1
%

20
17

54
7K

43
.2

K
7.

9%
12

7K
23

.3
%

2.
1M

77
4.

2K
36

.1
%

77
5.

4K
36

.1
%

63
5K

24
6K

38
.7

%
24

7K
39

.0
%

20
18

78
2K

71
.1

K
9.

1%
25

1K
32

.1
%

3.
2M

1.
52

M
48

.3
%

1.
53

M
48

.4
%

96
9K

41
2K

42
.5

%
41

4K
42

.7
%

20
19

80
0K

49
.6

K
6.

2%
28

9K
36

.1
%

3.
6M

1.
76

M
48

.6
%

1.
77

M
48

.7
%

90
8K

42
1K

46
.4

%
42

4K
46

.8
%

20
20

3M
10

5K
3.

5%
72

0K
24

.0
%

14
M

4.
34

M
31

.0
%

4.
34

M
31

.0
%

5M
3.

19
M

63
.4

%
3.

21
M

63
.7

%
20

21
2.

4M
11

8K
4.

9%
46

3K
19

.3
%

13
.3

M
2.

79
M

21
.1

%
2.

8M
21

.1
%

3.
6M

2.
49

M
70

.3
%

2.
5M

70
.5

%
20

22
46

7K
13

.1
K

2.
8%

98
.0

K
21

.0
%

2.
7M

60
0.

2K
22

.0
%

60
1.

8K
22

.1
%

60
2K

41
7K

69
.3

%
41

9K
69

.7
%

To
ta

l
8.

7M
44

1K
5.

1%
2.

05
M

23
.7

%
41

M
12

.4
4M

30
.4

%
12

.4
7M

30
.4

%
12

.5
M

7.
46

M
59

.7
%

7.
5M

60
.0

%

Ta
bl

e
4.

7:
Te

m
po

ra
lE

vo
lu

tio
n

Fo
r

Pa
ck

in
g

Ba
se

d
O

n
M

al
wa

re
R

eu
se

.
H

er
e,

PF
-P

ac
ke

d
Fi

le
s;

R
-R

eu
se

d;
R

N
-R

eu
se

d
an

d
N

or
m

al
iz

ed
;I

L
-I

nt
er

m
ed

ia
te

Pa
ck

ed
La

ye
rs

;U
P

-U
np

ac
ke

d
Pa

yl
oa

d

111

However, the use of packing has surged since 2020. About 3M packed files were

introduced in our dataset in 2020 alone.

The columns #RPF, #RIL, and #RUP show the number of reused packed files,

intermediate layers, and unpacked malware payloads, i.e., the number of files in any

given year that appeared in our dataset in any of the previous years. We measure this

by checking if the file hash was previously seen. For example, in 2014, of the 134K

packed files that were introduced in our dataset, 9.9K files (Row 3 Column 2) were

previously seen across other websites in 2012 and 2013; or 7.4% of the packed files

(%RPF) were reused in 2014. Similarly, these 134K packed files in 2014 generated

330K intermediate layers and 162K unpacked malware payloads; 22.2% (73.2K in

Row 3 Column 7) of the intermediate layers and 33.8% (54.9K in Row 3 Column 12)

of the unpacked malware payloads were reused.

Overall, we see that only 5.1% of the total #PF were reused as-is. This could be

attributed to the same attacker targeting multiple websites or attackers adding

redundancy by dropping several duplicate packed files within the compromised

website. From Table 4.7, we also see that attackers reused 30.4% of total #IL and

over 59% of the total #UP. During 2013-2019, even though attackers repacked

pre-existing malware payloads (i.e., #RUP), we found that since 2020, at least over

60% of the malware payloads were recycled by packing them in multiple layers, and

over 70% of the malware payloads seen in our dataset in 2021 were reused. This

goes to show that the attackers are not reinventing the wheel but merely using

simple multi-layer packing techniques to evade detection.

Since attackers use randomization tactics (e.g., random comments, redundant

variables, etc.), we normalized each layer by removing the redundancies and

uniformly reformatted them. We also recorded the hashes for each of the normalized

layers and compared them temporally to study their prevalence. The column names

with an ‘RN’ prefix refer to reused and normalized. As seen in Table 4.7, the reused

112

top-level packed files increased from 5.1% to 23.7% (total %RNPF) upon

normalization. This highlights that attackers used randomization tactics on

pre-existing packed malware samples before distributing them. When these samples

are unpacked, they will generate the exact same intermediate layers and the

malware payloads. This explains the reason for higher reuse in intermediate layers

(30.4% %RIL) despite low reuse in packed files (5.1% %RPF). We also noted a spike

in the use of randomization tactics in the top-level packed file in 2016 from 9.5%

(Row 4 Column 5) to 29% (Row 5 Column 5), and these techniques have been used

consistently since. We found that the increase in the total number of reused

intermediate layers (12.44M to 12.47M) and unpacked payloads (7.46M to 7.5M)

upon normalization (i.e., #RNIL and #RNUP) is marginal. We do not see these

tactics being widely applied to the intermediate layers or the malware payload. This

shows that attackers have relied on exerting bare-minimum effort to evade existing

defenses by only modifying the top-level packed files.

4.5.3 Can AVs Detect Packed Malware?

We now analyze the efficacy of AVs in detecting server-side packed malware. We

queried all packed files (#PF), the intermediate layers (#IL), and the unpacked

malware payloads(#UP) on VirusTotal [98]. If 3 or more AV engines within

VirusTotal report a file as malicious, we assign the file as detected malicious by AVs.

Note that these files appeared in our dataset in the years presented in Column 1.

However, they were queried against VirusTotal in April 2022. Table 4.8 shows a

temporal distribution of AV evasion capabilities for the packed files in our dataset.

The columns #PFa, #ILa, and #UPa show the number of packed files, intermediate

layers, and unpacked malware payloads that were identified as malicious by AVs.

For example, of the 134K packed files, 330K intermediate layers, and 162.4K

unpacked malware payloads in our dataset in 2014 60.8K packed files (or 45.3%),

7.6K intermediate layers (2.3%), and 116.5K unpacked malware payloads (71.7%)

113

Ye
ar

Pa
ck

ed
Fi

le
s

In
te

rm
ed

ia
te

La
ye

rs
U

np
ac

ke
d

Pa
yl

oa
d

#
PF

#
PF

a
%

PF
a

#
N

PF
a

%
N

PF
a

#
IL

#
IL
a

%
IL
a

#
N

IL
a

%
N

IL
a

#
U

P
#

U
P a

%
U

P a
#

N
U

P a
%

N
U

P a

20
12

13
K

10
.2

K
78

.3
%

0.
3K

2.
3%

25
.1

K
0.

3K
1.

2%
60

.0
2%

15
.7

K
12

.8
K

81
.3

%
2.

8K
18

.0
%

20
13

78
K

63
.8

K
81

.8
%

2.
6K

3.
3%

15
3K

6.
0K

3.
9%

30
60

.2
0%

82
.6

K
65

.6
K

79
.4

%
6.

7K
8.

1%
20

14
13

4K
60

.8
K

45
.3

%
11

.3
K

8.
4%

33
0K

7.
6K

2.
3%

72
70

.2
2%

16
2.

4K
11

6.
5K

71
.7

%
3.

4K
2.

1%
20

15
20

8K
82

.3
K

39
.6

%
26

.8
K

12
.9

%
61

9K
8.

7K
1.

4%
61

90
.1

0%
25

7.
8K

19
0.

5K
73

.9
%

46
.1

K
17

.9
%

20
16

23
5K

29
.8

K
12

.7
%

37
.8

K
16

.1
%

87
5K

25
.4

K
2.

9%
59

50
.0

7%
27

9.
1K

19
1.

7K
68

.7
%

26
.0

K
9.

3%
20

17
54

7K
14

4K
26

.4
%

64
.6

K
11

.8
%

2.
1M

10
5.

1K
4.

9%
14

80
0.

07
%

63
4.

7K
38

9.
1K

61
.3

%
62

.5
K

9.
9%

20
18

78
2K

23
2K

29
.7

%
10

6.
3K

13
.6

%
3.

2M
88

.6
K

2.
8%

10
12

0.
03

%
96

9.
3K

66
3.

0K
68

.4
%

18
8.

0K
19

.4
%

20
19

80
0K

11
9K

14
.9

%
14

5.
6K

18
.2

%
3.

6M
11

2.
6K

3.
1%

28
68

0.
08

%
90

7.
7K

52
7.

4K
58

.1
%

60
.8

K
6.

7%
20

20
3.

0M
12

6K
4.

2%
26

0.
9K

8.
7%

14
00

6.
0K

37
8.

2K
2.

7%
75

60
.0

1%
50

38
.5

K
31

64
.2

K
62

.8
%

43
3.

3K
8.

6%
20

21
2.

4M
93

.6
K

3.
9%

20
0.

3K
8.

4%
13

29
2.

2K
41

2.
1K

3.
1%

11
83

0.
01

%
3.

6M
21

94
.5

K
61

.8
%

27
7.

3K
7.

8%
20

22
46

7K
28

.5
K

6.
1%

31
.3

K
6.

7%
27

24
.5

K
49

.0
K

1.
8%

24
20

.0
1%

60
1.

8K
38

4.
6K

63
.9

%
70

.8
K

11
.8

%
To

ta
l

8.
7M

99
1K

11
.4

%
88

8K
10

.2
%

40
96

4.
9K

1.
2M

3.
1%

97
95

0.
02

%
12

50
0.

7K
78

99
.8

K
63

.2
%

11
77

.8
K

9.
4%

Ta
bl

e
4.

8:
Pa

ck
in

g
Ev

ol
ut

io
n

Ba
se

d
O

n
AV

Ev
as

io
n.

H
er

e,
PF

-
Pa

ck
ed

Fi
le

s;
N

-
N

or
m

al
iz

ed
;

IL
-

In
te

rm
ed

ia
te

Pa
ck

ed
La

ye
rs

;U
P

-U
np

ac
ke

d
Pa

yl
oa

ds
,S

ub
sc

rip
t a

-i
de

nt
ifi

ed
as

m
al

ic
io

us
by

AV
s

114

were identified as malicious by AVs.

Overall, 11.4% of all packed files in our dataset were identified as malicious by

AVs. It is interesting to note that AVs’ rate of malware detection has been

decreasing over time. While over 78% of the top-layer packed files from 2012 and

2013 were identified as malicious, less than 6% of the packed files that appeared

after 2020 were detected. AVs can accurately detect older packed malware, and

attackers are largely being successful at evading AVs recently. As seen from the

%ILa column, an average of 3.1% of the intermediate layers were identified as

malicious by AVs, i.e., they have consistently failed at detecting the intermediate

layers generated by the packed malware. This is proof that the vast majority of AVs

do not unpack packed server-side web malware and hence cannot detect the

unpacked layers as malicious. As shown in the highlighted %UPa column in

Table 4.8, over 63% of unpacked malware payloads were identified as malicious.

Since attackers constantly reuse malware payloads without modifying them, AVs

can identify them as malicious. From these results, we can infer that AVs rely on

pattern-based or hash-based detection to identify server-side web malware.

We also normalized the packed files and queried these against VirusTotal to

study the effect of randomization on AV detection. We found that the AV detection

rate dropped upon normalizing the files — Upon normalizing, (1) the top-layer

packed file detection rate dropped from 11.4% to 10.2%, (2) the AV detection for

the normalized intermediate layers dropped to a negligible 0.02%, and (3) the

unpacked payload detection heavily plummeted from 63.2% to a mere 9.4%. Even

though attackers rarely use randomization tactics at the malware payload level, a

simple change by uniformly formatting the code makes it go unrecognized by most

AVs. This further supports our hypothesis that AVs rely on hash-based or

pattern-based detection systems. Overall, attackers successfully evade AVs by

packing malware payloads. Even though AVs can detect malware payloads that are

115

not packed, the detection rate is low. There exists a gap with AV detection; a large

percentage of packed malware payloads still remain detected. It is both urgent and

important to close this gap since the majority of the less-technical users with a web

presence rely on AVs to safeguard their websites.

4.6 Case Studies

We present a deep dive into some of the most frequently seen packed malware

samples across all websites in our dataset. The file hashes corresponding to the files

in Table 4.10 and Table 4.11 are listed in Table 4.9.
Hash ID MD5 Hash
Top 5 Packed Malware Hashes:
F1 d41d8cd98f00b204e9800998ecf8427e
F2 6ec256c8a7669df51b63aea2878825e2
F3 d82e04bf26874d49951afce9472cb88d
F4 96d369cdf26790ef3ca5b2de3166cccb
F5 1e583673c90528a5d02466e98fa08d42

Top 5 Unpacked Payload Hashes:
F6 cb6ee491fcdea60465dd0d9c695b15a8
F7 ba7e32ea875b51476de74ffac5725dba
F8 97e976310f5478034e5f11f436f37c25
F9 af05dc268567816a26fdcd10450620a7
F10 3f60851c9f7e37c0d8817101d2212c68

Table 4.9: Hashes For The Top 5 Packed Malware and Top 5 Unpacked Payloads In
Our Dataset

4.6.1 Popular Malware

Top 5
Files #PF #W #L/PF VT

Detect First Seen Last Seen

F1 65,328 4,832 2 Not Detected Mar 2016 Feb 2022
F2 17,434 4,534 2 Not Detected Jan 2016 Jan 2022
F3 1,377 1,221 4 Not Detected Dec 2018 Mar 2022
F4 1,347 1,168 5 Not Detected Jul 2019 Apr 2022
F5 2,464 987 6 Not Detected Mar 2019 Mar 2022

Table 4.10: Top-5 Popular Layer 0 Packed Files

116

Table 4.10 shows the distribution of the 5 most popular top-layer packed files

(i.e., layer 0) in the dataset. Attackers are distributing the exact same packed file

to multiple victims. From OBIWAN’s results, we found 65,328 instances of the

packed file F1 (#PF, Column 2) distributed across 4,832 unique victims (or websites

#W, Column 3). This was the most frequently seen packed file in our dataset that

generated 2 layers upon unpacking (#L/PF, Column 4). We note that the older

packed files (i.e., early First Seen dates) generated fewer layers per packed file when

compared with the newer files. For example, F1 and F2 were first seen in early

2016 and they generated only 2 layers each upon unpacking. However, F4 and F5

introduced in 2019 generated 5 and 6 unpacked layers, respectively. We queried these

files on VirusTotal to see if any of them were detected by AVs. As shown in Column 5;

none of the files were detected by the AV engines represented on VirustTotal. Since

attackers can carry out their malicious activity by going undetected, these packed

files are still being distributed. Even though they were first seen in our dataset in

2016, Column 7 shows that they are still being circulated to newer victims in 2022.

The lack of defenses for server-side web malware has made it easier for attackers to

exploit unsuspecting victims.

4.6.2 Packed Layer Evolution

Top 5
Files #UP #W Min.

#L
Max.
#L First Seen Last Seen

F6 112,896 16 7 7 Feb 2022 Apr 2022
F7 88,143 4,711 3 12 Mar 2016 Mar 2022
F8 51,811 213 4 9 Nov 2021 Apr 2022
F9 18,022 1,496 3 5 Mar 2017 Feb 2022
F10 13,792 448 2 18 Apr 2017 Mar 2022

Table 4.11: Top-5 Popular Unpacked Payloads

Table 4.11 presents the distribution of the 5 most popular unpacked payload files

in our dataset. Recall that the same payload can be generated by several top-layer

packed files. In other words, attackers can use various levels of packing to distribute

117

the same payload. F6 is the most frequently seen unpacked payload in our dataset

— we found over 122K instances of F6 across 16 websites. It was interesting to find

that 5K-7K instances of this payload were seen in the 16 websites. Besides, the same

payload was packed exactly 7 times and was coupled with randomized obfuscation

on the top layer before being distributed to the victims. We note that while F6, F8,

and F10 are distributed across fewer websites, F7 and F9 are distributed across a

large number of websites (greater than 1.4K) thus dropping fewer packed files per

website on average. Columns 4-5 in Table 4.11 show the minimum and the maximum

number of layers used by attackers to pack the payload. F10 is an interesting case —

it was packed with a minimum of 2 layers when it was first introduced in our dataset

in 2017; in Mar 2022, the same payload was packed in 18 layers. The most widely

distributed (i.e., max. #W) payload, F6, has been around since March 2016, and

only 2 of these top 5 payloads are newer and have been circulated since 2021.

2012 2014 2016 2018 2020 2022
Time

0

10

20

30

40

50

M
ax

im
um

 N
um

be
r O

f L
ay

er
s Overall Max Layers

F6
F7
F8
F9
F10

Figure 4.3: Maximum Packing Layers Seen Each Year

Figure 4.3 shows the temporal evolution of the maximum number of packing layers

seen each year over the last decade for all malware payloads in our dataset (red line),

and for the top-5 frequently seen malware payloads presented in Table 4.11. Overall,

118

attackers have been increasing the number of packing layers for malware payloads over

time. In 2012, malware payloads were packed in 2 layers at most and has steadily

increased to 21 layers in 2020. Over 300 malware payloads introduced in 2021 and

2022 were packed in 48 layers. From Figure 4.3 for the malware payloads F6-F10,

it is clear that attackers are repacking the same malware payload over and over to

evade detection.

119

CHAPTER 5

RELATED WORK

This section presents the literature review for techniques that enable advanced

malware analysis of targeted web attacks, causality modeling via provenance

inference and measurement studies.

5.1 Large-Scale Study of Web Attacks

Several studies have been published which used high-interaction honeypots to

understand web attacks on a large scale [92, 105, 27]. In a large-scale web honeypot

experiment, Canali and Balzarotti deployed 17 publicly accessible web shells that

attackers could discover through the use of specially crafted search engine queries,

also known as dorks [27]. Starov et. al. showed that most web shells are indeed

backdoored but these backdoors are triggered as soon as the main page of the shell

loads [92]. In a follow up study that investigated the role of web hosting providers in

detecting compromised websites, Canali et al. [106], uploaded the arguably the most

popular web shell, the c99 shell to 22 shared hosting providers and used simulated

attackers to send commands towards the server. Only one of the 22 investigated

shared hosting providers identified the malicious shell, even among the providers

offering security services at an additional cost. Attacks against web applications

have also been studied by using low-interaction honeypots [107, 108, 109].

Some techniques tried to assess the impact of web application compromises by

studying the role of hosting providers [106] and understanding the response

landscape by studying large-scale notification campaigns [110]. Similar to this

research, Canali et.al. [27] also found attackers dropping large volumes of files on

the web server. While these techniques focused on attacks targeting a generic web

120

application, this research studies the spread of multi-stage attacks on CMS-based

websites and, more specifically, within real-world production websites. In particular,

this study is designed to investigate such multi-stage attacks based on only the

already collected nightly website backups.

Past research also studied web attacks as seen from the web browser [111, 112, 41,

113, 114, 115]. There is a large body of work studying social engineering and deceptive

attacks [116, 117, 118]. In most of this work, the focus is on the technical mechanisms

used by attackers to spread malware. The literature is presented by Clark et al. [119]

provided the first analysis on survey scams by looking into Facebook spam URLs.

Other studies used webserver backups [95] to understand web attacks on a large

scale. Several techniques also studied the response landscape from post-compromise

notification campaigns [110, 120]. While these studies focused on well-known web

attack types, this research focuses on the spread of malware via CMSs.

Naderi et. al. [69] also analyzed nightly backups to investigate malware at an

entire-website granularity. However their study is neither proactive nor fine-grained

enough to vet previously-unseen code for malicious behavior. Their detection is

coarse-grained as it relies upon strict temporal sequences of website-level indicators

(e.g., stand-alone backdoor file injection followed by file deletion). Malicious plugins

in CMSs do not exhibit overt temporal sequences of such indicators. They are

deployed all at once and lie in wait until the website is loaded (e.g., blackhat SEO),

requiring a CMS-centric detection and analysis.

5.2 Causality Modeling

Recent work suggests that data provenance might be a better data source for

persistent threat detection. Data provenance represents system execution as a

directed acyclic graph (DAG) that describes information flow between system

subjects (e.g., processes) and objects (e.g., files andsockets). Historically, IDSs have

121

tended to produce alerts that are too numerous and low-level for human operators.

Techniques needed to be developed to summarize these lowlevel alerts and greatly

reduce their volume. There have been significant advances in identifying the

provenance of an attack by monitoring the behavior of a system in order to

reconstruct the chain of events that led to the attack [3, 121, 11, 122, 12, 6, 16].

Most works which focused on advanced multi-stage attack detection, e.g.,

Holmes [2] and Sleuth [15], are built on OS audit data and used system-call level

logs for real-time analytics. A variety of security-related applications leverage

provenance, mostly notably for forensic analysis and attack attribution [123].

BackTracker analyzes intrusions using a provenance graph to identify the entry

point of the intrusion, while PriorTracker [16] optimizes this process and enables a

forward tracking capability for timely attack causality analysis. HERCULE [13]

analyzes intrusions by discovering attack communities embedded within provenance

graphs. Winnower expedites system intrusion investigation through grammatical

inference over provenance graphs, and simultaneously reduces storage and network

overhead without compromising the quality of provenance data.

NoDoze [25] performs attack triage within provenance graphs to identify

anomalous paths. Bates et al. [124] were the first to use provenance for data loss

prevention, and Park et al. formalized the notion of provenance-based access control

(PBAC). Ma et al. [11] designed a lightweight provenance tracing system ProTracer

to mitigate the dependence explosion problem and reduce space and runtime

overhead, facilitating practical provenance-based attack investigation. Pasquier et

al. [125] introduced a generic framework, called CamQuery, that enables inline,

realtime provenance analysis, demonstrating great potential for future

provenance-based security applications.

However, these fine-grained log-based provenance tracking techniques require

significant instrumentation and are hardly deployed by CMS hosting companies.

122

This research leverages what is already the industry standard (nightly backups) to

model long-lived multi-stage attack progression via temporal correlation of spatial

metrics and outlier detection.

5.3 Web Application Security

To preemptively secure websites against attack, recent research has focused on

analyzing particular classes of attacks, such as ad injection [126, 127, 128], survey

scams [129, 119], cross-site scripting [130, 131, 132, 133], PHP code injection [134,

135], SQL injection [136, 133, 137, 138], file inclusion attacks [139, 140], etc.

Other defenses against web application vulnerabilities include the following: (1)

static analysis [141]; (2) dynamic analysis [142]; (3) combination of static and dynamic

analysis [143]; (4) input validation [144]; and (5) fuzz testing [145], but they have well-

known limitations. For instance, most static analysis tools have large false positives,

and input validation methods are specific to certain web attacks such as SQL injection.

These research techniques focus on individual layers of web applications. However,

since CMSs contain code across all of these layers and are marketed to less-technical

website operators, attack-vector-specific solutions are not commonly deployed. This

research is attack-vector agnostic and enables the investigation of a compromised

CMS post-attack.

5.4 Web Malware Analysis

Recent web-based malware analysis research analyzed targeted attack classes like

webshells [67, 68], ad injection [126, 127, 128], survey scams [129, 119], cross-site

scripting [130, 131, 132, 133], PHP code and SQL injection [134, 135, 136, 133, 137,

138], file inclusion attacks [139, 140], dictionary attacks [146], etc. Substantial

research on malicious advertisements has focused on isolation and containment

[3,15,34]. Other approaches have focused on detecting drive-by downloads by

employing the properties of HTTP redirections to identify malicious behavior

123

[38,45]. Dynamic analyses have also been used to detect drive-by downloads and

web-hosted malware [11,12,36]. Li et al. [147] investigated the advertisement

delivery process to detect malvertising by automatically generating detection rules.

Web tripwires were proposed to detect in-flight page changes performed by ISPs to

inject advertisements.

Their adoption by website operators to detect malicious CMS plugins is limited

by significant instrumentation and training complexities associated with these

techniques. Conversely, this research proposes an automated investigation

framework, agnostic to targeted attack classes, and can be deployed by all

stakeholders in the CMS ecosystem.

5.5 Measurement Studies

WordPress plugin research focused on measuring vulnerabilities [148, 149, 150] and

comparing plugin ratings with vulnerability exploits [151]. Researchers also assessed

the role of web hosting providers to detect compromised websites [152], studied

malicious web apps [35], malicious browser extensions [36, 37], and malicious

packages in package registries [38]. Caballero et. al. [116] measured pay-per-install

malware distribution in benign software. Meiser et al. [153] studied the cross-origin

data exchange practices of 5k websites to assess the extent to which their security

could be affected by the presence of an XSS vulnerability on one of their

communication partners.

Chen et al. [154] performed a large-scale measurement of CORS

misconfigurations. Among the 480k domains that they analyzed, they discovered

that 27.5% of them are affected by some vulnerability and, in particular, 84k trust

all their subdomains and can thus be exploited by a related-domain attacker. Son

and Shmatikov [155] analyzed the usage of the Messaging API on the top 10k Alexa

websites. The authors found that 1.5k hosts do not perform any origin checking on

124

the receiving message, while 261 implement an incorrect check: (almost) all these

checks can be bypassed from a related-domain position, although half of them can

also be bypassed from domains with a specially-crafted name. More recently,

Steffens and Stock [156] proposed an automated framework for the analysis of

postMessage handlers and used it to perform a comprehensive analysis of the first

top 100k websites of the Tranco list. They discovered 111 vulnerable handlers, out

of which 80 do not perform any origin check. Regarding the remaining handlers, the

authors identified only 8 incorrect origin validations, showing an opposite trend with

respect to [155]. Finally, insecure configurations of CSP have been analyzed in a

number of research papers [157, 158]. However, unlike this research, none of these

works considered the impact of scalable attacks originating from unvetted code on

CMS marketplaces.

125

CHAPTER 6

CONCLUSION

In this dissertation, I have presented a line of research which has proposed a paradigm

shift in server-side security practices. My work has purposely broken away from

traditional log-based provenance inference, and instead I have developed a web attack

forensics framework which leverages program analysis to automatically understand

the webserver’s nightly backup snapshots. In doing so, this framework has enabled the

recovery temporal phases of a webserver compromise and its origin within the website

supply chain. These three techniques along with the new program analysis techniques

which enable them, have introduced new packing-oblivious forensics capabilities far

exceeding traditional provenance inference.

Targeting the problem of investigating compromises in CMS-based websites using

only the readily available nightly backups, TARDIS provides a novel provenance

inference technique that reconstructs the attack phases and enables rapid recovery

from an attack. Using the temporal correlation of spatial metrics representing each

snapshot, TARDIS recovers the compromise window and the progression of attack

phases.

YODA contributed to the novel web attack forensics techniques at a supply chain

level and provided an automated investigation framework that can be used by all

stakeholders in the webserver ecosystem. It identifies attack behaviors in malicious

plugin and pinpoints the origin of these behaviors within the webserver supply chain.

Finally, to address the real-world webserver forensics challenge of code obfuscation

and packing, I presented OBIWAN. Instead of focusing on statically recovering the

attack behaviors, OBIWAN uses guided unpacking to generate the layers of hidden

code. It also categorizes the obfuscation and packing types which helps understand

126

the attack techniques used over the last decade.

My experiments show that TARDIS is able to effectively identify the

compromise window in a variety of real-world production websites overcoming the

long standing provenance inference challenge. In fact, it uncovered 20,591 websites

that were victims of long-lived multi-stage attacks and was shown to be highly

accurate in revealing attacks in CMS-based websites, regardless of the underlying

CMS. My tests with YODA produced a systematic study of the CMS plugin

ecosystem by analyzing 410,122 unique WordPress websites’ nightly backups dating

back to 2012. It uncovered 47,337 malicious plugin installs on 24,931 unique

websites, and 94% of these malicious plugins installed over those the last decade are

still active today. OBIWAN uncovered over 10.1M obfuscated malware across over

27K websites, and 8.7M of these malware used packing. My research highlighted

that the existing defenses are insufficient and are enabling attackers to retaliate

with simple defenses. In particular, only 11% of all packed files are detected by AVs,

and over 60% of the unpacked malware payloads in our dataset were reused.

In conclusion, the robust, packing-oblivious forensics capabilities realized by this

new web attack forensics analysis framework highlight the impactful benefit and

possibilities of program-analysis-driven forensics techniques.

127

REFERENCES

[1] Is WordPress Really A 10 Billion Dollar Economy? https://www.presstitan.com/is-wordpr
ess-really-a-10-billion-dollar-economy/, [Accessed: 2020-05-08].

[2] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan, “HOLMES:
Real-time apt detection through correlation of suspicious information flows,” in Proceedings
of the 40th IEEE Symposium on Security and Privacy (S&P), San Francisco, CA, May 2019.

[3] S. Ma, J. Zhai, F. Wang, K. H. Lee, X. Zhang, and D. Xu, “MPI: Multiple perspective
attack investigation with semantic aware execution partitioning,” in Proceedings of the 26th
USENIX Security Symposium (Security), Vancouver, BC, Canada, Aug. 2017.

[4] Y. Kwon, F. Wang, W. Wang, K. H. Lee, W.-C. Lee, S. Ma, X. Zhang, D. Xu, S. Jha, G.
Ciocarlie, A. Gehani, and V. Yegneswaran, “MCI: Modeling-based causality inference in audit
logging for attack investigation,” in Proceedings of the 2018 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2018.

[5] Y. Kwon, D. Kim, W. N. Sumner, K. Kim, B. Saltaformaggio, X. Zhang, and D. Xu, “LDX:
Causality inference by lightweight dual execution,” in Proceedings of the 21st ACM
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Atlanta, GA, Apr. 2016.

[6] K. H. Lee, X. Zhang, and D. Xu, “High accuracy attack provenance via binary-based
execution partition,” in Proceedings of the 20th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2013.

[7] K. H. Lee, X. Zhang, and D. Xu, “LogGC: Garbage collecting audit log,” in Proceedings of the
20th ACM Conference on Computer and Communications Security (CCS), Berlin, Germany,
Oct. 2013.

[8] S. Ma, K. H. Lee, C. H. Kim, J. Rhee, X. Zhang, and D. Xu, “Accurate, low cost and
instrumentation-free security audit logging for windows,” in Proceedings of the 31st Annual
Computer Security Applications Conference (ACSAC), Los Angeles, CA, Dec. 2015.

[9] P. Vadrevu, J. Liu, B. Li, B. Rahbarinia, K. H. Lee, and R. Perdisci, “Enabling reconstruction
of attacks on users via efficient browsing snapshots,” in Proceedings of the 2017 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2017.

[10] S. Ma, J. Zhai, Y. Kwon, K. H. Lee, X. Zhang, G. Ciocarlie, A. Gehani, V. Yegneswaran,
D. Xu, and S. Jha, “Kernel-supported cost-effective audit logging for causality tracking,”
in Proceedings of the 2018 USENIX Annual Technical Conference (ATC), Boston, MA, Jul.
2018.

[11] S. Ma, X. Zhang, and D. Xu, “ProTracer: Towards practical provenance tracing by alternating
between logging and tainting,” in Proceedings of the 2016 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb. 2016.

128

https://www.presstitan.com/is-wordpress-really-a-10-billion-dollar-economy/
https://www.presstitan.com/is-wordpress-really-a-10-billion-dollar-economy/

[12] S. Sitaraman and S. Venkatesan, “Forensic analysis of file system intrusions using improved
backtracking,” in Proceedings of the 3rd IEEE International Workshop on Information
Assurance, IEEE, College Park, MD, USA, Mar. 2005.

[13] K. Pei, Z. Gu, B. Saltaformaggio, S. Ma, F. Wang, Z. Zhang, L. Si, X. Zhang, and D. Xu,
“HERCULE: attack story reconstruction via community discovery on correlated log graph,”
in Proceedings of the 32nd Annual Computer Security Applications Conference (ACSAC),
Los Angeles, CA, Dec. 2016.

[14] F. Wang, Y. Kwon, S. Ma, X. Zhang, and D. Xu, “Lprov: Practical library-aware
provenance tracing,” in Proceedings of the 34th Annual Computer Security Applications
Conference (ACSAC), 2018.

[15] M. N. Hossain, S. M. Milajerdi, J. Wang, B. Eshete, R. Gjomemo, R. Sekar, S. D. Stoller,
and V. Venkatakrishnan, “Sleuth: Real-time attack scenario reconstruction from cots audit
data,” in Proceedings of the 26th USENIX Security Symposium (Security), Vancouver, BC,
Canada, Aug. 2017.

[16] Y. Liu, M. Zhang, D. Li, K. Jee, Z. Li, Z. Wu, J. Rhee, and P. Mittal, “Towards a timely
causality analysis for enterprise security,” in Proceedings of the 2018 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2018.

[17] W3Techs - Usage of content management systems for websites, https://w3techs.com/techn
ologies/overview/content_management/all, [Accessed: 2019-01-16].

[18] Popular CMS by Market Share, https://websitesetup.org/popular-cms/, [Accessed: 2019-06-
30].

[19] HostGator.com LLC, https://www.hostgator.com, [Accessed: 2019-06-12].

[20] Dropmysite - Cloud Backups for Websites & Databases, https ://www.dropmysite .com/,
[Accessed: 2018-10-31].

[21] CodeGuard, https://www.codeguard.com/, [Accessed: 2019-01-20].

[22] GoDaddy, https://www.godaddy.com/web-security/website-backup, [Accessed: 2018-01-20].

[23] Sucuri, https://sucuri.net/website-backups/, [Accessed: 2018-10-31].

[24] iPage, https://www.ipage.com/web-backup, [Accessed: 2018-10-31].

[25] W. U. Hassan, S. Guo, D. Li, Z. Chen, K. Jee, Z. Li, and A. Bates, “Nodoze: Combatting
threat alert fatigue with automated provenance triage,” in Proceedings of the 2019 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2019.

[26] New Research from Advanced Threat Analytics, https ://www.prnewswire . com/news - re
leases/new- research - from- advanced - threat - analytics - finds - mssp - incident - responders -
overwhelmed-by-false-positive-security-alerts-300596828.html, [Accessed: 2019-01-20].

129

https://w3techs.com/technologies/overview/content_management/all
https://w3techs.com/technologies/overview/content_management/all
https://websitesetup.org/popular-cms/
https://www.hostgator.com
https://www.dropmysite.com/
https://www.codeguard.com/
https://www.godaddy.com/web-security/website-backup
https://sucuri.net/website-backups/
https://www.ipage.com/web-backup
https://www.prnewswire.com/news-releases/new-research-from-advanced-threat-analytics-finds-mssp-incident-responders-overwhelmed-by-false-positive-security-alerts-300596828.html
https://www.prnewswire.com/news-releases/new-research-from-advanced-threat-analytics-finds-mssp-incident-responders-overwhelmed-by-false-positive-security-alerts-300596828.html
https://www.prnewswire.com/news-releases/new-research-from-advanced-threat-analytics-finds-mssp-incident-responders-overwhelmed-by-false-positive-security-alerts-300596828.html

[27] D. Canali and D. Balzarotti, “Behind the scenes of online attacks: An analysis of exploitation
behaviors on the web,” in Proceedings of the 20th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, Feb. 2013.

[28] zxcvbn: Low-Budget Password Strength Estimation, https://github.com/dropbox/zxcvbn,
[Accessed: 2019-05-28].

[29] D. C. Howell, “Median absolute deviation,” Wiley StatsRef: statistics reference online, 2014.

[30] A. Koufakou, E. G. Ortiz, M. Georgiopoulos, G. C. Anagnostopoulos, and K. M. Reynolds,
“A scalable and efficient outlier detection strategy for categorical data,” in 19th IEEE
International Conference on Tools with Artificial Intelligence (ICTAI 2007), IEEE, vol. 2,
2007, pp. 210–217.

[31] What CMS Is This Site Using? https://whatcms.org/, [Accessed: 2019-06-26].

[32] CMS-Garden CMSScanner, https://github.com/CMS-Garden/cmsscanner, [Accessed: 2019-
06-12].

[33] Pandas: Flexible and powerful data analysis and manipulation library for Python, https :
//github.com/pandas-dev/pandas, [Accessed: 2019-05-28].

[34] Drupal: CVE-2018-7600: Remote Code Execution - SA-CORE-2018-002, https://www.rapi
d7.com/db/vulnerabilities/drupal-cve-2018-7600, [Accessed: 2019-06-26].

[35] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, “Hey, you, get off of my market: Detecting
malicious apps in official and alternative android markets.,” in Proceedings of the 19th Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2012.

[36] N. Jagpal, E. Dingle, J.-P. Gravel, P. Mavrommatis, N. Provos, M. A. Rajab, and K. Thomas,
“Trends and lessons from three years fighting malicious extensions,” in Proceedings of the 24th
USENIX Security Symposium (Security), Washington, DC, Aug. 2015.

[37] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna, and V. Paxson, “Hulk:
Eliciting malicious behavior in browser extensions,” in Proceedings of the 23rd USENIX
Security Symposium (Security), San Diego, CA, Aug. 2014.

[38] R. Duan, O. Alrawi, R. Pai Kasturi, R. Elder, B. Saltaformaggio, and W. Lee, “Towards
Measuring Supply Chain Attacks on Package Managers,” in Proceedings of the 2021 Annual
Network and Distributed System Security Symposium (NDSS), Virtual Conference, Feb. 2021.

[39] K. Soska and N. Christin, “Automatically detecting vulnerable websites before they turn
malicious,” in Proceedings of the 23rd USENIX Security Symposium (Security), San Diego,
CA, Aug. 2014.

[40] J. Dahse and T. Holz, “Static detection of second-order vulnerabilities in web applications,”
in Proceedings of the 23rd USENIX Security Symposium (Security), San Diego, CA, Aug.
2014.

130

https://github.com/dropbox/zxcvbn
https://whatcms.org/
https://github.com/CMS-Garden/cmsscanner
https://github.com/pandas-dev/pandas
https://github.com/pandas-dev/pandas
https://www.rapid7.com/db/vulnerabilities/drupal-cve-2018-7600
https://www.rapid7.com/db/vulnerabilities/drupal-cve-2018-7600

[41] L. Invernizzi, P. M. Comparetti, S. Benvenuti, C. Kruegel, M. Cova, and G. Vigna,
“Evilseed: A guided approach to finding malicious web pages,” in Proceedings of the 33rd
IEEE Symposium on Security and Privacy (S&P), San Francisco, CA, May 2012.

[42] R. P. Kasturi, Y. Sun, R. Duan, O. Alrawi, E. Asdar, V. Zhu, Y. Kwon, and
B. Saltaformaggio, “TARDIS: Rolling Back The Clock On CMS-Targeting Cyber Attacks,”
in Proceedings of the 41st IEEE Symposium on Security and Privacy (S&P), Virtual
Conference, May 2020.

[43] Is That WordPress Plugin Safe? 15 Warning Signs to Skip Downloading, https://premium.
wpmudev.org/blog/is-that-wordpress-plugin-safe-15-warning-signs-to-skip-downloading/,
[Accessed: 2020-08-19].

[44] WPScan Vulnerability Database, https://wpvulndb.com/plugins, [Accessed: 2020-05-09].

[45] RIPSTECH Vulnerability Detection, https://www.ripstech.com/, [Accessed: 2020-05-09].

[46] WebARX: Protect websites from plugin vulnerabilities, https://www.webarxsecurity.com/,
[Accessed: 2020-05-09].

[47] 9 WordPress Plugins Targeted in Coordinated 4.5-Year Spam Campaign, https : / / www .
wordfence.com/blog/2017/09/coordinated-plugin-spam/, [Accessed: 2020-05-08].

[48] WP-VCD: The Malware You Installed On Your Own Site, https://www.wordfence.com/wp-
content/uploads/2019/11/Wordfence-WP-VCD-Whitepaper.pdf, [Accessed: 2020-06-27].

[49] WordPress Themes, https://wordpress.org/plugins/, [Accessed: 2020-08-08].

[50] WordPress Themes, https://wordpress.org/themes/, [Accessed: 2020-08-08].

[51] Github, https://github.com/, [Accessed: 2020-08-08].

[52] CodeCanyon, https://codecanyon.net/, [Accessed: 2020-08-08].

[53] ThemeForest, https://themeforest.net/, [Accessed: 2020-08-08].

[54] WPMU DEV, https://premium.wpmudev.org/, [Accessed: 2020-08-08].

[55] Easy Digital Downloads, https://easydigitaldownloads.com/, [Accessed: 2020-08-08].

[56] The 10 Million Dollar Plugin: Choco Drops + Admob (Android Studio + Eclipse) Easy
Reskin, https://codecanyon.net/item/choco-drops- admob-android- studio- eclipse- easy-
reskin/21423129, [Accessed: 2020-07-29].

[57] PLR Products, https : //www.plrproducts . com/keyword - swarm- wp- plugin/, [Accessed:
2020-08-18].

[58] Jeroen Sormani - WordPress Plugin Developer, https : / / jeroensormani . com/, [Accessed:
2020-08-20].

131

https://premium.wpmudev.org/blog/is-that-wordpress-plugin-safe-15-warning-signs-to-skip-downloading/
https://premium.wpmudev.org/blog/is-that-wordpress-plugin-safe-15-warning-signs-to-skip-downloading/
https://wpvulndb.com/plugins
https://www.ripstech.com/
https://www.webarxsecurity.com/
https://www.wordfence.com/blog/2017/09/coordinated-plugin-spam/
https://www.wordfence.com/blog/2017/09/coordinated-plugin-spam/
https://www.wordfence.com/wp-content/uploads/2019/11/Wordfence-WP-VCD-Whitepaper.pdf
https://www.wordfence.com/wp-content/uploads/2019/11/Wordfence-WP-VCD-Whitepaper.pdf
https://wordpress.org/plugins/
https://wordpress.org/themes/
https://github.com/
https://codecanyon.net/
https://themeforest.net/
https://premium.wpmudev.org/
https://easydigitaldownloads.com/
https://codecanyon.net/item/choco-drops-admob-android-studio-eclipse-easy-reskin/21423129
https://codecanyon.net/item/choco-drops-admob-android-studio-eclipse-easy-reskin/21423129
https://www.plrproducts.com/keyword-swarm-wp-plugin/
https://jeroensormani.com/

[59] VaultPress - Daily and Real-time Backups, https://vaultpress.com/, [Accessed: 2020-08-20].

[60] WordPress File Permissions: Complete Beginner’s Guide, http://www.themeshunter.com/
stats/themeforest-net.html, [Accessed: 2021-09-09].

[61] Why You Should Stop Using Nulled WordPress Plugins and Themes, https://kinsta.com/
blog/nulled-wordpress-plugins-themes/, [Accessed: 2020-10-07].

[62] WordPress File Permissions: Complete Beginner’s Guide, https://www.malcare.com/blog/
wordpress-file-permissions/, [Accessed: 2021-06-03].

[63] M. Backes, S. Bugiel, and E. Derr, “Reliable third-party library detection in android and
its security applications,” in Proceedings of the 23rd ACM Conference on Computer and
Communications Security (CCS), Vienna, Austria, Oct. 2016.

[64] Display Widgets Plugin Permanently Removed from WordPress.org Due to Malicious Code,
https://wptavern.com/display-widgets-plugin-permanently-removed-from-wordpress-org-
due-to-malicious-code, [Accessed: 2020-10-12].

[65] Abandoned and Removed Plugin Alerts, https : / / www . wordfence . com / blog / 2017 / 06 /
abandoned-removed-plugin-alerts/, [Accessed: 2020-10-12].

[66] SweetCAPTCHA Service Used to Distribute Adware, https ://blog . sucuri .net/2015/06/
sweetcaptcha-service-used-to-distribute-adware.html, [Accessed: 2020-10-12].

[67] Y. Li, J. Huang, A. Ikusan, M. Mitchell, J. Zhang, and R. Dai, “Shellbreaker: Automatically
detecting php-based malicious web shells,” Computers & Security, vol. 87, p. 101 595, 2019.

[68] H. Cui, D. Huang, Y. Fang, L. Liu, and C. Huang, “Webshell detection based on random
forest–gradient boosting decision tree algorithm,” in 2018 IEEE Third International
Conference on Data Science in Cyberspace (DSC), IEEE, 2018, pp. 153–160.

[69] A. Naderi-Afooshteh, Y. Kwon, A. Nguyen-Tuong, M. Bagheri-Marzijarani, and
J. W. Davidson, “Cubismo: Decloaking server-side malware via cubist program analysis,” in
Proceedings of the 35th Annual Computer Security Applications Conference (ACSAC), San
Juan, Puerto Rico, Dec. 2019.

[70] N. Popov, A PHP parser written in PHP, Jul. 2019.

[71] V. Total, “Virustotal-free online virus, malware and url scanner,” Online: https://www.
virustotal.com/en, 2012.

[72] URLHaus online virus, malware and url scanner, author=URLHaus, https://www.urlhaus.
com, [Accessed: 2021-26-04].

[73] Flatsome | Multi-Purpose Responsive WooCommerce Theme, https://themeforest.net/item/
flatsome-multipurpose-responsive-woocommerce-theme/5484319, [Accessed: 2020-09-23].

[74] WPBakery Page Builder for WordPress, https://codecanyon.net/item/visual- composer-
page-builder-for-wordpress/242431, [Accessed: 2020-09-23].

132

https://vaultpress.com/
http://www.themeshunter.com/stats/themeforest-net.html
http://www.themeshunter.com/stats/themeforest-net.html
https://kinsta.com/blog/nulled-wordpress-plugins-themes/
https://kinsta.com/blog/nulled-wordpress-plugins-themes/
https://www.malcare.com/blog/wordpress-file-permissions/
https://www.malcare.com/blog/wordpress-file-permissions/
https://wptavern.com/display-widgets-plugin-permanently-removed-from-wordpress-org-due-to-malicious-code
https://wptavern.com/display-widgets-plugin-permanently-removed-from-wordpress-org-due-to-malicious-code
https://www.wordfence.com/blog/2017/06/abandoned-removed-plugin-alerts/
https://www.wordfence.com/blog/2017/06/abandoned-removed-plugin-alerts/
https://blog.sucuri.net/2015/06/sweetcaptcha-service-used-to-distribute-adware.html
https://blog.sucuri.net/2015/06/sweetcaptcha-service-used-to-distribute-adware.html
https://www. urlhaus.com
https://www. urlhaus.com
https://themeforest.net/item/flatsome-multipurpose-responsive-woocommerce-theme/5484319
https://themeforest.net/item/flatsome-multipurpose-responsive-woocommerce-theme/5484319
https://codecanyon.net/item/visual-composer-page-builder-for-wordpress/242431
https://codecanyon.net/item/visual-composer-page-builder-for-wordpress/242431

[75] FormCraft - Premium WordPress Form Builder, https://codecanyon.net/item/formcraft-
premium-wordpress-form-builder/5335056, [Accessed: 2020-09-23].

[76] Gravity Forms, https://www.gravityforms.com/pricing/, [Accessed: 2020-09-23].

[77] WP Robot 5 - Your Blog On Autopilot, https://wprobot.net/order/, [Accessed: 2020-09-23].

[78] BeTheme - Responsive Multi-Purpose WordPress Theme, https://themeforest.net/item/
betheme-responsive-multipurpose-wordpress-theme/7758048, [Accessed: 2020-09-23].

[79] WoodMart - Responsive WooCommerce WordPress Theme, https://themeforest.net/item/
woodmart-woocommerce-wordpress-theme/20264492, [Accessed: 2020-09-23].

[80] DooPlay Theme WordPress, https : //www .downloadfreethemes . co/dooplay - v2 - 1 - 3 - 8 -
movies-and-tv-shows-wordpress-theme/, [Accessed: 2020-06-27].

[81] Internet Archive: Wayback Machine, https://archive.org/web/, [Accessed: 2021-05-10].

[82] P. Wrench and B. Irwin, “A sandbox-based approach to the deobfuscation and dissection of
php-based malware,” Saiee Africa Research Journal, 2015.

[83] W3Techs: Usage statistics of content management systems, https://w3techs.com/technologi
es/overview/content_management, [Accessed: 2022-05-04].

[84] R. P. Kasturi, J. Fuller, Y. Sun, O. Chabklo, A. Rodriguez, J. Park, and B. Saltaformaggio,
“Mistrust plugins you must: A large-scale study of malicious plugins in wordpress
marketplaces,” in Proceedings of the 31st USENIX Security Symposium (Security), Boston,
MA, Aug. 2022.

[85] C. C. B. Livshits, B. Zorn, and C. Seifert, “Zozzle: Low-overhead mostly static javascript
malware detection,” in Proceedings of the 19th USENIX Security Symposium (Security),
Washington, DC, Aug. 2010.

[86] D. Canali, M. Cova, G. Vigna, and C. Kruegel, “Prophiler: A fast filter for the large-scale
detection of malicious web pages,” in Proceedings of the 20th International World Wide Web
Conference (WWW), Hyderabad, India, Apr. 2011.

[87] C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert, “Rozzle: De-cloaking internet malware,”
in Proceedings of the 33rd IEEE Symposium on Security and Privacy (S&P), San Francisco,
CA, May 2012.

[88] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of drive-by-download attacks
and malicious javascript code,” in Proceedings of the 19th USENIX Security Symposium
(Security), Washington, DC, Aug. 2010.

[89] A. Kapravelos, Y. Shoshitaishvili, M. Cova, C. Kruegel, and G. Vigna, “Revolver: An
automated approach to the detection of evasive web-based malware,” in Proceedings of the
22th USENIX Security Symposium (Security), Washington, DC, Aug. 2013.

133

https://codecanyon.net/item/formcraft-premium-wordpress-form-builder/5335056
https://codecanyon.net/item/formcraft-premium-wordpress-form-builder/5335056
https://www.gravityforms.com/pricing/
https://wprobot.net/order/
https://themeforest.net/item/betheme-responsive-multipurpose-wordpress-theme/7758048
https://themeforest.net/item/betheme-responsive-multipurpose-wordpress-theme/7758048
https://themeforest.net/item/woodmart-woocommerce-wordpress-theme/20264492
https://themeforest.net/item/woodmart-woocommerce-wordpress-theme/20264492
https://www.downloadfreethemes.co/dooplay-v2-1-3-8-movies-and-tv-shows-wordpress-theme/
https://www.downloadfreethemes.co/dooplay-v2-1-3-8-movies-and-tv-shows-wordpress-theme/
https://archive.org/web/
https://w3techs.com/technologies/overview/content_management
https://w3techs.com/technologies/overview/content_management

[90] L. Lu, V. Yegneswaran, P. Porras, and W. Lee, “Blade: An attack-agnostic approach for
preventing drive-by malware infections,” in Proceedings of the 17th ACM Conference on
Computer and Communications Security (CCS), Chicago, Illinois, Oct. 2010.

[91] M. Van Gundy, D. Balzarotti, and G. Vigna, “Catch me, if you can: Evading network
signatures with web-based polymorphic worms..”

[92] O. Starov, J. Dahse, S. S. Ahmad, T. Holz, and N. Nikiforakis, “No honor among thieves: A
large-scale analysis of malicious web shells,” in Proceedings of the 25th International World
Wide Web Conference (WWW), 2016.

[93] UnPHP - The Online PHP Decoder, https://www.unphp.net/, [Accessed: 2022-05-02].

[94] Top PHP Security and Malware Scanners, https://phpmagazine.net/2020/10/top- php-
security-and-malware-scanners.html, [Accessed: 2022-05-05].

[95] A. Naderi-Afooshteh, Y. Kwon, A. Nguyen-Tuong, A. Razmjoo-Qalaei,
M.-R. Zamiri-Gourabi, and J. W. Davidson, “Malmax: Multi-aspect execution for
automated dynamic web server malware analysis,” in Proceedings of the 26th ACM
Conference on Computer and Communications Security (CCS), London, UK, Nov. 2011.

[96] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez, “Hamsa: Fast signature generation
for zero-day polymorphic worms with provable attack resilience,” in Proceedings of the 27th
IEEE Symposium on Security and Privacy (S&P), Oakland, CA, May 2006.

[97] The Hacker Motive: What Attackers Are Doing with Your Hacked Site, https://www.word
fence.com/blog/2020/09/the-hacker-motive-what-attackers-are-doing-with-your-hacked-
site/, [Accessed: 2022-05-05].

[98] VirusTotal: Analyze suspicious files, domains, IPs and URLs to detect malware and other
breaches, automatically share them with the security community, https://www.virustotal.
com/, [Accessed: 2022-05-03].

[99] A. Mantovani, S. Aonzo, X. Ugarte-Pedrero, A. Merlo, and D. Balzarotti, “Prevalence and
impact of low-entropy packing schemes in the malware ecosystem.,” in Proceedings of the
2020 Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA,
Feb. 2020.

[100] A. Fass, M. Backes, and B. Stock, “Hidenoseek: Camouflaging malicious javascript in
benign asts,” in Proceedings of the 26th ACM Conference on Computer and
Communications Security (CCS), London, UK, Nov. 2011.

[101] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “Sok: Deep packer inspection:
A longitudinal study of the complexity of run-time packers,” in Proceedings of the 36th IEEE
Symposium on Security and Privacy (S&P), San Jose, CA, May 2015.

[102] Zend Guard Obfuscator and Encoder, https : / / www . zend . com / products / zend - guard,
[Accessed: 2022-04-10].

[103] Zend Guard Obfuscator and Encoder, https : / / www . ioncube . com / php _ encoder . php,
[Accessed: 2022-04-10].

134

https://www.unphp.net/
https://phpmagazine.net/2020/10/top-php-security-and-malware-scanners.html
https://phpmagazine.net/2020/10/top-php-security-and-malware-scanners.html
https://www.wordfence.com/blog/2020/09/the-hacker-motive-what-attackers-are-doing-with-your-hacked-site/
https://www.wordfence.com/blog/2020/09/the-hacker-motive-what-attackers-are-doing-with-your-hacked-site/
https://www.wordfence.com/blog/2020/09/the-hacker-motive-what-attackers-are-doing-with-your-hacked-site/
https://www.virustotal.com/
https://www.virustotal.com/
https://www.zend.com/products/zend-guard
https://www.ioncube.com/php_encoder.php

[104] CMS-Garden CMSScanner, https : / / github . com / CMS - Garden / cmsscannerl, [Accessed:
2022-04-09].

[105] O. Catakoglu, M. Balduzzi, and D. Balzarotti, “Automatic extraction of indicators of
compromise for web applications,” in Proceedings of the 25th International World Wide
Web Conference (WWW), 2016.

[106] D. Canali, D. Balzarotti, and A. Francillon, “The role of web hosting providers in detecting
compromised websites,” in Proceedings of the 22nd International World Wide Web Conference
(WWW), Rio de Janeiro, Brazil, May 2013.

[107] Google Hack Honeypot, http://ghh.sourceforge.net/, [Accessed: 2021-06-03].

[108] MushMush Foundation, http://mushmush.org/, [Accessed: 2021-06-03].

[109] J. P. John, F. Yu, Y. Xie, A. Krishnamurthy, and M. Abadi, “Heat-seeking honeypots:
Design and experience,” in Proceedings of the 20th International World Wide Web Conference
(WWW), Hyderabad, India, Apr. 2011.

[110] B. Stock, G. Pellegrino, C. Rossow, M. Johns, and M. Backes, “Hey, you have a problem:
On the feasibility of large-scale web vulnerability notification,” in Proceedings of the 25th
USENIX Security Symposium (Security), Austin, TX, Aug. 2016.

[111] “To Get Lost is to Learn the Way: Automatically Collecting Multi-step Social Engineering
Attacks on the Web,” in Proceedings of the 15th ACM Symposium on Information, Computer
and Communications Security (ASIACCS), Taipei, Taiwan, Oct. 2020.

[112] T. Nelms, R. Perdisci, M. Antonakakis, and M. Ahamad, “Webwitness: Investigating,
categorizing, and mitigating malware download paths,” in Proceedings of the 24th USENIX
Security Symposium (Security), Washington, DC, Aug. 2015.

[113] N. Provos, D. McNamee, P. Mavrommatis, K. Wang, N. Modadugu, et al., “The ghost in the
browser: Analysis of web-based malware.,” HotBots, vol. 7, pp. 4–4, 2007.

[114] A. Sudhodanan, S. Khodayari, and J. Caballero, “Cross-Origin State Inference (COSI)
Attacks: Leaking Web Site States through XS-Leaks,” in Proceedings of the 2020 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2020.

[115] C.-A. Staicu and M. Pradel, “Leaky images: Targeted privacy attacks in the web,” in
Proceedings of the 28th USENIX Security Symposium (Security), Santa Clara, CA, Aug.
2019.

[116] J. Caballero, C. Grier, C. Kreibich, and V. Paxson, “Measuring pay-per-install: The
commoditization of malware distribution.,” in Proceedings of the 20th USENIX Security
Symposium (Security), San Francisco, CA, Aug. 2011.

[117] B. J. Kwon, J. Mondal, J. Jang, L. Bilge, and T. Dumitraş, “The dropper effect: Insights
into malware distribution with downloader graph analytics,” in Proceedings of the 22nd ACM
Conference on Computer and Communications Security (CCS), Denver, CO, Oct. 2015.

135

https://github.com/CMS-Garden/cmsscannerl
http://ghh.sourceforge.net/
http://mushmush.org/

[118] P. Vadrevu, B. Rahbarinia, R. Perdisci, K. Li, and M. Antonakakis, “Measuring and detecting
malware downloads in live network traffic.”

[119] J. W. Clark and D. McCoy, “There are no free ipads: An analysis of survey scams as a
business.,” in Proceedings of the 6th USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET), Washington, D.C., United States, Aug. 2013.

[120] F. Li, Z. Durumeric, J. Czyz, M. Karami, M. Bailey, D. McCoy, S. Savage, and V. Paxson,
“You’ve got vulnerability: Exploring effective vulnerability notifications,” in Proceedings of
the 25th USENIX Security Symposium (Security), Austin, TX, Aug. 2016.

[121] S. T. King and P. M. Chen, “Backtracking intrusions,” in Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSP), Bolton Landing, NY, Oct. 2003.

[122] K.-K. Muniswamy-Reddy, U. Braun, D. A. Holland, P. Macko, D. L. MacLean, D. W. Margo,
M. I. Seltzer, and R. Smogor, “Layering in provenance systems.,” in Proceedings of the 2009
USENIX Annual Technical Conference (ATC), San Diego, CA, Jun. 2009.

[123] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and description: A
survey,” Data mining and knowledge discovery, 2015.

[124] A. Bates, D. J. Tian, K. R. Butler, and T. Moyer, “Trustworthy whole-system provenance
for the linux kernel,” in Proceedings of the 24th USENIX Security Symposium (Security),
Washington, DC, Aug. 2015.

[125] T. Pasquier, X. Han, T. Moyer, A. Bates, O. Hermant, D. Eyers, J. Bacon, and M. Seltzer,
“Runtime analysis of whole-system provenance,” in Proceedings of the 25th ACM Conference
on Computer and Communications Security (CCS), Toronto, ON, Canada, Oct. 2018.

[126] S. Arshad, A. Kharraz, and W. Robertson, “Identifying extension-based ad injection via
fine-grained web content provenance,” in Proceedings of the 19th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID), Evry, France, Sep. 2016.

[127] K. Thomas, E. Bursztein, C. Grier, G. Ho, N. Jagpal, A. Kapravelos, D. McCoy, A. Nappa, V.
Paxson, P. Pearce, N. Provos, and M. Abu Rajab, “Ad injection at scale: Assessing deceptive
advertisement modifications,” in Proceedings of the 36th IEEE Symposium on Security and
Privacy (S&P), San Jose, CA, May 2015.

[128] X. Xing, W. Meng, B. Lee, U. Weinsberg, A. Sheth, R. Perdisci, and W. Lee,
“Understanding malvertising through ad-injecting browser extensions,” in Proceedings of
the 24th International World Wide Web Conference (WWW), Florence, Italy, 2015.

[129] A. Kharraz, W. Robertson, and E. Kirda, “Surveylance: Automatically detecting online
survey scams,” in Proceedings of the 39th IEEE Symposium on Security and Privacy
(S&P), San Francisco, CA, May 2018.

[130] W. Melicher, A. Das, M. Sharif, L. Bauer, and L. Jia, “Riding out domsday: Toward detecting
and preventing dom cross-site scripting,” in Proceedings of the 2018 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2018.

136

[131] B. Stock, S. Lekies, T. Mueller, P. Spiegel, and M. Johns, “Precise client-side protection
against dom-based cross-site scripting.,” in Proceedings of the 2014 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2014.

[132] G. Wassermann and Z. Su, “Static detection of cross-site scripting vulnerabilities,” in
Proceedings of the 30th International Conference on Software Engineering (ICSE), Leipzig,
Germany, May 2008.

[133] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and F. Yamaguchi, “Efficient and flexible
discovery of php application vulnerabilities,” in Proceedings of the European Symposium on
Security and Privacy (EuroS&P), Paris, France, Apr. 2017.

[134] D. R. Sahu and D. S. Tomar, “DNS pharming through PHP injection: Attack scenario and
investigation,” IJ Computer Network and Information Security, vol. 4, pp. 21–28, 2015.

[135] V. Yerram and G. V. R. Reddy, “A solution to php code injection attacks and web
vulnerabilities,” 2014.

[136] Z. S. Alwan and M. F. Younis, “Detection and prevention of sql injection attack: A survey,”
International Journal of Computer Science and Mobile Computing, vol. 6, no. 8, pp. 5–17,
2017.

[137] N. Singh, M. Dayal, R. Raw, and S. Kumar, “Sql injection: Types, methodology, attack
queries and prevention,” in Proceedings of the 3rdComputing for Sustainable Global
Development (INDIACom), IEEE, New Delhi, India, Mar. 2016.

[138] A. Pramod, A. Ghosh, A. Mohan, M. Shrivastava, and R. Shettar, “Sqli detection system for
a safer web application,” in Proceedings of the 2015IEEE International Advance Computing
Conference, IEEE, Bangalore, India, Jun. 2015.

[139] H. F. G. Robledo, “Types of hosts on a remote file inclusion (rfi) botnet,” in Proceedings of
the Electronics, Robotics and Automotive Mechanics Conference, Jun. 2008.

[140] O. Katz, “Detecting remote file inclusion attacks,” White Paper. Breach Security Inc., May,
2009.

[141] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis tool for detecting web
application vulnerabilities,” in Proceedings of the 27th IEEE Symposium on Security and
Privacy (S&P), Oakland, CA, May 2006.

[142] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna, “Cross site scripting
prevention with dynamic data tainting and static analysis..”

[143] D. Balzarotti, M. Cova, V. Felmetsger, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna,
“Saner: Composing static and dynamic analysis to validate sanitization in web applications,”
in Proceedings of the 29th IEEE Symposium on Security and Privacy (S&P), Oakland, CA,
May 2008.

[144] T. Scholte, W. Robertson, D. Balzarotti, and E. Kirda, “Preventing input validation
vulnerabilities in web applications through automated type analysis,” in Computer software
and applications conference, 2012.

137

[145] S. McAllister, E. Kirda, and C. Kruegel, “Leveraging user interactions for in-depth testing
of web applications,” in Proceedings of the 11th International Symposium on Research in
Attacks, Intrusions and Defenses (RAID), Cambridge, Massachusetts, Sep. 2008.

[146] A. K. Kyaw, F. Sioquim, and J. Joseph, “Dictionary attack on wordpress: Security and
forensic analysis,” in 2015 Second International Conference on Information Security and
Cyber Forensics (InfoSec), 2015.

[147] Z. Li, K. Zhang, Y. Xie, F. Yu, and X. Wang, “Knowing your enemy: Understanding and
detecting malicious web advertising,” in Proceedings of the 19th ACM Conference on
Computer and Communications Security (CCS), Raleigh, NC, Oct. 2012.

[148] J. Ruohonen, “A demand-side viewpoint to software vulnerabilities in wordpress plugins,” in
Evaluation and Assessment on Software Engineering, 2019.

[149] O. Mesa, R. Vieira, M. Viana, V. H. Durelli, E. Cirilo, M. Kalinowski, and C. Lucena,
“Understanding vulnerabilities in plugin-based web systems: An exploratory study of
wordpress,” in 22nd International Systems and Software Product Line Conference, 2018.

[150] I. Cernica, N. Popescu, and B. ţigănoaia, “Security evaluation of wordpress backup plugins,”
in 2019 22nd International Conference on Control Systems and Computer Science (CSCS),
2019.

[151] T. Koskinen, P. Ihantola, and V. Karavirta, “Quality of wordpress plug-ins: An overview of
security and user ratings,” in 2012 International Conference on Privacy, Security, Risk and
Trust and 2012 International Confernece on Social Computing, 2012.

[152] D. Canali, D. Balzarotti, and A. Francillon, “The role of web hosting providers in detecting
compromised websites,” in Proceedings of the 22nd International World Wide Web Conference
(WWW), Rio de Janeiro, Brazil, May 2013.

[153] G. Meiser, P. Laperdrix, and B. Stock, “Careful who you trust: Studying the pitfalls of
cross-origin communication,” in Proceedings of the 16th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), Hong Kong, China, Jun. 2021.

[154] J. Chen, J. Jiang, H. Duan, T. Wan, S. Chen, V. Paxson, and M. Yang, “We still don’t
have secure cross-domain requests: An empirical study of cors,” in Proceedings of the 27th
USENIX Security Symposium (Security), Baltimore, MD, Aug. 2018.

[155] S. Son and V. Shmatikov, “The postman always rings twice: Attacking and defending
postmessage in html5 websites.,” in Proceedings of the 20th Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2013.

[156] M. Steffens and B. Stock, “Pmforce: Systematically analyzing postmessage handlers at scale,”
in Proceedings of the 27th ACM Conference on Computer and Communications Security
(CCS), Virtual Event, Nov. 2020.

[157] S. Roth, T. Barron, S. Calzavara, N. Nikiforakis, and B. Stock, “Complex security policy? a
longitudinal analysis of deployed content security policies,” in Proceedings of the 2020 Annual
Network and Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2020.

138

[158] L. Weichselbaum, M. Spagnuolo, S. Lekies, and A. Janc, “Csp is dead, long live csp! on the
insecurity of whitelists and the future of content security policy,” in Proceedings of the 23rd
ACM Conference on Computer and Communications Security (CCS), Vienna, Austria, Oct.
2016.

139

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 | Introduction
	Dissertation Statement
	Thesis and Contributions
	Dissertation Organization

	2 | TARDIS: Rolling Back The Clock On CMS-Targeting Cyber Attacks
	Preliminary Investigation
	Design
	Validating our Intuition
	Deploying TARDIS in the Wild
	Case Study
	Limitations

	3 | Mistrust Plugins You Must: A Large-Scale Study Of Malicious Plugins In WordPress Marketplaces
	Preliminary Study: Perilous Economy
	Design
	Validating YODA
	Deploying YODA
	Persistence of Malicious Plugins
	Case Studies
	Limitations and Future Work

	4 | The Malware That Keeps On Giving: A Decade-Long Study Of Obfuscation and Packing On Server-Side Web Malware
	Background
	Methodology
	Evaluating OBIWAN
	Temporal Evolution of Packed Files
	Large-Scale Study
	Case Studies

	5 | Related Work
	Large-Scale Study of Web Attacks
	Causality Modeling
	Web Application Security
	Web Malware Analysis
	Measurement Studies

	6 | Conclusion
	References

