
Graduate School Form
30 Updated

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

To the best of my knowledge and as understood by the student in the Thesis/Dissertation
Agreement, Publication Delay, and Certification Disclaimer (Graduate School Form 32),
this thesis/dissertation adheres to the provisions of Purdue University’s “Policy of
Integrity in Research” and the use of copyright material.

Approved by Major Professor(s):

Approved by:

Head of the Departmental Graduate Program Date

Saltaformaggio, Brendan Dominic

CONVICTED BY MEMORY: AUTOMATICALLY RECOVERING
SPATIAL-TEMPORAL EVIDENCE FROM MEMORY IMAGES

Doctor of Philosophy

Dr. Dongyan Xu Dr. Mikhail J. Atallah
Chair

Dr. Xiangyu Zhang
 Co-chair

Dr. Elisa Bertino

Dr. Aniket Kate

Dr. Dongyan Xu and Dr. Xiangyu Zhang

Dr. Sunil Prabhakar / Dr. William J. Gorman 12/7/2016

CONVICTED BY MEMORY: AUTOMATICALLY RECOVERING

SPATIAL-TEMPORAL EVIDENCE FROM MEMORY IMAGES

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Brendan D. Saltaformaggio

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2016

Purdue University

West Lafayette, Indiana

ProQuest Number:

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

ProQuest

Published by ProQuest LLC (). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

10249228

10249228

2017

ii

To my mother, Jody Juneau.

iii

ACKNOWLEDGMENTS

From my first day at Purdue, my advisor, Dr. Dongyan Xu, has stood as a pillar

of mentorship, teamwork, and limitless opportunity. From his example, Professor Xu

has shown me the type of professor, advisor, and mentor that I want to be. I cannot

imagine that many graduate students enjoy the degree of freedom in developing their

own research agenda that Professor Xu has granted me, and I will forever reserve my

deepest gratitude for his guidance, understanding, and support toward my success.

I also wish to express my sincerest appreciation and thanks to my co-advisor, Dr.

Xiangyu Zhang. This dissertation is the culmination of many ideas, debates, and

laughs shared with Professor Zhang. He truly is a colleague like no other.

I dedicate this dissertation to my mother, Jody Juneau, as it could not exist

without her. The value of her endless emotional support, limitless words of encour-

agement, and staggering monetary commitment to my education cannot be conveyed

in words alone. It is to her that I owe every implemented idea, published paper, and

conquered challenge. No person alive more deserves her self-given title, the “president

of my fan club.”

This dissertation is built upon the bedrock of support, happiness, and patience

I share with the love of my life, Kristen Johnson. From eating packaged dinners

at midnight in the lab to weekend escapes in Chicago, together we got through our

Ph.D.s; nothing can stop us now.

Lastly, an integral part of my time in graduate school was the collaboration and

camaraderie among my lab mates in the, aptly named, FRIENDS lab. Foremost

among them, I owe most of this dissertation to Rohit Bhatia’s tireless effort, invaluable

knowledge, and witty humor. I count myself very lucky to be among great colleagues,

past and present, such as Chung Hwan Kim, Hui Lu, Yonghwi Kwon, Zhui Deng,

Cong Xu, Taegyu Kim, Shiqing Ma, Kexin Pei, Praseem Banzal, and Zhongshu Gu.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . ix

1 INTRODUCTION . 1
1.1 Dissertation Statement . 1
1.2 Thesis and Contributions . 1

1.2.1 DSCRETE . 3
1.2.2 VCR . 4
1.2.3 GUITAR . 4
1.2.4 RetroScope . 5

1.3 Dissertation Organization . 6

2 DSCRETE: CONTENT REVERSE ENGINEERING 8
2.1 Overview . 10

2.1.1 Key Idea: Executable Code Reuse 10
2.1.2 Overview of DSCRETE Workflow 11
2.1.3 Assumptions and Setup . 13

2.2 Design . 13
2.2.1 Dynamic Data Dependence Tracing 13
2.2.2 Identifying Functional Closure 16
2.2.3 Finding the Scanner’s Entry Point 19
2.2.4 Memory Image Scanning . 21
2.2.5 Cross-State Execution . 22

2.3 Evaluation . 25
2.3.1 Experimental Setup . 25
2.3.2 Function Identification Effectiveness 26
2.3.3 Memory Scanner Effectiveness 29

2.4 Future Expansion of DSCRETE . 35

3 VCR: VISUAL CONTENT RECOVERY 39
3.1 Motivation . 41

3.1.1 Centralized Photographic Evidence 44
3.1.2 Assumptions and Setup . 45

3.2 Design . 45
3.2.1 Recovering Evidentiary Data 46

v

Page
3.2.2 Vendor-Generic Signature Derivation 48
3.2.3 Memory Image Scanning . 51
3.2.4 Rendering Evidence . 53

3.3 Evaluation . 55
3.3.1 App-Agnostic Evidence Recovery 56
3.3.2 Analysis Across Android Frameworks 62
3.3.3 Recovering Temporal Evidence 65
3.3.4 Privacy Concerns . 68

4 GUITAR: GUI TREE ARCHAEOLOGY 70
4.1 The Android GUI Framework . 73

4.1.1 Challenges and Solution Overview 76
4.2 Design . 76

4.2.1 Reconstructing GUI Tree Topology 77
4.2.2 Remapping Drawing Operations 80
4.2.3 Runtime Recreation for GUI Redraw 85
4.2.4 Data Structure Signatures 88

4.3 Evaluation . 89
4.3.1 GUI Data Elements (Puzzle Pieces) 90
4.3.2 Reconstructed GUIs (Finished Puzzles) 92
4.3.3 GUI Reconstruction Over Time 99

5 RETROSCOPE: SCREEN AFTER PREVIOUS SCREEN 104
5.1 Problem and Opportunity . 106
5.2 Design of RetroScope . 109

5.2.1 Selective Reanimation . 110
5.2.2 Interleaved Re-Execution Engine 113
5.2.3 Escaping Execution and Data Accesses 118

5.3 Evaluation . 119
5.3.1 Spatial-Temporal Evidence Recovery 124
5.3.2 Case Study I: Behind the Logout 126
5.3.3 Case Study II: Background Updates 127
5.3.4 Case Study III: Deleted Messages 128

5.4 RetroScope and Privacy Implications 129

6 RELATED WORKS . 136

7 CONCLUSION . 140

REFERENCES . 142

VITA . 148

vi

LIST OF TABLES

Table Page

2.1 Results from identifying applications’ P functions. 37

2.2 Results from DSCRETE-generated scanner+renderer tools. 38

3.1 VCR recovery from apps on commodity Android smartphones. 57

3.2 VCR recovery from current and future Android versions. 63

3.3 Time-lapse evaluation. 66

4.1 Recovery of backgrounded GUI data structures. 89

4.2 Reconstruction of GUI trees of various apps from different phones. . . . 102

4.3 Reconstruction of background apps’ GUI trees over a 24 hour period. . 103

5.1 Samsung S4 results of RetroScope evaluation. 121

5.2 LG G3 results of RetroScope evaluation. 122

5.3 HTC One results of RetroScope evaluation. 123

vii

LIST OF FIGURES

Figure Page

1.1 Four components of my spatial-temporal memory forensics framework . 2

2.1 Illustration of content reverse engineering challenge. 9

2.2 Overview of DSCRETE workflow. 12

2.3 Example for cross-state execution. 23

2.4 Normalized size of P vs. entire binary code. 28

2.5 Observed throughput of each scanner. 31

2.6 Candidate testing output. 33

3.1 Time-lapse effect in recovered preview frames. 41

3.2 Intermediate service architecture. 44

3.3 AOSP vs. vendor customized structure. 47

3.4 Illustration of a partial CameraClient signature. 49

3.5 Matching a candidate CameraClient instance. 52

3.6 Buffers under different decoding algorithms. 54

3.7 Timelapse frames recovered from the Skype case study. 59

3.8 Measurement of temporal evidence. 66

3.9 Recovered check image left behind in a memory image. 68

4.1 Overview of a windowing system library. 74

4.2 Recoverable GUI data structures of backgrounded apps over 24 hours. . 75

4.3 Broken GUI tree structures. 78

4.4 Example of drawing-content based bipartite graph matching. 80

4.5 Illustration of forced polymorphism. 87

4.6 DrawTextOp class definition and resulting data structure signature. . . 88

4.7 Samsung Contacts app with redrawn full conflict branch. 93

4.8 HTC Messaging. 93

viii

Figure Page

4.9 LG WhatsApp Contacts. 93

4.10 Samsung Facebook. 94

4.11 LG Contacts app. 94

4.12 Reconstructed Chase Banking GUIs. 99

4.13 Contacts and WhatsApp GUIs. 99

5.1 Life cycles of GUI data structures. 107

5.2 Model/View implementation split of Android apps. 108

5.3 State interleaving finite automata. 113

5.4 Example of interleaved re-execution. 133

5.5 LG G3 Facebook recovery. 134

5.6 HTC One Chase Banking recovery. 134

5.7 Samsung S4 WhatsApp recovery. 135

5.8 LG G3 WeChat recovery. 135

ix

ABSTRACT

Saltaformaggio, Brendan D. Ph.D., Purdue University, December 2016. Convicted
by Memory: Automatically Recovering Spatial-Temporal Evidence from Memory Im-
ages. Major Professors: Dongyan Xu and Xiangyu Zhang.

Memory forensics can reveal “up to the minute” evidence of a device’s usage,

often without requiring a suspect’s password to unlock the device, and it is oblivious

to any persistent storage encryption schemes, e.g., whole disk encryption. Prior to

my work, researchers and investigators alike considered data-structure recovery the

ultimate goal of memory image forensics. This, however, was far from sufficient,

as investigators were still largely unable to understand the content of the recovered

evidence, and hence efficiently locating and accurately analyzing such evidence locked

in memory images remained an open research challenge.

In this dissertation, I propose breaking from traditional data-recovery-oriented

forensics, and instead I present a memory forensics framework which leverages pro-

gram analysis to automatically recover spatial-temporal evidence from memory im-

ages by understanding the programs that generated it. This framework consists of

four techniques, each of which builds upon the discoveries of the previous, that repre-

sent this new paradigm of program-analysis-driven memory forensics. First, I present

DSCRETE, a technique which reuses a program’s own interpretation and rendering

logic to recover and present in-memory data structure contents. Following that, VCR

developed vendor-generic data structure identification for the recovery of in-memory

photographic evidence produced by an Android device’s cameras. GUITAR then re-

alized an app-independent technique which automatically reassembles and redraws

an app’s GUI from the multitude of GUI data elements found in a smartphone’s

memory image. Finally, different from any traditional memory forensics technique,

x

RetroScope introduced the vision of spatial-temporal memory forensics by retarget-

ing an Android app’s execution to recover sequences of previous GUI screens, in

their original temporal order, from a memory image. This framework, and the new

program analysis techniques which enable it, have introduced encryption-oblivious

forensics capabilities far exceeding traditional data-structure recovery.

1

1 INTRODUCTION

1.1 Dissertation Statement

Since 2008 the U.S. federal government has filed an unprecedented 70 orders under

the All Writs Act to compel Apple or Google to provide assistance in on-going criminal

investigations [1]. This dangerous new practice reveals an unnerving truth about

the current state of cyber forensics: Authorities lack the techniques necessary to

investigate cyber crimes without the explicit introduction of backdoors by which

to obtain evidence. My cyber forensics research directly addresses this emergent

problem by developing next-generation techniques for the investigation of advanced

cyber crimes.

After years of exclusively investigating persistent storage (e.g., hard disk drives),

cyber forensics investigators have only recently begun turning their attention to the

wealth of forensic evidence stored in a device’s volatile memory (RAM). Today, mem-

ory forensics is becoming an essential capability in cyber crime investigations, as it

can reveal “up to the minute” evidence of a device’s activities, often without requiring

a suspect’s password to unlock the device, and it is oblivious to any persistent storage

encryption schemes, e.g., whole disk encryption. Typically, an investigator only needs

to obtain an image of a device’s RAM (using minimally invasive hardware or software

techniques) for offline analysis. However, efficiently locating and accurately analyzing

such evidence locked in memory images remained an open research challenge.

1.2 Thesis and Contributions

Prior to my work, researchers and investigators alike considered data-structure

recovery the ultimate goal of memory image forensics. This, however, was far from

2

Desktop/Server

Memory Forensics

Android Smartphone

Memory Forensics

VCR

GUITAR

Spatial-Temporal

Spatial

Inspired Next Tech.

RetroScope

Content

Rendering

Semantic

Recovery

Binary

Logic

Reuse

Spatial-

Temporal

Recovery

DSCRETE

Figure 1.1.: Interconnection of the four components of my spatial-temporal memory

forensics framework.

sufficient, as investigators were still largely unable to understand the content of the

recovered data structures; a problem that I would later define as the content reverse

engineering challenge in memory forensics. For example, consider the fragmented

and encoded contents of a PDF document in memory: being unable to view, catalog,

and present the PDF as evidence entirely defeats the purpose of performing memory

forensics.

My research aims to break from this traditional data-recovery-oriented forensics

and instead develop innovative techniques, based on retargeting program executions,

for recovering spatial-temporal evidence. In this dissertation, I will present a memory

forensics framework which leverages program analysis to automatically understand

the artifacts that applications leave in a memory image and in doing so enable the

recovery of spatial-temporal evidence from these artifacts. Specifically, this frame-

work consists of four technologies that have driven this paradigm shift in memory

image forensics capabilities. Figure 1.1 presents these four components in relation

to their investigation subject (desktop/server memory forensics vs. Android smart-

phone memory forensics) and how the technologies revealed by each influenced the

3

development of their successors. Below we will briefly introduce these techniques, the

technical contributions made by each, and the unique challenges that they overcome.

1.2.1 DSCRETE

State-of-the-art memory forensics involves signature-based scanning of memory

images to uncover data structure instances of interest to investigators. A largely

unaddressed challenge is that investigators may not be able to interpret the content

of data structure fields, even with a deep understanding of the data structure’s syntax

and semantics. This is very common for data structures with application-specific

encoding, such as those representing images, figures, passwords, and formatted file

contents. For example, an investigator may know that a buffer field is holding

a photo image, but still cannot display (and hence understand) the image. I call

this the data structure content reverse engineering challenge. First, I will present

DSCRETE [2], a system that enables automatic interpretation and rendering of in-

memory data structure contents. DSCRETE is based on the observation that the

application in which a data structure is defined usually contains interpretation and

rendering logic to generate human-understandable output for that data structure.

Hence DSCRETE aims to identify and reuse such logic in the program’s binary and

create a “scanner+renderer” tool for scanning and rendering instances of the data

structure in a memory image. Different from signature-based approaches, DSCRETE

avoids reverse engineering data structure signatures. Our evaluation with a wide

range of real-world application binaries shows that DSCRETE is able to recover a

variety of application data — e.g., images, figures, screenshots, user accounts, and

formatted files and messages — with high accuracy. The raw contents of such data

would otherwise be unfathomable to human investigators.

4

1.2.2 VCR

The ubiquity of modern smartphones means that nearly everyone has easy access

to a camera at all times. In the event of a crime, the photographic evidence that these

cameras leave in a smartphone’s memory becomes vital pieces of digital evidence,

and forensic investigators are tasked with recovering and analyzing this evidence.

Unfortunately, few existing forensics tools are capable of systematically recovering and

inspecting such in-memory photographic evidence produced by smartphone cameras.

Next, I will present VCR [3], a memory forensics technique which aims to fill this

void by enabling the recovery of all photographic evidence produced by an Android

device’s cameras. By leveraging key aspects of the Android framework, VCR extends

existing memory forensics techniques to improve vendor-customized Android memory

image analysis. Based on this, VCR targets application-generic artifacts in an input

memory image which allow photographic evidence to be collected no matter which

application produced it. Further, VCR builds upon the Android framework’s existing

image decoding logic to both automatically recover and render any located evidence.

Our evaluation with commercially available smartphones shows that VCR is highly

effective at recovering all forms of photographic evidence produced by a variety of

applications across several different Android platforms.

1.2.3 GUITAR

An Android app’s graphical user interface (GUI) displays rich semantic and con-

textual information about the smartphone’s owner and app’s execution. Such infor-

mation provides vital clues to the investigation of crimes in both cyber and physical

spaces. In real-world digital forensics however, once an electronic device becomes

evidence most manual interactions with it are prohibited by criminal investigation

protocols. Hence investigators must resort to “image-and-analyze” memory forensics

(instead of browsing through the subject phone) to recover the apps’ GUIs. Unfor-

tunately, GUI reconstruction was largely impossible with previous memory forensics

5

techniques, which tend to focus only on individual in-memory data structures. An

Android GUI, however, displays diverse visual elements each built from numerous

data structure instances. Furthermore, whenever an app is sent to the background,

its GUI structure will be explicitly deallocated and disintegrated by the Android

framework. Thirdly, I will present GUITAR [4], an app-independent technique which

automatically reassembles and redraws all apps’ GUIs from the multitude of GUI

data elements found in a smartphone’s memory image. To do so, GUITAR involves

the reconstruction of (1) GUI tree topology, (2) drawing operation mapping, and (3)

runtime environment for redrawing. Our evaluation shows that GUITAR is highly ac-

curate (80-95% similar to original screenshots) at reconstructing GUIs from memory

images taken from a variety of Android apps on popular phones. Moreover, GUITAR

is robust in reconstructing meaningful GUIs even when facing GUI data loss.

1.2.4 RetroScope

Finally, I will demonstrate a powerful smartphone memory forensics technique,

called RetroScope [5], which recovers multiple previous screens of an Android app

— in the order they were displayed — from the phone’s memory image. Different

from traditional memory forensics, RetroScope enables spatial-temporal forensics, re-

vealing the progression of the phone user’s interactions with the app (e.g., a banking

transaction, online chat, or document editing session). RetroScope achieves near per-

fect accuracy in both the recreation and ordering of reconstructed screens. Further,

RetroScope is app-agnostic, requiring no knowledge about an app’s internal data

definitions or rendering logic. RetroScope is inspired by the observations that (1)

app-internal data on previous screens exists much longer in memory than the GUI

data structures that “package” them and (2) each app is able to perform context-free

redrawing of its screens upon command from the Android framework. Based on these,

RetroScope employs a novel interleaved re-execution engine to selectively reanimate

an app’s screen redrawing functionality from within a memory image. Our evaluation

6

shows that RetroScope is able to recover full temporally-ordered sets of screens (each

with 3 to 11 screens) for a variety of popular apps on a number of different Android

devices.

1.3 Dissertation Organization

This dissertation will present the evolution of this body of work. I will highlight

the progression of and the shifts in memory image forensics capabilities proposed by

each subsequent technology. The overall organization of this dissertation is as follows:

• Chapter 1 has introduced the forensic benefits and unique challenges of memory

image investigation. I have presented an overview of my contributions to this

area, with a specific focus on moving the research field away from traditional

data-recovery-oriented recovery and instead developing the concepts of spatial-

temporal memory forensics. For each component within this body of work, I

have demonstrated the research problems they target solve and the fundamental

principles behind each technique.

• Chapter 2 explains in detail the motivation, design, implementation, and eval-

uation of DSCRETE. I will present the landscape of memory forensics research

before the development of DSCRETE, and the many investigation scenarios

which benefit from DSCRETE’s powerful new capabilities.

• Chapter 3 focuses on the shift from the recovery of low-level raw data to smart-

phone contextual evidence made available by VCR. I will explore the unique

properties of Android smartphone memory forensics and explain the procedures

used by VCR to recover photographs, videos, and camera previews (i.e., the on-

screen camera view shown before taking a photo) even if the criminal did not

explicitly take a photo.

• Chapter 4 presents GUITAR, my most direct effort to move memory foren-

sics research away from individual pieces of evidence (e.g., a PDF recovered

7

by DSCRETE or video recovered by VCR) toward evidence which holistically

reveals how a suspect used their device in the commission of a crime. I will dis-

cuss the significant challenges facing the rebuilding of previously displayed GUIs

which remain in a smartphone’s memory image and GUITAR’s puzzle-piecing

methodology which accomplishes this task.

• Chapter 5 details RetroScope, a technique capable of recreating entire sequences

of previously displayed screens, in their original temporal order, for all apps in

an Android device’s memory image. RetroScope most accurately embodies the

vision of spatial-temporal evidence recovery, and I will present the execution

retargeting techniques which have made RetroScope possible.

• Chapter 6 describes related research efforts which serve as motivation, back-

ground, and technical complements to my work in this dissertation.

• Chapter 7 concludes this dissertation.

8

2 DSCRETE: CONTENT REVERSE ENGINEERING

Traditionally, digital investigations have aimed to recover evidence of a cyber-crime or

perform incident response via analysis of non-volatile storage. This routine involves

powering down a workstation, preserving images of any storage devices (e.g., hard

disks, thumb drive, etc.), and later analyzing those images to recover evidentiary

files. However, this procedure results in a significant loss of live evidence stored in the

system’s RAM — executing processes, open network connections, volatile IPC data,

and OS and application data structures.

Increasingly, forensic investigators are looking to access the wealth of actionable

evidence stored in a system’s memory. Typically, this requires that an investigator

have access to a suspected machine, prior to it being powered down, to capture

an image of its volatile memory. Further, memory acquisition (both hardware [6]

and software [7] based) must be as minimally invasive as possible since they operate

directly on the machine under investigation. The resulting memory image is then

analyzed offline using memory analysis tools. Therefore, the goal of memory analysis

tools (like the work presented in this dissertation) is to recreate, in the forensics lab,

the system’s previously observable state based on the memory image.

Uncovering evidence from memory images is now an essential capability in modern

computer forensics. Most state-of-the-art solutions locate data structure instances

in a memory image via signature-based scanning. Currently these signatures are

either value-invariant based [8–13], where data structure fields are expected to have

known value patterns, or structural-invariant based [14–17], which rely on points-to

invariants between data structures. In both cases, data structure signatures will first

be derived by analyzing the corresponding programs. Then the signatures will be used

to scan memory images and identify instances of the data structures. Contents of the

identified instances will be presented to forensic investigators as potential evidence.

9

ObjectEntry @ 0xfcb840 {
 Object* object = 0xfccfb0
}

ObjectStorage @ 0xfcf710 {
 const ::Ref K {
 int num = 5
 int gen = 0
 }
 ObjectEntry* V = 0xfcb840
}

ObjectStorage @ 0xfd51c0 {
 const ::Ref K {
 int num = 8
 int gen = 0
 }
 ObjectEntry* V = 0xfbf4b0
}

XRefWriter @ 0xf5e7c0 {
 ...
 std::string pdfVersion {
 int length = 3
 char* s = 0xcfc660 "1.4"
 }
 uint* streamEnds = 0x0
 int streamEndsLen = 0
 ObjectStream* objStr = 0x0
 bool useEncrypt = 0
 bool encrypted = 0
 ...
 ChangedStorage {
 std::map<K, V> Mapping
 }
 ...
}

ObjectEntry @ 0xfbf4b0 {
 Object* object = 0xd403a0
}

Object @ 0xfccfb0 {
 ObjType = objDict
 union {
 ...
 Dict* dict = 0xfcdd40
 ...
 }
}

Object @ 0xd403a0 {
 ObjType = objStream
 union {
 ...
 Stream* stream = 0xfce3a8
 ...
 }
}

Dict @ 0xfcdd40 = {
 XRef* xref = 0xf56e50
 DictEntry* entries =0xfceff0
 int size = 8
 int length = 7
 int ref = 1
}

Stream @ 0xfce3a8 {
 void* _vptr = 0x7f3140
 int ref = 1
}

(a) Signature-based scanner output. (b) DSCRETE-based scanner output.

Figure 2.1.: Illustration of content reverse engineering challenge. (a) Raw content of

an in-memory data structure instance representing a PDF file. (b) The same data

structure after applying DSCRETE’s scanner based on content reverse engineering.

A significant challenge, not addressed in existing memory forensics techniques, is

that investigators may not be able to interpret the content of data structure fields,

even with the data structure’s syntax and semantics. This is very common for data

structures with application-specific encoding, such as those representing images, pass-

words, messages, or formatted file contents (e.g., PDF), all of which are potential

evidence in a forensic investigation. For example, an investigator may know that a

buffer field is holding a photo image (through existing data structure reverse engi-

neering and scanning techniques [8, 11, 15–18]), but still cannot display (and hence

understand) the image. Similarly, a message_body field may hold an instant message,

but the message is encoded, and hence it cannot be readily interpreted. We call this

the data structure content reverse engineering challenge.

To enable automatic data structure content reverse engineering, I will present

DSCRETE1, a technique that automatically interprets and renders contents of data

structures within a memory image. DSCRETE is based on the following observation:

The application, in which a data structure is defined, usually contains interpretation

and rendering logic to generate human-understandable output for that data structure.

1DSCRETE stands for “Data Structure Content Reverse Engineering via execuTable rEuse,” pro-
nounced as “discrete.”

10

Hence the key idea behind DSCRETE is to identify and reuse such interpretation

and rendering logic in a binary program — without source code — to create a “scan-

ner+renderer” tool. This tool can then identify instances of the data structure in a

memory image and, most importantly, render them in the application’s original output

format to facilitate human perception and avoid the overhead of reverse engineering

data structure signatures required by signature-based memory image scanners.

To illustrate the challenge of data structure content reverse engineering, we present

a concrete example (from Section 2.3). Figure 2.1(a) shows the raw content of an in-

memory data structure graph representing a PDF file. This is the output produced

by existing signature-based scanners. For comparison, Figure 2.1(b) shows the same

data structure content after applying DSCRETE’s scanner with content reverse en-

gineering capability. It is quite obvious that the reverse-engineered content would be

far more helpful to investigators than the raw data structure content.

We have performed extensive experimentation with DSCRETE using a wide range

of real-world commodity application binaries. Our results show that DSCRETE is

able to recover a variety of application data — e.g., images, figures, screenshots, user

accounts, and formatted files and messages — with very high accuracy. The raw

contents of such data would otherwise be unfathomable to human investigators.

2.1 Overview

2.1.1 Key Idea: Executable Code Reuse

DSCRETE is based on reusing the existing data structure interpretation and

rendering logic in the original application binary. As a simple example, consider the

Linux gnome-paint application. At the high-level, gnome-paint works as follows: An

input image file is processed into various internal application data structures. The

user then performs edits to and saves the image. To save the image, gnome-paint

will reconstruct a formatted image from its internal data structures and write this

image to the output file.

11

Later, if a cyber forensic investigator wanted to recover the edited image left by

gnome-paint in a memory snapshot, DSCRETE would be used to identify and auto-

matically reuse gnome-paint’s own data structure rendering logic. First, DSCRETE

will identify and isolate the corresponding data structure printing functionality within

the application binary. For brevity, let us refer to this printing/rendering component

as the function P . P should take as input a data structure instance and produce the

human readable application output which is expected for the given data structure.

In the case of gnome-paint, this component is the file_save function. It takes as

input a GdkPixbuf structure and outputs a formatted image to a file. Note that P

may not be a function in the programming language sense, but instead a subsection of

the application’s code responsible for converting instances of a certain data structure

into some human-understandable form (e.g., output to the screen, file, socket, etc.).

Once P is identified, DSCRETE will reuse this function to create a memory scan-

ner+renderer (or “scanner” for short) to identify all instances of the subject data

structure in a memory image. If P is well defined for the input data structure, then

one can expect P to behave erroneously when given input which is not a valid instance

of that data structure. Under this assumption, we can present each possible location

in the memory image to P and see if P renders valid output for the data structure of

interest. We note that should an investigator alternatively choose to use a signature-

based memory scanner to locate data structure instances, the DSCRETE-generated

scanner is still able to render any located instances.

2.1.2 Overview of DSCRETE Workflow

Figure 2.2 presents the key phases and operations of DSCRETE. The first input

is a binary application for which an investigator wishes to recover application data

of interest from a memory image. To avoid compatibility issues (such as different

data structure field layouts), this binary should be the same as the one that has

contributed to the memory image.

12

Figure 2.2.: Overview of DSCRETE workflow.

The subject binary is then executed under instrumentation to identify the code

region responsible for converting a specific data structure into application output (the

function P defined earlier). We refer to this phase of DSCRETE as “tracing,” and the

details of this step are presented in Section 2.2.1. In the next phase, “identification”

(Section 2.2.2), a graph closure algorithm is used to formulate a list of possible can-

didates for P . Each candidate is tested, by the “tester” component (Section 2.2.3),

with a ground truth data structure instance to determine if it can serve as a viable

memory scanner.

Once the specific application logic (P) is identified, DSCRETE packages this logic

as a context-free memory scanner (Section 2.2.4), which will be presented to forensic

investigators to scan and interpret memory images in this and future investigations

involving the same application. We point out that the first three phases (tracing,

identification, and tester) are a one-time procedure internal to DSCRETE and do not

involve field investigators who will be using the DSCRETE scanners in their practice.

It is important to note that, unlike signature-based memory scanning techniques,

we do not attempt to find and return the raw contents (bytes) of identified data

structure instances in a memory image. Instead, we aim to present the investigator

a set of application-defined outputs that would naturally be generated by the subject

application, had it executed P with the data identified in the memory image. We

emphasize that DSCRETE does not infer data structure definitions (unlike [15,16]),

nor does it derive data structure signatures (unlike [17]).

13

2.1.3 Assumptions and Setup

Firstly, we assume that when producing DSCRETE-based memory scanners (typ-

ically the task of a central lab of a law enforcement agency), the subject binary can be

executed. This includes recreating any execution environment (i.e., operating system

and application version, required libraries, directory configurations, etc.) which the

application requires. We believe that this assumption is not overly difficult to realize.

In a real forensic investigation, such runtime configuration information can be col-

lected via preliminary examination of suspect or victim machines. Additionally, our

dynamic instrumentation requires that address space layout randomization (ASLR)

be turned off during the production of the DSCRETE memory scanners (i.e., only

the investigator’s personal workstation, not the suspect machine under study). The

reason for this will become clear in Section 2.2.3.

Secondly, we assume that the OS kernel’s paging data structures in the subject

memory image are intact. This is a similar assumption made by many previous mem-

ory forensics projects [8, 10, 17]. We require this because DSCRETE takes as input

only the subject application’s memory session from the suspect machine. For our eval-

uation, we extracted the memory pages directly from running applications — which

is preferred when an investigator has physical access to a suspect’s machine. How-

ever in many forensic investigations only the memory snapshot and hard disk image

are available. In this case the Volatility [8] linux_proc_maps and linux_dump_map

plug-ins (or memmap and memdump for Windows) can be used to identify and extract

process pages and mapping information from a whole system memory image.

2.2 Design

2.2.1 Dynamic Data Dependence Tracing

The first phase of DSCRETE, “tracing,” collects a dynamic data dependence

trace from the subject application binary. This trace must contain some portion of

14

the future scanner’s code (i.e., the code responsible for rendering a data structure of

interest as human-understandable output). To collect this trace, we (as the central

lab staff producing the scanners for field investigators) interact with the application

to perform the following actions:

1) Create and populate an instance of the data structure used to store the data

of interest. However, we make no assumptions on the knowledge about this data

structure. We only assume that some data structure exists in the application which

holds forensically interesting information in its fields.

2) The data structure of interest must be emitted as observable outputs (e.g., to

files, network packets, or displayed on screen). This is to allow the scanner production

staff to express their forensic interest by marking (part of) the output.

Again let us use gnome-paint to illustrate this procedure. To accomplish Step

1, we only need to execute gnome-paint with some input image. This will cause

gnome-paint to create and populate numerous internal data structures to store the

image’s content. To accomplish Step 2, we only need to save the image to an output

file. gnome-paint will process the image for output and call the GDK library’s

gdk_pixbuf_save function with the image’s content as a parameter. While this may

seem like a highly simplified example, the case studies in Section 2.3 show that in

general we do not need to perform lengthy or in-depth interaction with an application

to accomplish these two requirements.

Meanwhile, DSCRETE will be collecting each instruction’s data dependence and

recording any library functions or system calls invoked by the application as well as

their input parameters. This is used to later identify which known external functions,

specifically those which emit data to external devices, were invoked with the foren-

sically interesting content as a parameter (gdk_pixbuf_save from our gnome-paint

example). Note that since our analysis is at the binary level without symbolic in-

formation, we consider a parameter to be any memory read inside a function that

depends on a value defined prior to the function’s invocation. The memory may be

accessed inside the function, subsequent functions, or as an argument to a system

15

call2, and the content read is logged as parameters. We exclude any memory not

previously written to by the application or a previous library function, allowing us

to ignore any memory which is private to the library function and not related to the

parameter (i.e., the transformed data structure). This logging results in an output

file containing the list of invoked external functions and parameters to each (similar

to the Linux strace utility).

It is important to note here that DSCRETE saves a snapshot of the process’s stack

and heap memory at the invocation of any external library function which leads to an

output-specific system call (i.e., sys_write, sys_writev, etc.). We (as the forensics

lab staff) may, optionally, further specify individual library functions for which a

snapshot should be taken. For example, if we know that the forensic evidence will

be rendered on the application’s GUI, then we may choose to only log visual-output

related library calls in the GTK library. These snapshots will later be used to test

possible closure points (defined in Section 2.2.2).

Once Steps 1 and 2 are accomplished, we may terminate the subject binary and

search the log of external function calls for one in which the forensically interesting

data is seen as parameters. Once suitable functions are chosen, DSCRETE only needs

to identify which bytes of the parameters for those function invocations are of forensic

value.

The chosen function invocations and set of parameter bytes will be important for

two reasons: First, the parameter bytes will serve as the source nodes in our data

dependence graph. Second, the function(s) will be used as the termination point for

our scanner and the corresponding bytes will be the output of the scanner. For brevity,

these functions will be referred to as F and the selected forensically interesting bytes

of F ’s parameters as the set B. For our running gnome-paint example, consider

gdk_pixbuf_save as F and the image buffer it prints to the output file as B.

2We assume that system call interfaces are known and thus we can mark which parameters and
memory ranges are read and which are written to.

16

Finally, a data dependence graph is generated using the trace gathered during

dynamic instrumentation. The graph begins with the instructions responsible for

computing the bytes of B as source nodes. Then in an iterative backwards fashion,

any instruction which a graph node depends on is also added to the graph. Eventually,

the graph will contain any instruction instance which led to the final value of B’s

bytes. This process is identical to that of typical dynamic slicing [19], we just chose

to ignore control dependence as it is not required for identifying the functional closure

(to be described next).

2.2.2 Identifying Functional Closure

Given F , B, and the data dependence graph, DSCRETE must find a closure

point for the rendering function P . We define a closure point as an instruction in

the data dependence graph which satisfies: 1) It directly handles a pointer to the

forensically interesting data structure and 2) Any future instruction which reads a

field of the data structure must be dependent on the closure point. This leads to

the nice property that by changing the pointer handled by the closure point, we can

change the data output by P . Returning to the gnome-paint example, the closure

point is the instruction which moves a GdkPixbuf pointer into an argument register

during file_save.

However, without source code or the effort of reverse engineering the subject

binary, we cannot know the closure point for certain a priori. In fact, there may be

multiple closure points in a program, any of which will satisfy our criteria above. To

find a valid, usable closure point we use a combination of a graph closure algorithm

and heuristics to output a list of closure point candidates. Each candidate is a tuple

of the following: the address of an instruction which may satisfy the above criteria,

the register or memory operand which it stores a pointer to, and the value of that

pointer from the data dependence trace taken during tracing (Section 2.2.1).

17

Algorithm 1 Identifying Closure Point Candidates

Input: DataDepGraph(V , E), p

Output: Candidates[]

SubGraphs[] ← ∅

Previous Candidate ← ∅

for node n ∈ V in Reverse Temporal Order do

G(V n, En) ← ∅ . Build subgraph rooted at n

V n← {n}

for (n, t) ∈ E do . Each t that depends on n (may be ∅)

Gt(V t, Et) ← SubGraphs[t] . SubGraph rooted at t

V n← V n ∪ V t

En← En ∪ Et ∪ (n, t)

SubGraphs[n] ← G

if Is Store Instruction(n) then . Apply heuristics to n

val← Stored Value(n)

loc← Store Location(n)

if Is Possible Pointer(val) then

if |SubGraph[n]|>|SubGraph[Previous Candidate]| then

Candidates ← Candidates ∪ (n, loc, val)

Previous Candidate ← n

if |SubGraphs|> p%×|DataDepGraph| then

break . Only consider p% of DataDepGraph

18

We call this phase “candidate identification.” The algorithm to identify closure

point candidates is given in Algorithm 1. Starting from each byte in B, the algorithm

steps through the data dependence graph in reverse temporal order (i.e., from the last

instructions executed to the first). For each node visited (n) the algorithm builds a

graph containing all previously visited nodes which depend on n (G in Algorithm 1).

Essentially, graph G will resemble a subgraph rooted at n with its leaves accessing

some bytes of B.

For each node n added to these subgraphs, the algorithm performs the following

heuristic checks; any node which passes these checks is considered a closure point

candidate. First, n must store a value (either to a register or memory location)

which could be a possible data structure pointer (any integer value that falls within a

memory segment marked readable and writable). Second, the size of the dependence

subgraph rooted at n must be larger than the previous candidate’s subgraph. The

intuition here is that a correct closure point will take as input a pointer to a data

structure instance, and store this pointer to be reused by the rendering function P .

Thus for the part of the data dependence graph responsible for rendering a data

structure instance, the largest subgraph must have the closure point at its root.

Consider a data dependence graph for the file_save function from gnome-paint:

The largest subgraph of this data dependence graph should be rooted at the input

GdkPixbuf pointer.

Another heuristic is to stop the algorithm after only a small percent of the data

dependence graph is analyzed. Note that the data dependence graph contains in-

structions from F back to the application’s main function. Further, P will be close to

F in the graph and significantly smaller than the rest of the application’s code. This

percentage is taken as a configurable input (p in Algorithm 1) and is set via a forward

iterative approach. In our evaluations in Section 2.3, we started with a p value of 1

and incremented p until a valid closure point was found. Even in the extreme case

(top), p was never more than 10 and was often less than 5.

19

In all of our evaluations, the number of candidates never exceeded 102 and was

often below 30. Additionally, as will be explained in the next section, we never need

to verify (or even see) any of the candidates. The testing of candidates is done mostly

automatically.

2.2.3 Finding the Scanner’s Entry Point

To test each closure point candidate, DSCRETE will run a modified version of

the memory scanner described in the next section. This modified scanner, named the

candidate “tester,” takes as input: 1) the known end point of the scanner (i.e., F), 2)

the memory image taken when F was executed, 3) the list of candidates, and 4) the

subject binary. The modified scanner will treat F ’s memory image as the “suspect”

memory image to scan. We assume that this memory image contains a valid instance

of the data structure which held the data seen in B because the application was in the

process of rendering/emitting this data structure instance’s fields when the memory

image was captured.

The candidate tester will re-execute the subject binary from the beginning, but

before the process is started the scanner maps the “suspect” memory image’s segments

into the address space. Each segment (a set of pages) is mapped back to the address

from which it was originally taken3. This ensures that pointers in these memory

segments will still be valid in the new process’s address space. Note that ASLR is

disabled during DSCRETE operations. At this point, the new process is unaware of

the added memory segments and executes normally using only its new allocations.

Later, we will intentionally force the new process to use a small portion of the old

process’s data session to test closure point candidates, a technique we call cross-state

execution (discussed in Section 2.2.5).

3We have not seen any cases where critical segments overlapped. This is because the segments are
being mapped into ranges usually reserved for heap and stack space. Since these segments are almost
universally relocatable the new process is simply allocated pages around our memory image.

20

In the new execution, the forensically interesting data seen in this run of the

application should be altered (e.g., executing gnome-paint with a different image).

This will later allow the user to easily determine which candidate’s output is correct

(from the data structure in the memory image).

The application runs until a closure point candidate instruction is executed. Here,

the tester forks an identical copy-on-write child of the subject application to perform

the actual scan; the parent process will be paused until the child has completed. The

scanner looks up which register or memory operand this candidate stores its pointer

value into and overwrites this location with the pointer’s value stored in the candidate.

Note that if this candidate is a correct closure point, then the stored pointer value is a

valid pointer to a data structure instance in the mapped memory image. This assumes

that the data structure instance is not corrupted from the beginning of the rendering

function P (for which this candidate may be an entry point) to the invocation of F .

Since all candidates are reasonably close to the invocation of F (within p% of the

total trace size), we find that this is never a problem in practice.

Further, if this candidate is a correct closure point, the child process will now

execute P , access the old process’s memory segments (via the changed pointer value),

generate the same bytes for B, and invoke F with these bytes. Imagine that, for our

gnome-paint example, this candidate is the instruction which moves a GdkPixbuf

pointer into a register during file_save (P). Now file_save will execute in the

child process with the GdkPixbuf structure inside the memory image and should call

gdk_pixbuf_save (F) with an identical image as was previously rendered (B). Also,

recall that the forensically interesting information seen in the new run is altered. This

is to easily partition between output generated from the memory image and output

from the new execution of the application.

During testing, if the child process crashes after the pointer replacement, then the

candidate is assumed incorrect and thrown out. When the F function(s) execute to

completion (recall that in our gnome-paint example F is gdk_pixbuf_save) then the

content given as input to F is recorded as a result for this closure point candidate test.

21

An example of this recorded output is given later in Figure 2.6 (Section 2.3.3). The

end of a scan is determined as follows: When F is a single function invocation, the

child process is killed after F returns. If F consists of multiple invocations, the scan

continues until the execution call stack returns to a point before the closure point.

The parent process is then resumed, and this is repeated until all candidates are

tested. A candidate is considered a valid closure point if it has accurately recreated

the bytes chosen for B.

2.2.4 Memory Image Scanning

Once the data structure rendering function P has been identified, DSCRETE

can build a memory scanning+rendering tool out of the subject binary. In fact, the

production memory scanner is quite similar to the modified scanner used for testing

candidates in the previous section. The difference is that we do not know where in a

suspect memory image the data structures may be. The input to the memory image

scanner tool are: 1) the chosen entry point and exit point of the printing function

P , 2) the subject binary, and 3) the suspect memory image (as described in Section

2.1.3).

Again the scanner will re-execute the subject binary with the suspect memory seg-

ments mapped back into their original placements. Like before, the suspect memory

segments will not be used until scanning begins, and until then the process executes

using only its new allocations. With the same application input from candidate

testing, the execution will reach P ’s entry point, where the scanner pauses the ap-

plication. For each address in the memory image, the scanner will fork an identical

copy-on-write child and assign P ’s pointer to the next address in the memory image.

In essence, the scanner is executing P with a pointer to each byte of the suspect

memory image. The scanning child process executes until P ’s end point (as defined

in the previous section) and then P ’s output is recorded to a log or the child process

crashes.

22

The intuition behind re-executing the application from the beginning is to auto-

matically rebuild any dependencies required by P . DSCRETE requires that P ’s only

input be a pointer to a possible data structure. In reality, P may depend on multiple

parameters set up by the application prior to the closure point. By re-executing the

application from the beginning, we ensure that any other dependencies P has are

taken care of before the scanner injects a data structure pointer.

The execution of P is done in a child process to isolate side effects. Not sur-

prisingly, the vast majority of addresses will cause invalid memory accesses or other

exceptions, and by scanning each byte in a separate process the scanner ensures that

side effects do not contaminate future scans or global values. To speed up scanning,

multiple child processes can be spawned to run in parallel.

In some rare cases, P is too simple (performs too little input processing) to crash

on invalid input. For such cases, we allow for a user-defined post-processing phase.

We still assume no use of source code or reverse engineering effort, but the user may

perform sanity checks based on the known format or value ranges for an application’s

output. For instance, in our top case-study we had to remove any output which had

a negative process ID or blank user or process name field. In our experiments, only

three cases — CenterIM, top, and Firefox VdbeOp — required any post-processing.

Further, this only occurs for very simple textual P functions — complex cases such

as those requiring content reverse engineering naturally involve more strict parsing

and input sanitization.

2.2.5 Cross-State Execution

DSCRETE maps one process’s address space into the address space of another.

Further, when DSCRETE executes the function P , this code will evaluate data in

both the old and new address spaces. Once DSCRETE replaces a data structure

pointer at the closure point, the scanning process will then access fields from the data

23

int k=0;

int AddColor (int R, int G, int B) {

 Color * c = new Color (R,G,B);

 color_cache [k] = c;

 return k++;

}

void Display (Window * w) {

 String s = w→name;

 int i = w→colorId;

 Color * c = color_cache[i];

 DrawFrame (c,…);

 s = w→Type + s + user→name;

 EmitString(s);

}

B

C

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14. F

Program Code

(a) Program dependence.

4.
5.

8.
9.
10.
11.
12.
13.

 ...
 color_cache [k] = c;
 return k++;
 …

 String s = w→name;
 int i = w→colorId;
 Color * c = color_cache[i];
 DrawFrame (c,…);
 s = w→Type + s + user→name;
 EmitString(s);

0x80...c0

0

color_cache:

c: 0

0x80...c0
0x80...f4

0

color_cache:

c: 0

i: 1

w→colorId: 1

k=0
k=1

i=1
c=0
error

Virtual space before line 11

old memory map

StateTrace

(b) Cross-state execution.

Figure 2.3.: Example for cross-state execution.

structure in the old address space while still using stack and other heap objects in

the new address space.

Ideally, any sub-execution that depends on the closure point would exclusively

access the state from the old address space. In other words, we expect the continua-

tion after the pointer replacement would consist of two disjoint sub-executions, one

corresponding to running P on the old address space and the other corresponding to

the rest of the execution exclusively on the new address space. However, due to the

complex semantics of real world programs, such separation may not be achievable.

There are two possible problems: 1) An instruction execution may depend on state

from both address spaces, resulting in some state that is infeasible in either the origi-

nal or the new execution. We call such instructions confounded instructions. 2) Since

the old memory snapshot may not be complete, an instruction may access a location

in the old space that is not mapped in the new space. Note that this location may

now correspond to a valid address in the new space such that the access becomes one

to the new space. We call this a trespassing instruction. Both could cause crashes

and hence false negatives.

24

Consider the example in Figure 2.3. Figure 2.3(a) shows two functions4. The

first function (lines 2 - 6) creates a Color object and adds it to the color cache.

The other (lines 7 - 14) renders a window, including drawing the Color to a frame

and emitting the window title as a string. Note that different executions may add

different Color objects to the cache. Specifically, the number of Color objects and

their order vary across executions. Later, the window rendering function will look up

a Color object from the cache using its id.

Assume we (as forensics lab staff) mark the EmitString() function at line 13 as

F and s (the window title) as B. Following the candidate identification algorithm, we

compute the backward data-dependence of B as those boxed statements. We further

identify line 8 as the closure point candidate.

However, when we test this candidate, cross-state execution leads to undesirable

results if not properly handled. Let us assume that two Color objects were cached

during the original execution, whereas only one Color is added in the candidate

test execution. Figure 2.3(b) shows the trace of the candidate test execution on the

left, and, on the right, it shows the state of the new address space right before the

execution of line 11. Note that the pages of the old address space are mapped inside

the new address space. Each executed statement in the trace is colored based on the

address space it operates on. Particularly, lines 4 and 5 execute before the pointer

w is replaced at line 8, and hence belong to the new space. In contrast, lines 8 and

9 belong to the old space, as their values are loaded from locations derived from the

replaced w. Line 10 is a confounded instruction, as the array color cache belongs

to the new space while i belongs to the old space. As a result, an invalid color is

loaded, leading to a crash. However, observe that lines 10 and 11 are not in the data

dependence of B, as such we could potentially skip them.

Therefore, given a closure point candidate C and the corresponding termination

point F , DSCRETE scans the original execution trace from C to F during the can-

4Our discussion is at the source code level for readability, whereas our design and implementation
assume only the application binary.

25

didate identification phase. For each address dereference it encounters, it tests if

the address is exclusively dependent on the pointer parameter at C. If not, it is a

confounded dereference. DSCRETE further tests if the dereference is in the data-

dependence graph of B, and if not, marks the instruction as an irrelevant dereference

to be skipped during test execution and later scanning executions. In practice, we

observed confounded memory dereferences in only one of the cases we studied.

Handling trespassing instructions is relatively easier. Given a closure point can-

didate C and its termination point F , DSCRETE scans the original execution trace

from C to F and marks each address dereference that it encounters and is depen-

dent on the pointer parameter at C. At runtime, if a marked dereference accesses a

location in the new space, it is a trespassing access and can be skipped.

2.3 Evaluation

DSCRETE leverages the PIN binary analysis platform [20] to perform instru-

mentation. Since PIN executes before the subject binary is loaded, this allows us

to map the memory image into the new process’s address space before the operat-

ing system’s loader can claim stack and heap regions. DSCRETE relies on minimal

OS-specific knowledge (i.e., system call and application binary interface definitions),

thus DSCRETE can easily be ported to any operating system that PIN supports. In

the remainder of this section, we present results from evaluating DSCRETE with a

number of real-world applications and focus on a subset which highlight the use of

DSCRETE and a few critical observations.

2.3.1 Experimental Setup

Our evaluation used a Ubuntu 12.10 Desktop system as the “suspect” machine.

Each application was installed on the machine and interacted with by the authors to

generate sufficient allocations and deallocations of data structures. We used gdb to

capture memory images from the application periodically during the system’s use. To

26

attain ground truth, we manually instrumented the applications to log allocations and

deallocations for data structures corresponding to the output of forensic interest (i.e.,

B in Section 2.2.1). This log was later processed to measure false positives (FP) and

false negatives (FN). For analysis, we employed a Ubuntu 12.10 virtual machine. To

recreate the suspect machine’s running environment, we copied the applications and

needed configuration files from the suspect machine’s hard disk. We then performed

all forensic investigation within the virtual machine.

2.3.2 Function Identification Effectiveness

This section presents results of isolating the data rendering function P in each

tested application. From the CenterIM instant messenger, we target the component

which emits the user’s login and password (still in plain text) to an SSL socket. Also,

given the importance of image content to investigations, we isolate image rendering

functions from three common image editors: convert, gnome-paint, gThumb, as

well as the gThumb GUI function which displays the current image’s name to the

window title. The output function of gnome-screenshot can allow an investigator

to see what screen-shot a suspect was capturing. Additionally, we reuse Xfig’s figure

saving P function to reconstruct a vector figure that was being worked on. The PDF

saving functionality of PDFedit allows investigators to recover the edited PDF file.

For internal application data, we identified P functions for SQLite’s query results and

operations log (more on how these scanner+render tools are used later in this section).

It is very common for attackers to tamper with server log files, so we isolated the Nginx

webserver’s connection logging function, thus an investigator can compare with the

uncovered in-memory connections. Finally, for details on all running processes in a

suspect system, we identified the process data printing logic in the top utility.

Table 2.1 shows a summary of the results from each of these applications. The

application name and F function are shown in Columns 1 and 2 respectively. Column

3 details the forensically interesting data that were to be emitted by F (B) and Column

27

4 shows the size of B in bytes. The percentage of the data dependence graphs used to

generate candidates is shown in Column 5. Finally Columns 6 to 8 show the number

of candidates identified by our algorithm (#C), how many of those produced any

output (#O), and the final subset which accurately recreated B and could be used

for valid closure points (#P), respectively.

From Table 2.1 we make the following observations: First, our algorithm/heuristics

used to identify closure point candidates are accurate enough to limit the number of

candidates to a reasonable search space. Although candidates are tested automat-

ically during the candidate tester’s execution, we aim to minimize the number of

candidates to test. From Table 2.1, we see that 11 out of the 12 applications have

less than 50 candidates. The only application with more than 50, gThumb, has 102,

and as we see in Row 5 of the table, they are drastically narrowed down by the candi-

date tester. Manual investigation revealed that gThumb’s larger number of candidates

was due to extra data dependencies caused by another parameter to its F function

(gtk_window_set_title).

The second observation we make is that, of the total number of candidates identi-

fied, very few will be true closure points. This is intuitive since there is only one true

entry to the P function in the application. Third, since the number of candidates

which produced valid output is so small, it is relatively simple for a DSCRETE user

to identify which candidate accurately reproduced B.

On average, each candidate testing component rendered application output for

only three closure point candidates. The maximum, convert, rendered only seven

outputs during candidate testing. Further, more than half of the applications pro-

duced ideal candidates — all candidates that rendered output were valid candidates.

For the other five applications, about 45% of candidates which produced output ac-

curately recreated the expected forensically interesting data (i.e., the new output

matched that seen before). This shows that: 1) Visually inspecting candidate output

is a reasonably quick and practical task and 2) DSCRETE can identify and validate

closure point candidates with high accuracy.

28

convert /
_Im

age

PDFedit /
XRefWrite

r

gThumb / G
FileInfo

gnome-scr
eenshot / S

creenshotApplica
tion

Xfig / f_
compound

top / p
roc_t

CenterIM / yahoo_data

SQLite3 / V
dbeOp

gThumb / G
dkPixbuf

SQLite3 / sq
lite3_stm

t

gnome-paint / G
dkPixbuf

Nginx / n
gx_http_request_t

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

%
 o

f S
ub

je
ct

 A
pp

lic
at

io
n

Te
xt

1.0% 0.1%

3.8%

21.1%

0.4%

23.7%

0.7% 1.2%

4.0%

1.6%

5.9%

1.0%

Figure 2.4.: Normalized size of P vs. entire binary code.

Table 2.1 shows that it is not uncommon for multiple correct closure points to exist

for a P function. Manual investigation revealed that this is caused by two program

features: nested data structure pointers and register-to-stack spilling. In the nested

data structure situation, if a data structure A has a pointer to structure B and P uses

the B pointer within A, then either the A pointer or its internal B pointer may be

valid closure points for P . For the register-to-stack spilling situation, a pointer to an

input data structure is initially stored in a register, but when contention forces that

register to be spilled onto the stack, either the initial register or its later stack-saved

location may be used for closure points.

Table 2.1 also shows that a valid closure point is typically located in the bottom

5% of the data dependence graph. Thus, the actual rendering function being reused

is often only a small percentage of the binary’s text. Figure 2.4 shows the normalized

percentage of the host binary which we reuse for each scanning function. The size

of the reused code is measured as the total in-memory size of all unique instructions

observed during all re-executions of P . Top, gnome-screenshot, and gnome-paint

are outliers due to the relatively small size of the applications and the resulting

dependence graphs.

29

SQLite P Functions. An interesting application of DSCRETE can be seen in the ex-

periments with SQLite. For these experiments DSCRETE was used with the SQLite3

command shell and a homemade database file to find P functions for a database

query’s result (struct sqlite3_stmt) and operations log (struct VdbeOp). These

data structures are defined by the SQLite3 library and exported to client applica-

tions. The P functions DSCRETE identifies would be used to build memory scan-

ner+renderer tools which could discover those data structures and render their content

in the same format as the SQLite3 command shell.

These scanners could then be used on memory images from any application which

uses SQLite. Since these data structures are defined by the SQLite library, any

application using SQLite should transitively allocate and use these data structures.

Further, we are reusing the SQLite3 command shell’s P functions, so even if an

application never outputs the data held in these structures, we can still discover and

interpret them using the more general SQLite memory scanners. In the next section,

we show results from applying these scanner+renderer tools to memory images from

Mozilla Firefox and darktable image editor.

2.3.3 Memory Scanner Effectiveness

Table 2.2 reports the effectiveness of the DSCRETE-generated scanner+renderer

tools when scanning a context-free memory image from each application. The appli-

cation name is shown in Column 1. The subject data structure (input to P) and the

structure’s size are shown in Columns 2 and 35. The number of true instances in the

suspect memory image is shown in Column 46. Column 5 shows the total number of

output generated by each scanner+render tool. Columns 6 to 10 show the number

of generated output which are: true positives (TP) - backed by true data structure

5Such information was obtained via manual instrumentation, inspection, and reverse engineering
only for the purpose of evaluation. DSCRETE does not need or have access to this information
during operation.
6This includes all the data structure instances which were allocated and not yet released and over-
written when the memory image was captured.

30

instances, false positives (FP) and the percentage of FPs in the total output (FP%),

and false negatives (FN) and the corresponding FN percentage.

This table shows that the P function identified by DSCRETE is almost always well

defined. This allows DSCRETE to uncover and render valid data structure instances

with 100% accuracy for most cases. Specifically, Table 2.2 shows that DSCRETE’s

scanner+renderer tools are perfectly accurate (i.e., no FP and no FN) in 11 out of

the 13 cases. We analyze the two FP/FN cases in detail later in this section. More

importantly, DSCRETE overcomes the data structure content reverse engineering

challenge by displaying the results in each application’s original output format. The

test cases covered in Table 2.2 span a wide range of application data: usernames

and passwords, images, PDF files, vector-based graphics, as well as formatted and

unformatted textual output. This portrays the generality of DSCRETE and repre-

sents several key types of evidence that would be very difficult (if at all possible) to

reconstruct from raw data structure contents.

Table 2.2 shows that many of the subject data structures are smaller than the

resulting application output (B from Table 2.1). Our manual analysis of these struc-

tures reveals that 10 of the 12 data structures contain several pointers to other data

structures used by P . This confirms our intuition that, in order to recover usable

evidence from a memory image, numerous data structures must be uncovered and

interpreted. Note that an investigator never actually sees any of these structures,

but rather is presented only the application output rendered from the structures’

contents. Figure 2.1(a) is one such example.

Another metric to report is the time taken to scan, which varies depending on: 1)

the complexity of the rendering function P and 2) the size of the memory image being

scanned. Figure 2.5 shows the scanning speed in bytes-per-second for each scanner

function in our evaluation. During our experiments, the size of the applications’ heaps

ranged from 400KB to about 5MB, and total heap scanning time ranged between 15

minutes to just over 2 hours, with most taking about 30 to 45 minutes. Admittedly

the scanning and rendering of evidence is slower than typical signature-based memory

31

convert /
_Im

age

PDFedit /
XRefWrite

r

gThumb / G
FileInfo

gnome-scr
eenshot / S

creenshotApplica
tion

Xfig / f_
compound

Firefox / V
dbeOp

top / p
roc_t

Firefox / sq
lite3_stm

t

CenterIM / yahoo_data

gThumb / G
dkPixbuf

gnome-paint / G
dkPixbuf

darktable / sq
lite3_stm

t

Nginx / n
gx_http_request_t

0

100

200

300

400

500

600

By
te

s
pe

r S
ec

on
d

231.54

107.44 127.87
172.38

358.40

176.26

497.40
555.98

218.88 237.97

100.91

601.90 623.76

Figure 2.5.: Observed throughput of each scanner.

scanners, but still well within the typical time taken to process digital evidence,

with the added benefit that evidence is presented in a human-understandable form.

Ayers [21] points out that it may take “several hours or even days when processing

average volumes of evidential data,” which is confirmed by our collaborators in digital

forensics practice.

False Positive and False Negative Analysis. We notice that only the gThumb

and Firefox VdbeOp experiments experienced any negative results. Manual inves-

tigation into these two experiments’ false negative results (i.e., true data structure

instances not discovered by DSCRETE) revealed that those structures were allocated,

but did not contain enough data to be rendered by P . They were either in the process

of initialization or deletion or being used as empty templates by the application.

Interestingly, the Firefox VdbeOp case study (SQLite’s operations log structure)

represents a counter-example to our hope that P be well defined. In this case, P

performs little parsing and no sanity checks on its input. A VdbeOp structure is

essentially a set of seven integer values, and SQLite3 uses these integers as indices in

a global string table, without any sanity checks. Since this P function performs such

trivial parsing, a large number of false inputs produce typical SQLite3 Shell output.

32

We consider this a worst-case scenario for DSCRETE, and believe it is also the case

for many other memory forensic techniques when facing such a trivial data structure.

We previously introduced one example of forensic data which would be uninter-

pretable without data structure content reverse engineering. The complex multi-level

data structure representing a PDF file requires non-trivial processing to locate the

fields which contain any usable PDF content. Further, many fields are encoded, com-

pressed, or computed only when outputting the PDF file. In the remainder of this

section, we present several other application case studies with DSCRETE.

Case Study: convert

This case study highlights DSCRETE’s content reverse engineering capability for

image data structures. The convert utility is used to apply various transformations

to an image file. The source image file is processed and converted into internal data

structures, (i.e., an _Image and array of _PixelPacket structures). Various transfor-

mations (such as scaling, blurring, etc.) are applied, and the pixels are re-composed

into an image and written to a file. It would be considerably difficult to reconstruct

the image from its in-memory representation, even with a deep understanding of these

structures’ syntax and semantics. However, DSCRETE is able to overcome this chal-

lenge by identifying and reusing the image output component (function WriteImage)

which constructs an output image file from an input _Image structure.

As shown in Row 2 of Table 2.1, B (the image’s content) was seen as an argument

to the fwrite function. Using this, DSCRETE identified 18 closure point candidates

in the bottom 9% of the data dependence graph. Of these candidates, 16 clustered

around the handling of _PixelPacket structures in the image reconstruction routine,

and the remaining 2 candidates handled the input _Image structure at the entry to

the WriteImage function.

The DSCRETE candidate tester component eliminated 16 candidates which han-

dled _PixelPacket structures. For the remaining two candidates, DSCRETE pro-

33

Candidate 1 ===== Scanning from 0x6a16c0:
 fwrite@libc (0x6ba360 ["<89>PNG<0d0a>"...], 1, 81902, 0x6b7320 [data])
 Arg 1 written to file "c1_0x6ba360.out"

Candidate 2 ===== Scanning from 0x6a5c90:
 fwrite@libc (0x6ba360 ["<89>PNG<0d0a>"...], 1, 81902, 0x6b7320 [data])
 Arg 1 written to file "c2_0x6ba360.out"

(a) Candidate test result log.

(b) Output image file for Candidate 1.

Figure 2.6.: Candidate testing output. (a) Each P function is shown, similar to the

Linux strace utility, with parameters seen during invocation. If the tester

component is set for file output, the file name is also printed. (b) Shows the output

file for Candidate 1.

duced the log and application output shown in Figure 2.6. From Figure 2.6 we

see that Candidates 1 and 2 successfully executed P (ending with fwrite). More

importantly, DSCRETE accurately rendered the _Image data structure’s content –

presenting proof that both candidates form valid P functions which can reconstruct

the image seen previously. As Table 2.2 shows, this P function was well-defined and

the resulting scanner located and rendered the “image of interest” in the memory

image with no false positives or false negatives.

34

Case Study: Xfig

The second case study is with Xfig, in which data content reverse engineering

is essential to uncovering usable evidence from data structure instances. Xfig is a

Linux-based vector graphics editor which defines several types of data structures for

different drawable shapes (i.e., ellipse, spline, etc.). From Xfig, we intended to build

a scanner+renderer tool to reveal the figure a suspect was drawing. Referring back

to Table 2.1, DSCRETE located 9 closure point candidates in the bottom 1% of the

data dependence graph. DSCRETE tested these 9 candidates and decided that 3

of them which rendered output were valid closure points. One of those was chosen

(DSCRETE prefers the closure point highest in the dependence graph) to build a

scanner+renderer for Xfig’s f_compound data structure.

An f_compound structure is a container for several shape structures. Each shape

structure stores its dimensions, coordinates, color, etc. In order to reconstruct a

figure, each of these shape structures must be recovered from a memory image, inter-

preted, and shape-specific rendering functions must be invoked. Existing signature-

based memory scanners could present an investigator with a list of shape data struc-

tures instances from a memory image, but without the interpretation logic and shape-

specific rendering, the investigator cannot see what the figure looks like. By compar-

ison, the DSCRETE-generated scanner+renderer can locate the figure’s f_compound

structure, traverse all the contained shape structures (in the P function), and output

Xfig’s original figure content. Table 2.2 shows that this P function is well-defined and

recovered the figure’s content with 100% accuracy from the target memory image.

What You Get Is More Than What You See

We observe that some applications will construct more data structures than they

intend to display. Without content reverse engineering, these extra data structures

would all need to be manually interpreted for investigation. DSCRETE intuitively

35

renders such additional evidence, allowing an investigator to quickly determine if it

is forensically valuable.

In our experiment with top, the true number of proc_t instances is 382, whereas

while executing top only 31 processes were displayed at a time. Since all 382 proc_t

structures were in top’s memory image, DSCRETE was able to uncover and present

each as they would have been displayed by the original top process.

Another example is gThumb, which displays an image being edited and other im-

ages in the same directory. gThumb’s memory contained valid data structures for

63 images: 56 GUI icons and 7 suspect images, and DSCRETE recovered them all,

including the 7 suspect images. More importantly, 3 of the 7 suspect images were

not being displayed by the GUI. Without DSCRETE, determining which raw data

structures were icons and which were evidence would require extensive manual effort.

With DSCRETE, an investigator can immediately see the distinction. Note also, that

those GUI icons are not false positives. Instead, they are valid and relevant image

data structures, because the investigator may use such GUI artifacts to infer which

application screen the suspect was focusing on.

2.4 Future Expansion of DSCRETE

As mentioned in Section 2.2.5, cross-state execution may cause conflicting memory

access patterns (i.e., confounded or trespassing instructions). DSCRETE selectively

skips unnecessary instructions which may cause cross-state conflicts. However, this

method is limited to the instructions recorded during tracing, and cannot reason

about instructions that were not executed. Although we did not encounter such com-

plications in our experiments, we do believe that they exist and will explore using

static dependence analysis in the future.

DSCRETE relies on each application’s own rendering logic to differentiate between

valid and invalid input (data structures to be rendered). As we see in Section 2.2.4,

this can be problematic if the rendering function performs very little input processing

36

and validation. Our experiment suggests that this problem exists for highly simplified

data structures, which may still be of forensic value. Handling such data structures

is our ongoing work. Additionally, since DSCRETE reuses application binary logic,

an interesting problem is to handle data which contains exploits against the rendering

logic.

Another current limitation which we leave for future work is replacing multiple

input data dependencies for a rendering function. Currently, DSCRETE identifies

and replaces only a single data structure pointer seen as input to P . However, it is

assumable that a single application output be generated from multiple unrelated data

structures. Although we have not encountered such need, the problem is realistic and

requires enhancements to the closure point identification and the scanning algorithms.

Like many binary analysis-based tools, DSCRETE is not yet ready to handle self-

modifying code or binaries with highly obfuscated control flows, which may cause

problems in dependence detection or state crossing. However, these problems are

common in malware programs and hence worth solving. One future direction is to

develop DSCRETE on an obfuscation-resistant binary analysis platform (e.g., [22]).

The methodology used in DSCRETE is designed to operate directly on a target

machine binary. As such, it is not applicable to programs written in interpreted lan-

guages (e.g., Java). Such programming languages add layers of indirection between

the machine instructions observed by DSCRETE and the application’s true syntax

and semantics (i.e., data structures and rendering functions). Developing new tech-

niques to handle programs written in interpreted languages is an intriguing direction

for our future research.

37

T
ab

le
2.

1.
:

R
es

u
lt

s
fr

om
id

en
ti

fy
in

g
ap

p
li
ca

ti
on

s’
P

fu
n
ct

io
n
s

(#
C

sh
ow

s
th

e
n
u
m

b
er

of
id

en
ti

fi
ed

ca
n
d
id

at
es

,
#

O
sh

ow
s

h
ow

m
an

y
of

th
os

e
p
ro

d
u
ce

d
ou

tp
u
t,

an
d

#
P

sh
ow

s
th

e
fi
n
al

su
b
se

t
w

h
ic

h
ar

e
va

li
d

cl
os

u
re

p
oi

n
ts

).

A
p
p
li
ca

ti
on

F
F

or
en

si
ca

ll
y

In
te

re
st

in
g

D
at

a

S
iz

e
B

(b
y
te

s)
p%

#
C

#
O

#
P

C
en

te
rI

M
S
S
L
_
w
r
i
t
e

U
se

rn
am

e
&

P
as

sw
or

d
33

6
5%

46
1

1

co
n
ve

rt
f
w
r
i
t
e

O
u
tp

u
t

Im
ag

e
C

on
te

n
t

81
90

2
9%

18
7

2

gn
om

e-
p
ai

n
t

g
d
k
_
p
i
x
b
u
f
_
s
a
v
e

Im
ag

e
C

on
te

n
t

67
09

00
1%

18
2

2

gn
om

e-
sc

re
en

sh
ot

g
d
k
_
p
i
x
b
u
f
_
s
a
v
e
_
t
o
_
s
t
r
e
a
m

S
cr

ee
n
sh

ot
C

on
te

n
t

11
39

79
1

1%
5

4
3

gT
h
u
m

b
g
t
k
_
w
i
n
d
o
w
_
s
e
t
_
t
i
t
l
e

F
il
e

In
fo

W
in

d
ow

T
it

le
85

1%
10

2
4

2

g
d
k
_
p
i
x
b
u
f
_
s
a
v
e
_
t
o
_
b
u
f
f
e
r
v

Im
ag

e
F

il
e

C
on

te
n
t

20
36

0
1%

10
3

3

N
gi

n
x

w
r
i
t
e

H
T

T
P

A
cc

es
s

L
og

18
1

5%
25

1
1

P
D

F
ed

it
f
w
r
i
t
e
,

f
p
u
t
c

E
d
it

ed
P

D
F

C
on

te
n
t

30
41

6
1%

46
6

3

S
Q

L
it

e3
S
h
el

l
f
p
u
t
s

D
at

ab
as

e
Q

u
er

y
R

es
u
lt

s
19

2%
4

1
1

f
p
r
i
n
t
f

D
at

ab
as

e
O

p
.

L
og

38
2%

17
5

1

to
p

p
u
t
p

P
ro

ce
ss

D
at

a
13

2
10

%
1

1
1

X
fi
g

f
p
r
i
n
t
f

F
ig

u
re

C
on

te
n
t

10
01

1%
9

3
3

38

T
ab

le
2.

2.
:

R
es

u
lt

s
fr

om
D

S
C

R
E

T
E

-g
en

er
at

ed
sc

an
n
er

+
re

n
d
er

er
to

ol
s.

A
p
p
li
ca

ti
on

S
u
b

je
ct

D
at

a
S
tr

u
ct

u
re

S
iz

e

(b
y
te

s)

T
ru

e

In
st

an
ce

s

T
ot

al

O
u
tp

u
t

T
P

F
P

F
P

%
F

N
F

N
%

C
en

te
rI

M
y
a
h
o
o
_
d
a
t
a

16
0

1
1

1
0

0.
0%

0
0.

0%

co
n
ve

rt
_
I
m
a
g
e

13
20

8
1

1
1

0
0.

0%
0

0.
0%

d
ar

k
ta

b
le

s
q
l
i
t
e
3
_
s
t
m
t

27
2

1
1

1
0

0.
0%

0
0.

0%

F
ir

ef
ox

s
q
l
i
t
e
3
_
s
t
m
t

27
2

1
1

1
0

0.
0%

0
0.

0%

V
d
b
e
O
p

24
78

8
13

84
75

3
50

2
40

%
35

4%

gn
om

e-
p
ai

n
t

G
d
k
P
i
x
b
u
f

80
51

51
51

0
0.

0%
0

0.
0%

gn
om

e-
sc

re
en

sh
ot

S
c
r
e
e
n
s
h
o
t
A
p
p
l
i
c
a
t
i
o
n

88
1

1
1

0
0.

0%
0

0.
0%

gT
h
u
m

b
G
F
i
l
e
I
n
f
o

48
38

2
38

1
38

1
0

0.
0%

1
0.

4%

G
d
k
P
i
x
b
u
f

80
63

63
63

0
0.

0%
0

0.
0%

N
gi

n
x

n
g
x
_
h
t
t
p
_
r
e
q
u
e
s
t
_
t

13
12

6
6

6
0

0.
0%

0
0.

0%

P
D

F
ed

it
X
R
e
f
W
r
i
t
e
r

34
4

1
1

1
0

0.
0%

0
0.

0%

to
p

p
r
o
c
_
t

72
0

38
2

38
2

38
2

0
0.

0%
0

0.
0%

X
fi
g

f
_
c
o
m
p
o
u
n
d

11
2

1
1

1
0

0.
0%

0
0.

0%

39

3 VCR: VISUAL CONTENT RECOVERY

Due to DSCRETE, the goal of memory forensics shifted from the recovery of low-

level raw data to semantic contextual evidence which reveals a suspect’s actions and

motives. This shift coincided with a surge in the importance of smartphone pho-

tographic evidence for criminal investigations and legal proceedings. Today, pho-

tographs and videos regularly served as essential evidence in criminal investigations,

the most famous of which was the recent United States Supreme Court case Riley

v. California [23]. Further, law enforcement agents rely on photographic evidence

as clues during on-going investigations. Today, smartphones provide easy access to

a camera at all times, and not surprisingly, photographic evidence from smartphone

cameras has become commonplace in real-world cases.

During an investigation, digital forensics investigators extract such evidence from

a device. Historically, investigators focused on evidence recovery from non-volatile

storage such as disk-drives, removable storage, etc. Investigators make forensic copies

(images) of storage devices from a crime scene and perform analysis on the images

back at the forensics lab. This analysis recovers a bulk of saved files (such as pictures

and videos) that the investigator examines for evidence.

More recently, investigators have realized that non-volatile storage alone only re-

veals a subset of the evidence held in a system. The contextual evidence held in a

system’s volatile storage (i.e., memory) can prove essential to an investigation [24,25].

Memory forensics research has made it possible to uncover much of an operating sys-

tem kernel’s data from a context free memory image [8, 11, 14, 17]. Other work has

focused on recovering data structure instances from applications using known in-

memory value-patterns [9–11] or with the assistance of program analysis [15]. Unfor-

tunately, the rapid pervasion of Android devices has rendered many tools inapplicable

to smartphone investigations.

40

Like other digital evidence, photographic evidence which persists on non-volatile

storage also lacks context or simply portrays an incomplete picture of a crime — again

requiring memory forensics to fill the gaps. To this end, I have developed VCR1, a

memory forensics technique which integrates recovery and rendering capabilities for

all forms of in-memory evidence produced by an Android device’s cameras. VCR is

based on the observation that all accesses to a device’s camera are directed through

one intermediate service. By designing VCR’s evidence recovery function to target

this intermediate service, VCR can automatically recover all forms of photographic

evidence regardless of the app that requests it. This trend of centralizing critical ser-

vices into intermediary processes (which we term intermediate service architecture) is

widely used in the Android framework, and this chapter examines the digital forensics

and security implications of such design with regard to the camera framework.

VCR’s evidence recovery faces challenges, however, because the Android frame-

work (known as the Android Open Source Project or AOSP) is often customized

by smartphone vendors. To overcome this, VCR involves novel structure definition

inference techniques which apply to the Android vendor customization domain —

called Vendor-Generic Signatures. To the best of our knowledge, VCR is among the

first to handle vendor-customized data structures inline as part of targeted evidence

recovery.

Additionally, VCR-recovered evidence must be reviewed, cataloged as evidence,

and presented to any (not technically trained) lawyer or official. Thus, VCR must

transform the unintelligible in-memory photographic data into human-understandable

images. Using an instrumentation based feedback mechanism within existing image

processing routines, VCR can automatically render all recovered evidence as it would

have appeared on the original device.

We have performed extensive experimentation with VCR using a wide range of

real-world commodity apps running on different versions of the Android framework

1VCR stands for “Visual Content Recovery” and is a reference to the ancient videocassette recorder
device.

41

and two new, commercially available smartphones. Our results show that VCR can

automatically and generically recover and render photographic evidence from the

phones’ memory images — a capability previously not available to investigators —

with high accuracy and efficiency.

3.1 Motivation

Figure 3.1.: Time-lapse effect in recovered preview frames without explicitly taking a

photo. VCR recovers and renders these images as they would have appeared on the

app’s camera preview screen — the smartphone analog to a standard camera’s view

finder.

Smartphone cameras are employed in a variety of apps which we use everyday:

taking photographs, video chatting, and even sending images of checks to our banks.

Criminals too have found many uses for smartphone cameras. To motivate the

need for VCR, we quote Riley vs. California [23], a United States Supreme Court

case involving smartphone photographic evidence:

At the police station about two hours after the arrest, a detective

specializing in gangs further examined the contents of the phone. The

detective testified that he “went through” Riley’s phone “looking for evi-

dence, because ... gang members will often video themselves with guns or

take pictures of themselves with the guns.” ... Although there was “a lot

of stuff” on the phone, particular files that “caught [the detective’s] eye”

42

included videos of young men sparring while someone yelled encourage-

ment using the moniker “Blood.” ... The police also found photographs

of Riley standing in front of a car they suspected had been involved in a

shooting a few weeks earlier. [23]

In the above quote, the detective explains how essential smartphone photographic

evidence is to ongoing investigations. Further, our collaborators in digital forensics

practice describe many other crimes in which such evidence can prove invaluable.

In Section 3.3, we will consider smartphone photographic evidence in a (mock) case

based on an invited talk at Usenix Security 2014 on battling against human trafficking

[26].

Let us strengthen our adversary model by considering a more tech-savvy criminal

than Riley — someone who deletes the image files from the device’s storage or even

removes the storage (e.g., external SD-card) and destroys it. Current digital forensics

techniques would not recover any photographic evidence in such a case. Luckily,

regardless of how tech-savvy the criminal may be, photographic evidence from the

camera’s most recent use remains in the system’s memory. VCR gives investigators

access to these last remaining pieces of photographic evidence.

A smartphone camera produces three distinct pieces of evidence: photographs,

videos, and preview frames. Photographs are left in a device’s memory when a user

explicitly captures an image. When a smartphone records a video, individual frames

are captured and sent to the requesting app — again leaving frames behind in memory.

Preview frames, however, are of particular forensic interest for a number of reasons.

Preview frames are a smartphone’s analog to a standard camera’s view finder. When

an app uses the camera, the app will, by default, display the camera’s current view

on the screen, allowing the user to accurately position the device for capturing the

intended picture. Importantly, whether the user captures a photo or not the app will

display the preview. This leads to the forensically important feature that: Any app

which only opens the camera, immediately leaves photographic evidence

in memory. Further, preview frames (and video frames) are captured continuously

43

and buffered until the app retrieves them. Thus many frames will be present in a

memory image representing a time-lapse of what the camera was viewing.

Building from the scenario in Riley vs. California, imagine that Riley had carefully

removed all photograph files from the smartphone’s non-volatile storage or (more

likely) was using an app which does not save photograph files such as a Skype video-

call. In this case, the smartphone’s non-volatile storage will not contain any evidence

of the car suspected in the earlier shooting [23]. However, investigators could now use

VCR to analyze the smartphone’s memory image and recover the last images, videos,

and preview frames left in the memory, which are likely the evidence the criminal is

trying to hide.

Figure 3.1 shows some preview frames which VCR recovered from a smartphone’s

memory image. Notice that multiple frames are recovered and show the action of the

perpetrator’s car driving away (i.e., temporal evidence for investigators). Also note

that these are preview frames and the smartphone user was not actively recording video

at that time. Simply having the camera-using app open left photographic evidence in

this memory image. It’s easy to see how such evidence links the smartphone’s owner

to the car in the images (and hence to the shooting).

Our study reveals that this photographic evidence always persists in the smart-

phone’s memory — without being erased or overwritten — until a new app uses the

camera (filling the previous image buffers with new evidence). Thus, VCR will always

have some evidence to recover. Note that these buffers are not app-specific, only con-

taining frames from the most recent app which used the camera. More importantly,

the buffers storing other media data (e.g., audio) are allocated from separate memory

pools than the camera’s buffers and thus cannot interfere with photographic evidence.

Further, VCR is not specific to suspects’ smartphones, investigators can apply VCR

to memory images from a witness or victim’s Android device as well, for instance to

collect proof of the user’s whereabouts.

44

Camera HAL

mediaserver

Camera

Diverse Android Apps

Intermediate
Service Architecture

Hardware Devices

Figure 3.2.: Intermediate service architecture. The mediaserver acts as a mediator

between the apps and the camera device. Also, some apps utilize the camera by

requesting the default camera app to perform actual image captures (such as the

Facebook app shown here).

3.1.1 Centralized Photographic Evidence

For many core services, Android has adopted an intermediate service architec-

ture. Specifically, accesses to peripheral devices and system services are mediated by

an intermediate process. For the camera(s) this process is called the mediaserver.

Figure 3.2 presents a high level view of the intermediate service architecture, specifi-

cally for the mediaserver’s components: Apps, the mediaserver process, and camera

hardware abstraction layer (HAL). This high-level intermediate service design makes

app development easier and abstract regarding the hardware back-end.

Intermediate services present a standard interface to the apps. Each service is

designed to generically handle any vendor/hardware specific implementation beneath

it. Most importantly, the AOSP defines generic data structures for the vendor’s code

to use in order to conform with the standard interface presented to the apps.

The key observation behind VCR’s design is that any app which uses the camera

must transitively use the generic data structures to retrieve photographic data from the

mediaserver. This creates a unique opportunity for VCR2. By locating and recovering

2However, as we point out later, this also centralizes privacy-critical components and may benefit
attackers as well.

45

these generic “middleware” data structures, VCR is able to reconstruct and render

evidence without any app-specific knowledge. More importantly, VCR can remain

mostly generic to any hardware-specific implementations because the camera HAL

must also use the generic data structures to return photographic data to the apps.

This is beneficial to VCR, which can now be designed in a more robust, generic way

than tools that must recover data from individual (highly diverse) Android apps.

In fact, the mediaserver also delegates audio requests (accesses to speakers and

microphones) and most media streaming. We note that photographic evidence is

only part of the mediaserver’s potential forensic value. VCR can be extended to

extract other evidence formats from the mediaserver’s memory.

3.1.2 Assumptions and Setup

VCR assumes that an investigator has already captured a memory image from an

Android device. Previous research has designed both hardware [6] and software [7]

acquisition tools to obtain a forensic image of a device’s memory. VCR operates on

memory images captured by any standard memory acquisition tool.

Similar to previous memory forensics projects [8, 10, 17] including DSCRETE,

VCR assumes the kernel’s paging structures are intact in the memory image. This

is required because VCR operates only on the mediaserver process’ memory session.

Tools (e.g., [8]) exist to rebuild a process’ memory space from a whole-system memory

image.

3.2 Design

VCR consists of two phases: 1) identify and recover photographic data from an

input memory image, and 2) transform the unintelligible recovered data into photo-

graphic evidence which investigators can review and present.

46

3.2.1 Recovering Evidentiary Data

Since photographic image buffers are encoded and indistinguishable from ran-

dom data, brute-force scanning for the buffers would return countless false results.

VCR adopts a more robust algorithm: for each type of evidence (preview frames,

photographs, and video frames), VCR locates and recovers a distinct group of inter-

connected data structures, one of which contains the image data. For simplicity, we

refer to such groups of interconnected data structures as “data structure networks.”

Ideally, VCR would only need to verify the points-to invariants between the tar-

geted data structures (i.e., each pointer field within each structure points to another

structure in the network). In this way, each recovered data structure attests to the

validity of the network, thus the located network is not a false positive. However, for

key reasons described below, points-to invariants alone are insufficient in this scenario.

The structures which VCR recovers form a closed network which is unfortunately

too small to derive a viable points-to invariant signature. Instead, VCR must also

employ value-invariant signatures for each data structure. However, due to vendor

customizations, the structures’ field positions and value-invariants cannot be fully

known a priori.

Nearly every Android device uses a customized (possibly close-source) version of

the AOSP. Device vendors make a proprietary copy of the AOSP repository and

customize the low level framework (kernel, drivers) and high level utilities (GUI,

standard apps). For data structures, vendors may add fields to store custom data,

move existing fields to different offsets within the structure, or change the values that

existing fields can be assigned (such as adding a new enumeration value). Specific to

VCR, vendors modify the camera’s allocation pools and internal operation (specific

drivers, image processing, etc.). These modifications lead to different definitions of

the data structures that VCR must recover.

Luckily, although vendors may customize the data structures, they must still

conform to a “gold standard” in order to interact with unmodified portions of the

47

class CameraClient {
 …
0xC: int mCameraId;
 ...
0x14: const String16 mClientPackageName;
0x18: pid_t mClientPid;
 ...
0x64: ANativeWindow* mPreviewWindow;
 …
}

class CameraClient {
 …
0xC: int mCameraId;
 ...
0x14: const String16 mClientPackageName;
0x18: pid_t mClientPid;
 …

0x5C: ANativeWindow* mPreviewWindow;

}

Vendor Customized Fields

AOSP Data Structure

Vendor Customized Data Structure

Vendor Customized Fields

Figure 3.3.: AOSP vs. vendor customized structure.

AOSP. We use the term “gold standard” to refer to the many components of the

AOSP that are not customizable (e.g., middleware libraries, core functionality, etc.),

and thus vendor customizations must not remove structures and data fields at the

source code level which other components rely on.

As an example, Figure 3.3 shows the CameraClient class from the AOSP versus

the LG vendor customized version. The vendor customizations change the offset of the

mPreviewWindow field, but in order to interact with unmodified AOSP components

all the “gold standard” fields (which VCR relies on) must remain in the structure. In

our evaluation we observed vastly different implementations of several data structures

which VCR must recover.

After the vendor-customized source code is compiled, VCR loses access to the

mapping between source code definitions and binary data structure layouts. Essen-

tially we know that the fields exist, but cannot know where they are when locating

data structures in a new memory image. To overcome this, VCR is prepackaged

with Vendor-Generic Signatures (Section 3.2.2) for the customizable data structures.

VCR then dynamically derives Vendor-Specific Signatures (Section 3.2.3) during data

structure location and recovery.

48

Beyond vendor customization, VCR’s generic signatures are also robust to changes

between AOSP versions. When Google updates features in the AOSP, this also leads

to changes in data structure layouts. In fact, several fields were added to the Camer-

aClient class between AOSP versions 4.4 and 5.0. VCR’s signatures however do not

need to be updated because they can adapt to the input memory image. Further,

it is easy to add additional signatures in the event that Google fully redesigns some

data structure network.

3.2.2 Vendor-Generic Signature Derivation

VCR operates on only an input memory snapshot and assumes no source code

availability. Thus VCR must adapt signatures for any necessary data structures dy-

namically. To this end, VCR comes packaged with a set of Vendor-Generic Signatures.

Vendor-Generic Signatures are data structure signatures which contain invariants on

the structure’s fields but do not have set locations (offsets in the structure) for those

fields. Specifically, we preprocessed the AOSP “gold standard” version of each data

structure Di which VCR must recover. For each field fj within the “gold standard”

Di, a field constraint (described below) is built.

Field Constraints We define 4 primitive constraints to describe each field: 1) A

Type/Size constraint defines the field’s type definition (e.g., floating point, pointer,

etc.) and in-memory byte size. Since VCR operates on binary data these constraints

are essentially sanity-checks on the discovered memory locations. 2) Value Range

constraints are value invariants specific to field fj. 3) Field Offset constraints define

where fj is likely to be in Di. For some fields (e.g., inherited from a superclass) we

know the byte offset in Di for certain, but for most fields we cannot know where the

vendor’s modifications moved them. 4) For pointer fields, Pointer Target constraints

define a set of other primitive constraints on the pointer’s target. Specifically, our

confidence in fj being a pointer to a data structure depends on the validity of the

target data structure.

49

CameraClient = {

 …
}

mCameraId(v,o) = p1(v,o)0.2 * p2(v,o)0.4 * p3(v,o)0.4

mPreviewWindow(v,o) = p1(v,o)0.1 * p2(v,o)0.9

1, if size(v)=4
0, otherwise

0.85, if v=0 or 1
0.15, otherwise

0.95, if o<=16
0.05, otherwise

1, if size(v)=4
0, otherwise

ANativeWindow(*v)

Figure 3.4.: Illustration of a partial CameraClient signature (an unordered set of

field constraints).

Therefore, based on the AOSP definition of fj in Di, we automatically build a

probability match function pi(v, o) for each primitive constraint. pi(v, o) defines the

probability that a value v at byte offset o in a discovered data structure matches that

constraint. We can then define a field constraint for fj as:

fj(v, o) = p1(v, o)w1 × p2(v, o)w2 × ...× pn(v, o)wn (3.1)

where pi is the ith primitive constraint for field fj, and wi is a corresponding weight

to adjust for stronger constraints (the sum of all weights must be 1).

Therefore, the signature of the structure Di is an unordered set of field constraints.

The set is unordered because VCR cannot know the offsets of those fields in a vendor

customized data structure a priori. During memory image scanning, VCR will order

the field constraints to adapt to the vendor customizations (described in the next

section).

Figure 3.4 shows part of a CameraClient signature. Notice that each field con-

straint includes a number of primitive constraints — for instance, the mCameraId

field has constraints on its type and size (a 32-bit integer), value range (between 0

and 1 with high probability), and offset (with high probability in the top 16 bytes of

the data structure).

Not all data structures which VCR recovers are vendor customizable. For these we

rely on existing points-to and value invariant signature generation techniques to build

a “hard signature.” When a signature contains a pointer to one of these structures,

50

we set that pointer field’s Pointer Target constraint value to 1.0 (i.e., pointing to a

valid hard signature provides full confidence in that pointer field).

Field Dependence We notice that not all fields in a data structure are independent.

For simplicity, we only consider dependence based on two (or more) fields’ location in

a data structure: (1) Non-pointer fields of the same type tend to be clustered (e.g.,

floating point width and height fields) and (2) Fields accessed consecutively in a C++

class’s member function are likely to be defined next to one another.

For these two cases, a scaling factor (α) is applied to increase the match probability

of the dependent fields when a signature matching maps them consecutively. Simply

put, if VCR locates these fields next to each other in a potential signature match

then we can be more confident in that match — compared to matching those fields in

separate locations. Fields dependent by (1) above are given α = 0.2 scaling factor (i.e.,

matching such fields consecutively increases the probability of the entire signature

matching by a factor of 0.2). Conversely, we assume stronger correlation for fields

dependent by (2) and thus set α = 0.8.

Based on the signatures generated before, we update each field constraint of any

dependent fields to account for the scaling factor. Here we use the function dep(ca, cb)

to denote that the field constraints ca and cb are dependent. Consider two matches

for those field constraints ai and aj where each an is the nth field in a potentially

matching data structure instance. We define Pmatch(ca, ai) as follows (where c → a

denotes “c matches to a”):

P (ca → ai|∀cb : dep(ca, cb) ∧ cb → aj) = Pmatch(ca, ai)

where Pmatch(ca, ai) =

(ca(ai))
α if i = j − 1 or j + 1

ca(ai) otherwise

(3.2)

Essentially, Equation 3.2 applies the scaling factor to ca if ca and cb are dependent

and cb has previously mapped to a neighbor of ai. Otherwise, the formula simplifies

to the field constraint probability defined in Equation 3.1.

51

3.2.3 Memory Image Scanning

To use VCR to recover photographic evidence, investigators need only input a

context-free memory image. VCR then employs a two-pass scanning algorithm. In

the first pass, VCR marks all memory locations which match hard signatures (i.e., not

vendor customizable and do not require probabilistic inference) — we refer to these

as “hard matched” data structures. During the second pass, VCR uses probabilis-

tic inference with our previously generated Vendor-Generic Signatures to construct

Vendor-Specific Signatures to identify and recover true data structure instances.

Starting from the hard-matched data structures, VCR backward propagates con-

fidence to all potential matches to Vendor-Generic Signatures. To calculate a match

for a signature S, VCR first converts a candidate memory region (the region we want

to map to S) into a set A of tuples:

A = {(v0, o0), (v1, o1), . . . (vn, on)} (3.3)

where vi is the ith value at offset oi in the candidate memory region A. To match

Vendor-Generic Signature fields, VCR may combine adjacent tuples to satisfy the

field’s type/size constraint. If no such match can be made, then the type/size con-

straint will yield a 0 probability. Later, we will use ai to denote (vi, oi).

VCR then creates a permutation of the vendor-generic signature by computing

the best fit mapping S → A, using the following greedy algorithm: For each ran-

domly chosen field constraint ci, VCR matches a binary tuple aj (from the remaining

unmatched tuples in A) which maximizes ci’s match probability (i.e., Pmatch(ci, aj)).

This repeats for each ci until all field constraints have been matched. Yielding the

final match probability equation for a signature S to a candidate structure A:

S(A) = Pmatch(c0, a0)× Pmatch(c1, a1)× . . . Pmatch(cn, an) (3.4)

where the subscripts indicate order of matching (not order in the signature). Com-

puting Equation 3.4 for a single S → A mapping yields VCR’s confidence in that

particular permutation of S for that candidate A.

52

CameraClient = {
 …
 mCameraId(v,o)
 ...
 mPreviewWindow(v,o)
 ...
}

Vendor-Generic Signature

CameraClient {
 …
 0xc: mCameraId = 1;
 ...
 0x5c: mPreviewWindow
 = 0xa28c7e34;
 ...
}

Vendor-Specific Signature

mCameraId(v,o) = 0.918

mPreviewWindow(v,o) = (ANativeWindow(*v))0.9 = 0.856

Candidate
Signature Match

(v = 1, o = 0xc)

(v = 0xa28c7e34, o = 0x5c)

Figure 3.5.: Matching a candidate CameraClient instance via field constraint

computation.

Figure 3.5 shows an example of matching the CameraClient signature’s field con-

straints to a candidate memory location. Computing each field constraint for the best

matching ai yields one permutation of the CameraClient signature’s fields for that

candidate memory location.

Computing the match probability of Pointer Target constraints requires knowing

the probability of the pointer target’s match. Because matching is done via back-

ward propagation, VCR only computes a signature’s match probability once all of its

Pointer Target constraints have been computed. Recall that if the target is a hard-

match then this confidence is 1.0. Thus, VCR requires recoverable data structure

networks to have hard-signatures at the leaves (which can be ensured automatically

during signature generation).

VCR repeats the above greedy algorithm and Equation 3.4 computation indepen-

dently for all candidate memory regions for a single signature. Note that the first

greedy matching may not result in the correct mapping of ci to ai (resulting in dif-

ferent S → A mappings for different candidate memory locations). We observe that:

for a final mapping of ci constraints to be correct, it must be constant across all

53

discovered instances of that data structure. Thus only a single mapping of S → A can

be correct for all candidate memory locations (i.e., A sets) for that signature.

VCR iteratively repeats the above process for all candidate memory locations

(choosing the S → A mapping which maximizes the probability of a match), until

an optimal mapping is found across all candidates for a single signature. This final

signature which VCR selects is referred to as a Vendor-Specific Signature (i.e., the

Vendor-Generic Signature with set field locations). VCR will recover all candidate

data structures which match the Vendor-Specific Signatures to a certain threshold. In

our evaluation, we use a threshold of 0.75 since most candidates polarize with invalid

candidates near 0.3 and valid matches near 0.8.

3.2.4 Rendering Evidence

Once VCR has recovered the structures containing photographic evidence, the

data must be reconstructed into human-understandable images. This is essential as

the raw contents of these photographic buffers would be unintelligible to forensic

investigators.

Photographic data may be in any format that the app requests (e.g., NV21,

ARGB, etc.). We observe, however, that apps (i.e., image buffer consumers) must

have access to decoding logic for any format supported by the AOSP. Based on this,

VCR automatically reuses the existing AOSP image decoding logic, but which de-

coding algorithm to use cannot be known a priori. VCR must determine (specifically

avoiding burdening human users) which decoding is appropriate for each recovered

image.

Image buffers, specifically photographs, are highly periodic. That is, the data

values follow regular periods across the image’s strides, height, and width. Based on

this, image processing techniques often compute the spacial locality of the image’s

pixel values when performing image analysis [27]. VCR builds on this idea to validate

image decoding by enforcing a periodic constraint on the image data as it is read by

the decoding algorithm.

54

0

50

100

150

200

250

0 50 100 150 200 250

N
o

is
e

Pixel Reads

RGBA (incorrect)
YUV (correct)
Threshold

(a) YUV Buffer

0

50

100

150

200

250

0 50 100 150 200 250

N
o

is
e

Pixel Reads

YUV (incorrect)
RGBA (correct)
Threshold

(b) RGBA Buffer

Figure 3.6.: Reading (a) YUV and (b) RGBA buffers with different decoding

algorithms. Correct decoding algorithms will minimize the area under the noise

curve. In fact, we can hardly see the YUV curve in (a) because its noise is always

close to 0.

VCR instruments each decoding algorithm to verify that the values read from the

input buffer follow a periodic data constraint (i.e., the spacial locality between each

pixel value should be small and form a smooth curve). VCR attempts to decode

each recovered image buffer with each available algorithm. During image decoding,

VCR computes the Euclidean distance between the pixel values read from the input

buffer [27] which we refer to as the decoding “noise.”

Ideally, decoding an image buffer with the correct decoding algorithm should pro-

duce very little noise (i.e., the pixel values closely follow the periodic data constraint).

In practice, images may contain local, sharp changes of color or brightness (which is

particularly obvious when encoded in YUV format), so VCR computes a moving av-

erage of the noise values as a noise threshold. The algorithm which produces the

smallest noise threshold is marked and the output of that decoding is presented to

investigators as evidence.

For empirical comparison, Figure 3.6 shows graphs of two image buffers being

decoded by the correct and incorrect algorithms. For simplicity, we only compare

55

two algorithms, but VCR considers all 19 decoding algorithms used by the AOSP

camera framework.

Figure 3.6(a) plots the noise values for a buffer encoded in YUV format being

decoded using the RGBA algorithm (red curve) and YUV algorithm (blue curve).

We can see that decoding the YUV buffer with an RGBA decoder produces a large

amount of noise, whereas decoding with the YUV (i.e., correct) algorithm produces

so little noise that the blue curve is hardly visible. We also plot the noise threshold

from the YUV decoding, but this too is always near 0.

In Figure 3.6(b), we plot an RGBA buffer being decoded as YUV (red curve)

and RGBA (blue curve). In this case, we see that the correct decoding (RGBA)

contains some noise but the incorrect decoding (YUV) induces 3 to 4 times more

noise. Further, the RGBA noise threshold (plotted in black) is again always near 0.

Finally, all recovered buffers of a single type (i.e., preview frames, photographs,

or video frames) must use the same encoding — because an app only specifies this

encoding once. Thus as a final sanity check, VCR ensures that the chosen decoding

algorithm minimizes the decoding noise across all image buffers. Because of the large

noise disparity between correct and incorrect algorithms, in our evaluation VCR was

able to identify the correct decoding algorithm in all of our test cases.

3.3 Evaluation

Our evaluation tested a variety of different Android devices as “devices under

investigation.” We performed evaluations with two new commercially available An-

droid smartphones: an LG G3 and a Samsung Galaxy S4. Both smartphones run

two different, highly vendor-customized versions of the AOSP. Further, we set up

unmodified Android emulators running AOSP versions 4.3, 4.4.2, and 5.0. These are

the most recent major versions of Android and represent nearly half of all the An-

droid market-share [28]. In total, this allows us to stage “crimes” involving 5 vastly

different Android devices to evaluate VCR’s effectiveness and generality.

56

We first installed each app on our test devices and interacted with its camera

features (i.e., taking photos, videos, and simply watching the preview screen). We

then closed the app and used gdb to capture a memory snapshot from the mediaserver

process. To attain ground truth, we manually instrumented the mediaserver to log

allocations and deallocations of data structures containing photographic evidence.

This log was later processed to measure false positives (FP) and false negatives (FN).

We used VCR to analyze the previously captured memory images and recorded the

output photographic evidence. Despite the variety of different and customized AOSP

versions tested, all evaluation was conducted using VCR with the same set of Vendor-

Generic Signatures (generated from Google’s AOSP 4.4.2 repository) which VCR

automatically adapted to each input memory image. In a real-world law enforcement

scenario, in-the-field investigators obtain images of a device’s volatile RAM and non-

volatile storage, and the collected memory images are later analyzed using VCR by

forensic lab staff. Also note that VCR is a lightweight, efficient tool and could even

be operated at the scene of a crime from an investigator’s laptop. In all of our tests,

VCR produced fully-rendered results from an input memory image in under 5 minutes

(except for two specially noted cases at the end of this section).

3.3.1 App-Agnostic Evidence Recovery

This section presents the results of applying VCR to memory images containing

photographic evidence generated by the following seven apps on our two smartphone

devices. Five of the apps have features for taking individual photographs, videos, and

displaying preview frames: the two smartphones’ pre-installed camera apps, Google’s

Google Camera app, the Facebook app, and Instagram app. Each of these apps

accesses and uses the camera device in different and forensically interesting ways. We

also investigated evidence from the Skype app, which employs only video capture

and preview functionalities. We also analyzed the Chase Bank app’s check image

57

Table 3.1.: VCR recovery from apps on commodity Android smartphones.

Device App Evidence
Live

Instances

w/ Image

Data
Recovered FP FN

LG G3

Instagram

Preview 32 11 11 0 0

Photo 1 1 1 0 0

Video 20 20 20 0 0

Facebook

Preview 32 11 11 0 0

Photo 1 1 1 0 0

Video 20 20 20 0 0

Chase Preview 32 2 2 0 0

Banking Photo 1 1 1 0 0

Skype
Preview 32 9 9 0 0

Video 9 9 9 0 0

LG Default

Camera

Preview 32 10 10 0 0

Photo 1 1 1 0 0

Video 20 20 20 0 0

Google

Camera

Preview 32 11 11 0 0

Photo 1 1 1 0 0

Video 20 20 20 0 0

Samsung

Galaxy S4

Instagram

Preview 32 7 7 0 0

Photo 1 1 1 0 0

Video 16 8 8 0 0

Facebook

Preview 32 7 7 0 0

Photo 1 1 1 0 0

Video 16 8 8 0 0

Chase Preview 32 8 8 0 0

Banking Photo 1 1 1 0 0

Skype
Preview 32 7 7 0 0

Video 9 8 8 0 0

S4 Default

Camera

Preview 32 7 7 0 0

Photo 1 1 1 0 0

Video 16 8 8 0 0

Google

Camera

Preview 32 7 7 0 0

Photo 1 1 1 0 0

Video 16 8 8 0 0

58

and upload feature. In the next sections we will highlight some of these apps as case

studies.

Table 3.1 shows a summary of our evaluation results. Column 1 shows the device

on which the evaluation was performed. Columns 2 and 3 show the app’s name and

which types of photographic evidence it can generate, respectively. The number of

“live” frames (i.e., frames which were allocated and not yet freed) in the memory

image is shown in Column 4. Column 5 shows the subset of those image frames

which the camera HAL had filled when the memory image was captured3. Column

6 shows the number of images (i.e., photograph, video frames, or preview frames)

which VCR recovered and rendered. Columns 7 and 8 show false positives (image

frames which VCR wrongly reported) and false negatives (image frames which VCR

missed).

From Table 3.1, we can make a number of key observations. First, VCR is highly

effective at recovering and rendering photographic evidence left behind by a variety

of Android apps. This confirms that VCR’s Vendor-Generic Signatures ensure that

the recovery mechanism is highly accurate. Table 3.1 shows that these constraints are

indeed strong enough to effectively prune all invalid data and attest to the accuracy

of any recovered evidence — resulting in VCR producing no false positive or false

negative results. In total, VCR recovered 245 pieces of photographic evidence in

these test cases.

Table 3.1 shows that of the 32 total test cases, all 12 cases left behind several

preview frames. These results range from a high of 11 preview frames in the LG

G3’s Google Camera, Facebook, and Instagram cases to only 2 frames in the LG G3’s

Chase Bank test case. Interestingly, the average “preview frames recovered per app”

appears to be phone dependent: 7.17 for the Samsung Galaxy S4 and 9 for the LG

G3 (or even 10.4 if we ignore the outlier: the Chase Bank app). This implies some

connection between phone hardware or vendor customizations versus the amount of

3The information in Columns 4, 5, and 6 was obtained via manual instrumentation only for the
purpose of evaluation. VCR does not have access to such runtime information and operates on only
the input static memory image.

59

Figure 3.7.: Sample video frames recovered from the Skype case study. This is an

example of how multiple recovered frames can capture evidence of time and

direction for the suspect shown here.

potential evidence. Since both phones have relatively equally powerful hardware, we

reason that the latter is more influential. Again, these preview frames are generated

by the apps automatically when the user only opens the app’s photographic features.

Also shown in Table 3.1 is that video frames are far more prevalent than any

other form of photographic evidence. This is intuitive given that video frames are

often sampled at higher rates than preview frames. Our evaluation shows that on

average each app left 12.9 video frames. Again, the LG G3 provides more evidence

with an average of 17.8 video frames per app versus the Samsung at 8 video frames

on average. Intuitively, Skype leaves fewer frames than the other apps in our tests (9

frames on the LG G3 and 8 on the Samsung Galaxy S4) likely because of the high

throughput design of Skype’s video-call feature. Also note that the recovered video

frames are the result of explicitly recording video with the tested apps, unlike the

preview frames which are generated without any explicit user command to record.

Finally, Table 3.1 shows that only one photograph per application is available

in the memory images. Manual investigation revealed that the Android framework

prefers to reuse buffers as quickly as possible, so despite taking several photos during

our testing only a single photograph is left buffered — always accompanied by a

number of preview frames.

60

Case Study 1: Camera Apps

Camera apps are standard Android apps which only provide a front-end user inter-

face to the camera back-end (the mediaserver and camera HAL). A newly purchased

Android device will come with a pre-installed camera app, but the user may install

a new camera app and select one to use as the default. To illustrate the generality

of VCR, we evaluate both pre-installed camera apps from our test phones as well

as the third-party Google Camera app. The results of the LG G3 Default Camera

and Google Camera tests are shown in Rows 5 and 6 of Table 3.1, and the Samsung

Galaxy S4 Default Camera and Google Camera tests are shown in Rows 11 and 12.

Table 3.1 shows that in each of the camera app tests VCR is able to accurately

recover and render all photographic evidence. For the LG G3 Default Camera case,

we see that VCR recovered 10 preview frames, 1 photo, and 20 video frames, and

similarly for the Google Camera test VCR recovered 11 preview frames, 1 photo, and

20 video frames. Again we observe fewer recoverable frames in the Samsung cases: 7

preview frames, 1 photo, and 8 video frames for both the Default Camera and Google

Camera evaluations.

The default camera app is important because other apps may rely on it for photo-

graphic operations. When choosing test cases, we intentionally included the Facebook

app as an example of this (shown in Rows 2 and 8 of Table 3.1). The Facebook app

allows users to capture and post videos and photos on-the-fly (i.e., without leaving

the Facebook app). To implement this, the Facebook app requests the default cam-

era app to take a photo or video and then return the resulting image. Thus when

the Facebook app user requests to capture a photo or video, the default camera app

opens, manages the image capture, and makes the resulting image available to the

Facebook app.

The fact that the Facebook app (and others like it) employ the default camera

to handle photography, leads to a forensically interesting observation: photographic

evidence from such apps will likely use similar formatting and sizing parameters to

61

conform with the default camera pass-through interface. In the Facebook app case

studies from Table 3.1, we see that VCR is able to render 11 preview and 20 video

frames plus 1 photograph for the LG G3 test and 7 preview and 8 video frames plus

1 photograph for the Samsung S4 case.

It is important to note that among all of our test cases only the Facebook app is

an example of requesting photography through the default camera. Although default

camera pass-through is common, we intentionally focused the majority of our evalu-

ation on test cases which implement their own photography features. This directly

shows VCR’s generality with regards to the evidentiary apps’ implementation.

Case Study 2: Skype

In this case study, we highlight the Skype app because image frames collected

by Skype are never present on non-volatile stores — Skype immediately encodes,

packages, and transmits the image frames over the internet. Thus the only visual

artifacts of a Skype video-call will be the frames left in the device’s memory. Such

frames provide vital evidence in a digital investigation — as we will show with a

scenario based on the Usenix Security 2014 invited talk “Battling Human Trafficking

with Big Data.” [26]

Imagine, for the sake of example, that a human-trafficking suspect is using Skype

video calls from a smartphone to show victims to potential clients. While the criminal

may be careful not to show his or her identity, the video frames of the Skype call clearly

link the smartphone user to the victims of the crime. Further, this criminal may try

deleting (or obfuscating) Skype’s call history, but even after the criminal has ended

the Skype calls and finished trying to hide the evidence, the last snippets of video are

still recoverable in the device’s memory. Later, when law enforcement agents arrest

the suspect, investigators will not find any evidence on the smartphone’s non-volatile

storage. Applying VCR to the smartphone’s memory will reveal the last video frames

62

of the Skype call showing one or more victims of this crime, and providing vital

evidence to investigators which would otherwise be inaccessible.

For this case study, we set up a simplified crime reenactment by having one of the

authors walk slowly through a Skype video call’s field of view. We then used VCR to

recover the remaining video frames frozen in the device’s memory image. The LG G3

device was used in this trial, and the results of analyzing the device’s memory image

are shown in Row 4 of Table 3.1.

Figure 3.7 shows some of the recovered video frames and gives a clear example of

the importance of VCR-recovered photographic evidence to an investigation. The 6

frames shown in Figure 3.7 are a subset of the 9 video frames in total which VCR

recovered. These frames reveal a person walking through the Skype call’s field of

view, and we can easily see how this provides substantial evidence to investigators

about the human-trafficking victims in our crime scenario above.

In addition to recovering the video frames shown in Figure 3.7, VCR also recovered

9 preview frames still buffered in the memory image (as shown in Table 3.1). Visual

inspection of all 18 images recovered for this test case revealed that 4 of the 9 preview

frames were identical (to the investigator’s eye) to 4 of the recovered video frames.

Thus yielding 14 total unique images to be used as evidence. This case study shows the

importance of VCR recovered photographic evidence to aiding a digital investigation.

3.3.2 Analysis Across Android Frameworks

Given that many versions of the AOSP are being widely used today [28], VCR

must be effective for a majority of devices that investigators may face. In this section,

we evaluate VCR’s effectiveness against memory images taken from the three most

recent, widely used versions of the AOSP.

To perform this evaluation, we set up unmodified Android emulators running

AOSP versions 4.3, 4.4.2, and 5.0. As before, we used VCR to analyze memory

images after interacting with each of the tested applications. For this evaluation, we

63

Table 3.2.: VCR recovery from current and future Android versions.

Device App Evidence
Live

Instances
w/ Image Data Recovered FP FN

Android 4.3

Facebook

Preview 32 3 3 0 0

Photo 1 1 1 0 0

Video 31 31 31 0 0

Skype
Preview 32 3 3 0 0

Video 1 1 1 0 0

Default

Camera

Preview 32 5 5 0 0

Photo 1 1 1 0 0

Video 202 202 202 0 0

Android 4.4.2

Facebook

Preview 32 3 3 0 0

Photo 1 1 1 0 0

Video 16 16 16 0 0

Skype
Preview 32 3 3 0 0

Video 1 1 1 0 0

Default

Camera

Preview 32 3 3 0 0

Photo 1 1 1 0 0

Video 24 24 24 0 0

Android 5.0

Facebook

Preview 32 3 3 0 0

Photo 1 1 1 0 0

Video 19 19 19 0 0

Skype
Preview 32 3 3 0 0

Video 1 1 1 0 0

Default

Camera

Preview 32 3 3 0 0

Photo 1 1 1 0 0

Video 297 297 297 0 0

selected three of the apps to use in each of the three emulators: Facebook, Skype,

and each emulator’s default camera app.

64

Table 3.2 presents the results which VCR rendered from the different emulators’

memory images. Column 1 shows the version of Android that the emulator is running.

Columns 2 and 3 show the app and types of photographic evidence evaluated respec-

tively. Like in Section 3.3.1, the number of “live” image frames in each memory image

is show in Column 4, and Column 5 shows the subset of these which contained image

data. Column 6 shows the number of images which VCR recovered and rendered.

Finally, Columns 7 and 8 report the false positives and false negatives.

Table 3.2 shows that VCR is highly effective at recovering and rendering photo-

graphic evidence produced on the most widely used Android versions. We observe

that the emulated camera device used in the Android emulator does not produce

frames at a high rate similar to our test smartphone devices. This leads to (as shown

in Table 3.2) fewer frames being available in the memory images. On average, the

tests in Table 3.2 produce only 5.8 frames (with the exception of the outliers: the 4.3

and 5.0 emulators’ default cameras).

Additionally, the preview frame buffer is rarely filled above 3 frames. This re-

sults in VCR recovering only those 3 preview frames for all three apps on all three

emulators, except for the Android 4.3 Default Camera test in which VCR recovered

all 5 preview frames. Again, VCR is able to recover and render all instances of pho-

tographic data in the evaluated memory images without any false positive or false

negative results — as Table 3.2 shows, 627 pieces of photographic evidence in total

for these test cases.

Notably, Table 3.2 contains two exceptional cases. The default cameras for An-

droid 3.4 and Android 5.0 report very large numbers of video frames. We performed

manual inspection of the results and found that all output images were valid (i.e.,

from distinct buffers filled individually by the camera HAL). Further investigation

revealed that there existed a bottleneck when saving those video frames to the em-

ulator’s storage. Admittedly, this is likely an emulator configuration error, but the

resulting backup of frames further demonstrates the effectiveness of VCR’s recovery

and rendering — though run-times for these two cases were nearly 30 minutes.

65

3.3.3 Recovering Temporal Evidence

As shown in Table 3.1, numerous preview frames and/or video frames can be

recovered for a single app — representing a time-lapse of what the camera was viewing.

Here, we analyze how a set of preview or video frames can give investigators temporal

evidence of the incident under investigation.

To measure the time captured by a set of recovered frames, we reran the two

camera app test cases on the two smartphones. Time lapses were measured using

the camera apps to record video of a stopwatch for a period of 1 minute, and the

phones were rebooted between each test. Note that the “stopwatch” used here was

actually a stopwatch app on the first author’s smartphone. While this measurement

may seem “low-tech,” our results in Table 3.3 show that the time-lapse captured by

the recovered sets of frames is long enough to make an empirical measurement very

accurate.

After recording for 30 seconds, we captured a memory image from the device, and

VCR was used to recover all available preview and video frames from the memory

images. The output image frames were grouped into three sets: Preview frames,

Video frames, and a Union set containing all visually unique frames from both the

preview and video sets (which would be recoverable for any app which captures video).

We then manually measured the difference between the earliest frame and the latest

frame in each set. Figure 3.8 shows an example of some recovered stopwatch preview

frames.

Table 3.3 presents the time measurements captured within the sets of recovered

preview and video frames. Columns 1 and 2 show the tested device and app. Column

3 names the type of set being measured: Preview, Video, or the Union set. Column

4 shows the number of frames in the set, and the measured time difference is shown

in Column 5.

From the times in Table 3.3 we can make several observations: First, the windows

of time captured by the recovered frames are large enough to provide substantial evi-

66

Table 3.3.: Time-lapse evaluation.

Device App Evidence Frames Time-Lapse

LG G3

LG Default

Camera

Preview 11 1.3s

Video 20 0.6s

Union 22 1.4s

Google

Camera

Preview 11 0.9s

Video 20 0.4s

Union 25 0.9s

Samsung

Galaxy S4

S4

Default

Camera

Preview 7 0.5s

Video 8 0.3s

Union 10 0.5s

Google

Camera

Preview 7 0.4s

Video 8 0.3s

Union 11 0.5s

Figure 3.8.: Recovered preview frames used to measure temporal evidence. For this

experiment, we recorded another smartphone’s stopwatch app and used VCR to

recover the preview and video frames — yielding empirical measurements of the

temporal evidence captured in VCR recovered evidence.

dence to an investigation — we already empirically saw this in the evidence recovered

for the “crimes” in Figures 3.1 and 3.7. To best analyze the results show in Table

67

3.3, consider the first row as meaning: The set of preview frames from the LG G3’s

Default Camera captures 1.3 seconds of time divided over 11 images. From this, we

see that a majority of the results yield over a half second of time-lapse.

This may seem like a small amount of time, but considering how quickly many

crimes can occur and how powerful this evidence can be (such as an image of a

car involved in a shooting or a human-trafficking victim) this provides a significant

amount of evidence to investigators. Specifically, the example sequences of images

shown in Figures 3.1 and 3.7 both represent a time-lapse of less than 1 second. Table

3.3 shows that of the 12 measurements, the LG G3 provides much longer time windows

with the average being 0.92 seconds per test. The Samsung provides an average of

0.42 seconds per test.

A second observation we make from Table 3.3 is that preview frames capture

longer time windows in fewer frames but video frames provide many more images.

Preview frame sets on the LG G3 average more than double the time window of video

frame sets (i.e., 0.4 seconds versus 0.9 seconds and 0.6 seconds versus 1.3 seconds).

However, the video frame sets in the LG G3 test contain 20 frames compared to

only 11 frames in the preview sets. The Samsung results show a similar pattern but

the differences between sets are much closer (e.g., 8 frames over 0.3 seconds versus

7 frames over 0.5 seconds). As a consequence, we can observe that the time delta

between images is much shorter between video frames than between preview frames.

Finally, Table 3.3 shows that when video and preview frames are available then

(not surprisingly) considering the union of those sets yields the best results. In

practice, nearly any app which generates video frames will also generate preview

frames. Table 3.3 shows that the video frames will mostly be enclosed by the larger

time delta captured by the preview frames. For example, consider the LG G3’s Google

Camera Union test: the investigator can now see 0.9 seconds of time captured in 25

images — leading to roughly a 0.036 second time delta between each image. Using

such analysis, investigators can gain a wealth of evidence from only the frames being

recovered by VCR.

68

Figure 3.9.: Recovered check image left behind in a memory image. This case study

gives an example of the potentially sensitive user information which VCR (or worse,

malware) can generically recover from the mediaserver’s memory.

3.3.4 Privacy Concerns

Finally, this section highlights a potential privacy concern which VCR reveals.

VCR exploits the centralized design of the Android framework to access app-agnostic

photographic evidence. It should be noted however that the same properties which

make the mediaserver beneficial for digital forensics also make it a target for attack.

There has been extensive prior work on exploiting vulnerabilities in the Android

framework to glean information about a smartphone’s owner [29,30]. Following that

line of work, we can envision a malware which aims to steal confidential information

and remain as stealthy as possible. Unfortunately, the mediaserver is a great target

for such malware for a few reasons: 1) As we will show, the mediaserver handles very

sensitive data regarding the device’s owner, 2) As we have shown, it is beneficial to

utilize the mediaserver’s centralized design to capture photographic evidence from all

apps generically, and 3) The mediaserver runs as a background service in a dedicated

process (which makes for a great hiding spot for malware).

To underscore the potential danger of malware gaining access to a device’s inter-

mediate service processes (like the mediaserver), we have included the Chase Bank

69

app in our previous evaluations. The Chase Bank app, like many other financial

institutions’ apps, includes a check image and upload feature. When the device’s

owner has a check to deposit, they simply take a picture of the check and upload the

image to Chase from within the app. The image is never saved to non-volatile storage

and handled securely once the Chase app has received the image. Unfortunately, the

image is buffered in the mediaserver long before it is returned to the Chase app and

may remain buffered for long after.

To highlight this point, Figure 3.9 shows one of the check images that VCR recov-

ered during our previous evaluations. Further, Table 3.1 shows that VCR was effective

at recovering and rendering all forms of photographic evidence from the Chase Bank

app test cases (12 images in total). The real danger here is that by employing the

same techniques as VCR, malware can also have access to any image taken by any

app on the smartphone — in the same way that VCR operates independent of which

app generated the photograph. Moreover, if malware has access to the image buffers

in the mediaserver at the right time, it may even alter the check image before the

Chase app receives it. In light of this, we hope to emphasize the importance of An-

droid’s intermediate service processes as a security critical component and the need

for security mechanisms to prevent malware from tampering with these services.

70

4 GUITAR: GUI TREE ARCHAEOLOGY

After VCR, I identified another paradigm-shifting opportunity in memory forensics:

Moving away from individual pieces of evidence (e.g., a PDF recovered by DSCRETE

or video recovered by VCR) toward evidence which holistically reveals how a suspect

used their device in the commission of a crime. In this regard, possibly the most

probative form of in-memory evidence is an application’s graphical user interface

(GUI). The GUI of an application renders semantic information (e.g., text, images,

and graphics) for human users to interact with. Further, GUIs often reflect our only

perception of an application’s execution state. This is even more true for the GUIs

of Android apps, which users interact with — one at a time — on the smartphone’s

screen while numerous other apps run in the background. Moreover, smartphone

apps are long-running (compared with their desktop counterparts) as users seldom

terminate an app explicitly, and the apps keep running even with the screen turned

off or in “airplane” mode. Now imagine the following digital forensics scenario: Law

enforcement agents obtain a suspect’s smartphone which they believe can reveal vital

evidence for their investigation. Ideally, investigators would inspect the GUIs of the

apps, specifically those not currently on screen, for evidence to review, catalog, and

later present in court.

It turns out that this is far more difficult than it appears for both policy and

technical reasons. Due to strict legal interpretations of “digital evidence preservation”

in US court proceedings [31–39], once an electronic device becomes a piece of raw

evidence, most manual interaction with it (e.g., browsing through a smartphone’s

screen) is prohibited by US DOJ, American Law Reports, and other’s investigation

protocols [24, 25, 40–42]. Moreover, if the app requires a password login every time

it is brought to the foreground (see the case study in Section 4.3.2), then its earlier

GUI could not be restored even if operating the phone were allowed.

71

To overcome this, modern digital investigators now rely on memory forensics.

With a search warrant, investigators can capture the phone’s memory image, using

certified minimally intrusive tools [6, 7], which will be analyzed in the forensics lab

without fear of jeopardizing the investigation. Therefore, the most desirable outcome

of this analysis would be the recovery of the GUIs that the suspect was interacting

with — revealing the evidence stored on the device.

Despite recent advances in computer memory forensics, GUI recovery remains

largely impossible. Specifically, nearly all state-of-the-art memory forensics tech-

niques [8–11, 14, 17, 18] focus on the recovery of individual data structures. Given a

memory image and a data structure of interest, existing techniques (e.g., [8–11,17,18,

43]) rely on signature-based scanning of the memory image to locate raw in-memory

instances of that data structure. To render a discovered data structure instance in

human perceivable format, DSCRETE derives that structure’s rendering logic from

the application it belongs to.

Unfortunately, an Android app GUI is much more complex than an individual

data structure — it is a virtual “billboard” of many diverse, application-specific data

objects with geometric and semantic dependencies defined by each individual app. As

detailed in Section 4.1, a GUI is internally represented as a tree whose structure and

nodes change dynamically at runtime. More significantly, whenever an app is back-

grounded (i.e., replaced on the phone’s screen by a newly in-focus app), Android will

explicitly nullify many key pointers in the tree, effectively disintegrating the GUI. As

such, existing data structure-oriented memory forensics techniques can only identify

the GUI’s “element” data structures from the memory image (i.e., “identifying the

puzzle pieces”). But they cannot reassemble the elements (hundreds or even thou-

sands of them) into the original GUI or further visually redraw the GUI (i.e., “putting

the puzzle pieces together”).

Here the new challenge is analogous to that faced by an archaeologist who tries to

piece together an ancient fresco or pottery (the GUI) from its unearthed fragments

72

(data structures) [44]. To address this challenge, I will present GUITAR1, a system

which automatically reconstructs app GUIs from Android phone memory images and

redraws them as they originally appeared. Interestingly, GUITAR does not require

app-specific knowledge and hence can reconstruct any Android app’s GUI generically.

Unlike existing techniques, GUITAR presents investigators with the “same view” of

the suspect’s app(s) rather than individual data structure instances. For example,

for an instant messaging app, GUITAR will reconstruct its GUI with contents (e.g.,

contacts, messages, timestamps, etc.) all in their original layout.

GUITAR targets the low-level GUI framework defined by the Android graphi-

cal windowing system library (analogous to X11 commonly used with Linux), which

is common to all apps’ implementation. Given the GUI element data structure in-

stances, GUITAR employs a depth-first topology recovery algorithm to reconstruct

the app’s graphical layout hierarchy. Next, graphical GUI contents are remapped

to the geometric layout using a bipartite graph weighted assignment solver and cor-

responding drawing-content based fitness function. Finally, GUITAR recreates the

runtime environment to redraw the GUI using an unmodified Android windowing

system binary, and outputs the app’s redrawn GUI as it would have appeared had it

been displayed on-screen when the memory image was taken. If present in a memory

image, GUITAR can recover previous GUI constructs, allowing investigators to see

some previous GUI state of the same app.

Our evaluation, performed with memory images taken from a number of popular

Android apps on three new Android smartphones, shows that GUITAR is able to

reconstruct and redraw entire app GUIs with very high accuracy. We use Content

Based Image Recognition (CBIR) to measure the visual similarity between GUITAR-

reconstructed GUIs and screenshots taken from the original app, and GUITAR scores

80-95% (high similarity) in all cases. Further, our evaluation shows that GUITAR

is adaptive and robust for reconstructing partial, meaningful GUIs when faced with

GUI data loss over time.

1GUITAR stands for “GUI Tree ARchaeology.”

73

4.1 The Android GUI Framework

The Android platform exhibits many features which inherently pose challenges to

GUI reconstruction, and these motivate many of our design decisions in Section 4.2.

For example, we originally considered recovering the pixel buffer to which the An-

droid windowing system projects the entire GUI for on-screen display. However, this

approach turned out to be infeasible because that buffer is located in the graphics

card driver’s memory which is quickly deallocated and reused when an app is back-

grounded. Thus, recovering this buffer yields only the currently visible app’s GUI.

Seeking an alternative solution, we instead target a much more robust in-memory

artifact of the windowing system: the GUI hierarchy tree (“GUI tree” for short) with

drawing operations (“draw ops” for short). Figure 4.1 illustrates how draw ops are

organized in a GUI tree. The Android windowing system library included in each

graphical app maintains a GUI tree to represent the GUI’s current geometric layout

and graphical content. Further, despite the vast variety of visually different apps,

such a tree generically represents each app’s visual presentation and display.

The GUI tree resides in each app’s heap. Each node in the GUI tree (called

a “TreeNode”) contains a pointer to a list of draw ops (a “DrawOpList”) which

describes a portion of the screen space. A parent TreeNode points to a DrawOpList

which contains pointers to child TreeNodes; whereas a leaf TreeNode points to a

DrawOpList which contains actual draw ops with graphical content.

When an app invokes the windowing system’s drawing functions (e.g., drawText

shown in Figure 4.1), the GUI modifications will be converted into an array of draw

ops (TranslateOp, DrawTextOp, ClipRectOp) and stored in a leaf TreeNode. A single

drawing function may create multiple draw ops and store them in one or more leaves.

Thus, whenever the app is visible, a GUI tree of parent TreeNodes (describing rela-

tive geometric positions and screen layout hierarchy) and leaf TreeNodes (containing

actual graphical draw ops) will be created in the process’ heap memory.

74

1. void onDraw(Canvas canvas) {
2. super.onDraw(canvas);
3. // Draw the label text
4. canvas.drawText (mText, ...);
5. ...
6. }

DrawOpList

GUI Hierarchy
Tree

DrawTextOp

ClipRectOp

TranslateOp

App Code
App Heap

Windowing System
Lib Code

1. status_t DisplayListRenderer::drawText(...) {
2. ...
3. DrawOp* op = new (alloc())
4. DrawTextOp(text, ...);
5. addDrawOp(op);
6. ...
7.}

Figure 4.1.: Overview of a windowing system library. Each app maintains a GUI

tree, with each leaf node containing Drawing Operations. Changes to the app’s GUI

are reflected by changes to the GUI tree.

However, Android always tries to save memory, and when an app is backgrounded

its GUI tree will be deallocated and critical pointers within it (in particular the ones

from TreeNodes to their DrawOpLists) will be set to NULL (a good programming

practice, but bad for memory forensics). This effectively disintegrates the tree and,

by doing so, makes its reconstruction challenging.

We profiled several Android apps’ memory use before and after backgrounding

and found that the GUI tree deallocation is among the last operations an app will

perform, because background apps cannot receive user input. In fact, many nodes of

the old GUI tree remain in the app’s free heap space until the app is returned to the

foreground, when an entirely new GUI tree will be built. Further, if the app is not

returned to the foreground for some time, we observe that a non-trivial portion of the

GUI data is still recoverable (i.e., their heap space is not reallocated and overwritten).

Figure 4.2 shows measurements of 4 apps’ GUI tree data structures after those apps

75

0

60

120

180

240

300

0 1 2 5 10 24

(a) Instagram

0

40

80

120

160

200

0 1 2 5 10 24

(b) WhatsApp

0

20

40

60

80

100

0 1 2 5 10 24

(c) Messaging

0

140

280

420

560

700

0 1 2 5 10 24

(d) Contacts

Figure 4.2.: Number of recoverable GUI data structures of backgrounded apps over

24 hours.

were left in the background for a period of 24 hours. For this experiment, we took

an initial measurement at time t0, backgrounded the app, then took measurements

at times t0 + 1 (hour), t0 + 2, t0 + 5, t0 + 10, and t0 + 24. The smartphone (LG G3)

belongs to one of the authors, with all other apps (except the one profiled) heavily

used during that period.

From Figure 4.2 we can make a few key observations: First, although some apps

have background activities (which reallocated the free heap space), a large amount

of GUI data is recoverable even after 24 hours. In fact our evaluation in Section 4.3

shows that once an app is backgrounded 43% to 98% of its GUI data remains intact,

which is sufficient to redraw the GUI — either completely or partially. Another

key observation is that, since each node describes a small portion of the screen, any

missing nodes do not affect the redrawing of the remaining GUI. In Section 4.3 we

present a number of case studies demonstrating how missing internal nodes or leaf

76

nodes may cause slight visual variations to reconstructed GUIs, which still retain

reasonable appearance.

4.1.1 Challenges and Solution Overview

Firstly, because key pointers in the GUI tree are explicitly nullified, the GUI’s orig-

inal layout needs to be pieced together from the many disconnected nodes. GUITAR

defines a depth-first topology recovery algorithm (Section 4.2.1) to reconnect internal

parent nodes to their DrawOpLists and hence to their children nodes. Complicating

the recovery, GUITAR often encounters old or partially destroyed nodes which appear

to be valid children of the parent nodes, and GUITAR must automatically identify

(and later remove) such conflicting branches in the tree.

Secondly, the GUI’s graphical contents need to be restored by geometrically re-

mapping the leaf TreeNodes back to their DrawOpLists. GUITAR leverages semantic

hints in the drawable graphical content described by each DrawOpList. More formally,

such leaf mapping can be reduced to a bipartite graph weighted assignment problem.

GUITAR uses the drawable GUI content to build a drawing-content-based fitness

function (Section 4.2.2) which computes the likelihood that each leaf matches to

some graphical content.

Finally, several key data structures’ functional inheritance, which is necessary

for GUI redrawing, is lost in the memory image. GUITAR employs a technique

called forced polymorphism (Section 4.2.3) to patch the lost inheritance information.

Then, GUITAR recreates the GUI redrawing runtime using an unmodified Android

windowing system library binary, which will redraw the reassembled GUI tree, as it

would have appeared in the foreground of the original phone.

4.2 Design

The input to the GUITAR technique is a set of data structure instances corre-

sponding to draw ops, TreeNodes, and graphical content elements, recovered from

77

the subject app’s memory image. For self-containedness, GUITAR’s implementation

includes a linear brute-force memory image scanner with 248 distinct signatures of

data structures, defined by Android’s windowing system and stable across all Android

versions we tested. This signature set can be easily updated with any future changes

to those data structures. Alternatively, the recovery can be done using any existing or

future memory forensics techniques. Note also, that because many of the target data

structures have been deallocated, it is possible that some instances are partially cor-

rupted (overwritten). To avoid complications from corrupted structures, GUITAR’s

data structure signature matching entails checks on every field needed to reconstruct

the GUI, and if an object is partially broken then it will be conservatively discarded.

Interested readers are directed to Appendix 4.2.4 for more information about GUI-

TAR’s data structure signatures.

4.2.1 Reconstructing GUI Tree Topology

Once the GUI “elements” (data structures) are recovered, GUITAR will recon-

struct the GUI tree. This section details how GUITAR reconnects the tree’s parent

TreeNodes to their children. However, recall that key pointers are set to NULL when

the app is backgrounded, causing each TreeNode to lose connection to its DrawOpList.

As Figure 4.3 shows, losing the node’s connection to its DrawOpList also breaks any

connection to its children. Further, these parent-to-child links are the only ones

that the windowing system binary follows to redraw the GUI. Thus, GUITAR must

first recover the GUI tree’s parent-to-child structure from two sets of disconnected

TreeNodes and DrawOpLists (Figure 4.3).

The GUI’s layout semantics provide a valuable hint toward solving this problem.

We observe that, in addition to the GUI tree, several Java objects encode a “reverse”

GUI layout (i.e., which layers are drawn in front of other layers). By traversing

these Java objects, the parent of each TreeNode can be reached. Unfortunately, these

additional structures are unusable during GUI redrawing (which only uses TreeNodes

and DrawOpLists), but GUITAR can leverage these “child to parent” paths and

78

DrawOp

DrawOp

X

X

TreeNode

Historic
Conflicting

Branch

Live
DrawOpList

DrawOp

DrawOp

Dead
DrawOpList

X

Recovered
DrawOpList Set

Recovered
TreeNode Set

Dead
DrawOpList

Live
DrawOpList

DrawOp

DrawOp

DrawOp

DrawOp

Figure 4.3.: Broken tree structure due to nullified pointers (marked with a red X).

GUITAR must rebuild the tree from the recovered TreeNodes and DrawOpLists.

Note the conflicting branch introduced by historic data structures.

the “DrawOpList to child” pointers (shown in Figure 4.3) to recover the “parent to

DrawOpList” pointers.

However, an issue arises during topology recovery: conflicting branches may be

introduced to the reconstructed GUI tree when DrawOpLists or TreeNodes from pre-

viously drawn GUI screens remain (not overwritten) in memory after those portions

of the GUI have been modified. Essentially, these old structures correspond to his-

torical portions of the GUI which were rendered, changed, and replaced with new

DrawOpLists and TreeNodes before the app was backgrounded. Figure 4.3 shows an

example: a historic DrawOpList is recovered and introduces a conflict into an oth-

erwise valid parent TreeNode. At this point, GUITAR cannot distinguish between

the most recent versus older TreeNodes and DrawOpLists, but GUITAR will mark

the conflict while mapping both DrawOpLists to the parent TreeNode in Figure 4.3.

Similarly, old TreeNodes can cause conflicts with a parent TreeNode (via a historic

Java object’s encoding) which has already been updated with new children. Con-

flicting branches will be removed later by leveraging characteristics of the visual GUI

79

content (Section 4.2.2). Our evaluation in Section 4.3 shows that conflicting branches

occur for only a small number of nodes. Notably, we did find one case where a full

conflicting branch (all parent and child TreeNodes and DrawOpLists) was recovered,

leading to two drawable GUI versions: one shows the most recent view and the other

shows elements of a prior view.

GUITAR’s depth-first tree topology recovery algorithm (Algorithm 2) uses a pre-

order depth-first traversal of the recovered TreeNodes to rebuild the GUI hierarchy.

The recursive algorithm starts at the tree’s root. Given a parent TreeNode, GUITAR

first locates all TreeNodes which have that TreeNode as a parent. Then GUITAR

searches each DrawOpList for those which point to any child of the parent. If any are

located, then these DrawOpLists must belong to this parent, because they point to the

parent’s children. A conflicting branch is identified if this search returns more than

one DrawOpList. The algorithm matches the located DrawOpLists to the parent

Algorithm 2 Depth-First Tree Topology Recovery
Input: TreeNode Set N , DrawOpList Set D

Output: GUI Tree T = (V,E)

procedure MapNode(node)

for other ∈ N do

if other node then . : child-to-parent path exists

for list ∈ D do . Find DrawOpLists pointing to other

if other ∈ list.points to then

. Map list to node

node.children← node.children ∪ other

node.opsLists← node.opsLists ∪ list

if |node.opsLists| > 1 then

node.conflict← True . Mark the conflict

for child ∈ node.children do

MapNode(child) . Continue recursion

end procedure

for node ∈ N do

if node.parent = ∅ then . Start at the root nodes

MapNode(node)

80

1

3

Graphical
DrawOpList Set

2

Leaf
TreeNode Set

DrawBitmapOp
TranslateOp

DrawTextOp
TranslateOpAlice

Drawing-Content Based
Bipartite Graph Matching

1

2

3

ClipRectOp
DrawBitmapOp

Figure 4.4.: Example of drawing-content based bipartite graph matching.

TreeNode, and continues the recursion with only those children pointed to by the

DrawOpLists. The recursion will stop when a leaf (i.e., a node that is not any other

node’s parent) is reached.

4.2.2 Remapping Drawing Operations

Having reconstructed the GUI tree’s internal structure, GUITAR must now map

the leaf TreeNodes to the remaining DrawOpLists. Note that these DrawOpLists con-

tain only graphical content (such as created by drawText in Figure 4.1), unlike those

pointed to by non-leaf nodes. Figure 4.4 illustrates our key intuition of matching leaf

TreeNodes to the DrawOpLists’ drawable GUI content. First, GUITAR computes the

geometric screen area described by each leaf TreeNode. Based on this, GUITAR finds

a best global match to the drawable GUI content that fits in that screen area. For-

mally, we define a drawing-content-based fitness function to compute the fit between

any leaf TreeNode and DrawOpList’s graphical content. We then reduce the prob-

lem of mapping DrawOpLists to leaf TreeNodes to a weighted assignment problem.

Problems of this class can be solved in polynomial time when modeled as a weighted

bipartite graph matching problem. Thus, GUITAR must first set up a multi-source

81

multi-sink bipartite graph with the graphical DrawOpLists as a source vertex set and

the leaf TreeNodes as the sink vertex set.

Building a Weighted Bipartite Graph Algorithm 3 shows how GUITAR builds

the weighted bipartite graph. For each DrawOpList, GUITAR computes the maxi-

mum dimensions (opswidth, opsheight) of the graphical output produced by those draw

ops (i.e., the pixels to be drawn on screen). Next, GUITAR must compute the

screen area described by each leaf TreeNode, by subtracting the leaf’s screen co-

ordinates (xleaf , yleaf) from the closest neighboring leaves’ coordinates. However,

each leaf only describes its coordinates relative to its parent TreeNode. Thus, to

find the neighboring leaves and compute each leaf’s true (full screen) coordinates,

GUITAR must look backwards through the tree’s hierarchy. This is performed

by a recursive function summarized by the getNeighbors and getFullCoord func-

tions in Algorithm 3. After finding the two closest neighboring leaves’ coordinates

(xbelow, ybelow) and (xright, yright), the current leaf’s dimensions are computed as shown

in the second loop of Algorithm 3.

Note that leaves and their DrawOpLists often do not have the same dimensions.

It is possible that a DrawOpList draws graphics smaller or larger than its leaf’s

dimensions. To account for this, the dimensions of each leaf and each DrawOpList are

compared using Euclidean distance. A scaling factor is used to make the comparisons

favor under-drawing to over-drawing (i.e., it is more likely that the draw ops draw

something smaller than the leaf rather than larger). The scaling factor is configurable

(input f in Algorithm 3), and in our evaluation a scale of 1.3 resulted in the best

mappings. The resulting weights are assigned to the bipartite graph edges in the final

loop of Algorithm 3, and we update a maximum weight variable to be used later.

Solving the Assignment Unfortunately, the resulting graph is not suitable for

assignment solving because GUITAR will likely recover an unequal number of Dra-

wOpLists and leaf TreeNodes. However, weighted assignment solving algorithms re-

quire the bipartite graph to be balanced (i.e., |source vertices| = |sink vertices|) and

complete (i.e., edge set = source vertices × sink vertices). Typically, this is solved by

82

Algorithm 3 Building Draw-Content-Weighted Bi-graph
Input: Leaf Set L, DrawOpList Set D, ScalingFactor f

Output: Graph G = (Vleaves, VopLists, E), maxWeight

Vleaves ← ∅

VopLists ← ∅

E ← ∅

maxWeight← 0

for ops ∈ D do . Compute DrawOpList dimensions

(opswidth, opsheight)← computeDrawSize(ops)

ops.width← opswidth

ops.height← opsheight

VopLists ← VopLists ∪ ops . Insert DrawOpList vertex

for leaf ∈ L do . Compute leaf dimensions

right, below ← getNeighbors(leaf)

(xright, yright)← getFullCoord(right)

(xbelow, ybelow)← getFullCoord(below)

(xleaf , yleaf)← getFullCoord(leaf)

(leafwidth, leafheight) = (xright − xleaf , ybelow − yleaf)

leaf.width← leafwidth

leaf.height← leafheight

Vleaves ← Vleaves ∪ leaf . Insert leaf vertex

for ops ∈ VopLists do

for leaf ∈ Vleaves do . Compute edge weights

dwidth ← leaf.width− ops.width

dheight ← leaf.height− ops.height

if dwidth < 0 or dheight < 0 then

scale← f . Scale factor for over-drawing

else

scale← 1.0

weight← scale ∗ (
√

(dwidth)2 + (dheight)2)

E(ops, leaf)← weight . Insert edge weight

if weight > maxWeight then

maxWeight← weight . Update max weight

adding fake vertices to the smaller half of the bipartite graph, but this would allow

GUI elements to go unmatched or be matched to fake leaves. Instead, GUITAR aims

to redraw the most complete GUI possible by finding the most valid matches.

83

Algorithm 4 Correcting Bipartite Graph and Mapping
Input: Graph G = (Vleaves, VopLists, E), maxWeight

Output: Matched Graph G

while |Vleaves| < |VopLists| do

for leaf ∈ unique(Vleaves) do

. Duplicate all the unique leaf vertices

newLeaf = copy(leaf)

Vleaves ← Vleaves ∪ newLeaf

for ops ∈ VopLists do

E(ops, newLeaf)← E(ops, leaf)

. Duplicate edge weights

while not|VopLists| = |Vleaves| do

fakeOps← new FakeOpList

. Add fake DrawOpLists to balance G

VopLists ← VopLists ∪ fakeOps

for leaf ∈ Vleaves do

E(fakeOps, leaf)← maxWeight+ 1

KuhnMunkresAlgo(G)

To overcome this, we build upon two key observations: In the case that GUITAR

recovers more DrawOpLists than leaf TreeNodes, we can be sure that at least one leaf

has a conflict (like before, a conflict is a TreeNode with two or more DrawOpLists).

In this case, we want to allow some TreeNodes to map to multiple DrawOpLists to

preserve as much graphical data as possible.

In the case that GUITAR recovers more leaf TreeNodes than DrawOpLists, we

observe that adding fake DrawOpList vertices will not harm the resulting GUI because

they will represent “empty space” where no leaf mapping could be found. However,

GUITAR must only consider mapping a fake DrawOpList if no real DrawOpList

remains mappable (all real DrawOpLists have been assigned), simply put: try to

draw as many DrawOpLists as possible even if some are over-drawn.

Algorithm 4 builds the balanced and complete bipartite graph and performs the

weighted assignment. In the first loop, GUITAR checks if we have recovered fewer leaf

TreeNodes and, if so, repeatedly duplicates the leaf vertices until there are more leaf

84

vertices than DrawOpList vertices. Note that GUITAR also copies the corresponding

edge weights so that each duplicate of a TreeNode vertex has an equal likelihood of

mapping to the same DrawOpList. Next, in the second loop, GUITAR adds fake

DrawOpList vertices until the graph is balanced. For each fake DrawOpList vertex,

GUITAR adds edges to every leaf vertex with weight equal to maxWeight + 1 (cal-

culated in Algorithm 3). Using maxWeight + 1 edge weights ensures that the fake

DrawOpLists are only considered for mapping after all real DrawOpLists (with lower,

more favorable edge weights) have been mapped. After this step, the bipartite graph

is balanced and complete — allowing any leaf TreeNode to map to any DrawOpList

per their minimal edge weights.

The bipartite graph assignment solving algorithm is represented in Algorithm 4 as

the KuhnMunkresAlgo function. The Kuhn-Munkres algorithm (also known as the

Hungarian method) solves the weighted assignment problem in polynomial time. Our

implementation uses an open-source version of the algorithm with time complexity

O(n3) [45]. The Kuhn-Munkres algorithm takes the bipartite graph (i.e., two disjoint,

balanced vertices sets and the complete edge set) as input. Internally, the algorithm

maintains an adjacency matrix representing the weights of the complete edge set.

The matrix values are iteratively reduced by the balanced cost (i.e., edge weight)

of the minimum weight edges. Thus, at the end of each iteration the lowest weight

edges will have cost 0. The iteration continues (balancing by the minimum weights

and reducing) until: for each source vertex, the weight of one edge to a distinct sink

vertex reduces to 0 (i.e., at least one 0 value in each row and column). The algorithm

outputs the edge set which matches every source vertex to a distinct sink vertex with

the minimum possible combined edge weights. To GUITAR, this edge set represents

the global best mapping of the DrawOpLists’ visual content to the leaf TreeNodes’

geometric area on screen.

At this point, any mappings to fake DrawOpList vertices are removed and those

leaf TreeNodes are marked as empty space on the resulting GUI. Now, GUITAR can

remove conflicting branches based on two criteria leveraging the mapped visual GUI

85

content: If a branch 1) has a dead end (i.e., TreeNodes without mapped DrawOpLists)

or 2) describes a visual portion of the screen that is covered by a more complete branch

with overlapping DrawOpList mappings. To ensure visual GUI data is not removed,

GUITAR ensures that the DrawOpLists of leaf TreeNodes marked for removal are

mapped to a different branch of the tree (even if that requires adding a new branch).

In practice a conflicting branch is rarely mapped to any valid (not fake) DrawOpList.

4.2.3 Runtime Recreation for GUI Redraw

Once the GUI tree has been reconstructed, GUITAR has everything needed to

redraw the app GUI, but a few challenges still remain. First, the majority of the GUI

drawing functionality is invoked via inherited methods in the C++ GUI objects. Since

these objects are recovered from a static memory image, the functional inheritance

has been broken. GUITAR recreates this inheritance via a technique called forced

polymorphism. Second, after recreating the polymorphism, the GUI tree needs to be

grafted into a live “host tree” which will be redrawn by Android’s windowing system.

Runtime Setup for Redrawing To preserve the interconnection between the

recovered GUI data, GUITAR first maps the recovered data structures back to their

original locations (i.e., the addresses they occupied when the memory image was

taken) in the memory of the Android emulator2. This ensures that Android’s window-

ing system — without modification — can follow any data pointers needed to redraw

the GUI. Note that we map neither any additional data nor code segments from the

memory image into the live memory. This makes GUITAR applicable to memory

images from any Android device without concern about vendor-customizations.

Forced Polymorphism Many of the GUI data structures are polymorphic, and

when inherited methods are invoked against these objects, dynamic function pointer

tables are consulted to determine which implementation of an inherited function

should be invoked. Unfortunately for recovered objects from a memory image, these

2This mapping is done using a newly started “stub” process in the emulator, before any heap or
data segments are allocated, to avoid conflicts with new “live” memory usage.

86

function dispatch tables are unusable because the values in those tables are highly

sensitive to each execution of the application. This situation is further confounded by

ASLR present on modern Android devices (i.e., functions pointed to by the dispatch

tables will be at random addresses in the memory image). Further, recovering both

the object’s code and data from the memory image would require GUITAR to handle a

significant number of inconsistencies between the old (frozen) execution environment

and the new one — making GUITAR a less portable and more heavy-weight solution.

To overcome this, we have developed a technique called forced polymorphism to

force the “recovered objects” to inherit from newly allocated “live objects.” GUITAR

must rebuild the recovered objects’ function dispatch tables to allow the windowing

system to invoke any inherited drawing functions. However, due to lack of type and

symbol information3 in the memory image and the multiple-inheritance used by these

objects, GUITAR must first determine the true runtime type of each recovered object.

GUITAR leverages the GUI data structure signatures to guide the forced poly-

morphism. For each recovered object, GUITAR recalls the object-type recognition

performed during memory image scanning. During scanning, many objects are recov-

ered based on their common superclass. To identify the recovered object’s true type

inheritance, GUITAR compares the object to signatures from every object along that

object’s inheritance tree. The deepest matching subclass is then marked as the ob-

ject’s previous runtime-type, which GUITAR uses to reconnect the function dispatch

table.

Based on the recovered object’s true inheritance, GUITAR allocates a new in-

stance of the matching type (a live object). GUITAR then redirects the recovered

object’s function dispatch table to that of the live object. Now, when the Android

windowing system attempts to invoke an inherited function from one of the recovered

objects, it will be redirected to the correct function in the current address space.

This also avoids any complications from ASLR present in the memory image, be-

3Android devices are shipped with stripped versions of all system binaries, including the windowing
system library.

87

Live Code Section

Old Code Section

 Recovered
DrawBitmapOp

Instance

Live
DrawBitmapOp

Instance

applyDraw
Function

applyDraw
Function Memory Image

New Memory Space

 Recovered
DrawBitmapOp

Instance

multiDraw
...

applyDraw

multiDraw
...

applyDraw

Force
Inheritance
from Live

Object

Recovered
Object

mapped into
Live Memory

Figure 4.5.: Illustration of forced polymorphism.

cause the function’s old location is abandoned and corrected to the live location.

Figure 4.5 shows an example of a recovered DrawBitmapOp being forced to inherit a

live DrawBitmapOp function dispatch table. Notice that when the inherited applyDraw

function is invoked, the lookup consults the live function dispatch table but the re-

covered object’s data (e.g. GUI content) is preserved.

GUI Redraw Once the recovered structures’ functional inheritance has been recre-

ated, the reconstructed GUI is ready to be redrawn. Because the recovered objects

have been mapped back to their original memory locations, the windowing system

code can interact with them seamlessly, without any instrumentation for address

translation.

GUITAR is prepackaged with unmodified Android windowing system binary code

and a minimal Android app GUI, used as a “host” for grafting the recovered GUI

tree. When redrawing the GUI tree, GUITAR inserts the entire recovered GUI tree

as a subtree within the running host app’s GUI. GUITAR then marks the tree as

“dirty,” causing the windowing system to redraw the GUI content. At this point the

windowing system executes unsuspectingly, accessing the recovered GUI data as if it

had naturally been allocated and initialized in the new process. The GUI content is

88

displayed as it would have appeared on the original device’s screen the last time that

app was in focus. The newly drawn GUI then replaces the host app’s GUI.

4.2.4 Data Structure Signatures

Here we present additional details on the data structure signatures used during

GUITAR’s memory image scanning. Though not GUITAR’s main contribution, data

structure recovery is a prerequisite for GUITAR’s GUI reconstruction.

 class DrawTextOp {
[0x0] void * vtable;
[0x4] SkPaint* mPaint;
[0x8] bool mQuickRejected;
[0xC] Rect mLocalBounds;
[0x1C] const char* mText;
[0x20] int mBytesCount;
[0x24] int mCount;
[0x28] float mX;
[0x2C] float mY;
[0x30] const float* mPositions;
[0x34] float mTotalAdvance;
[0x38] mat4 mPrecacheTransform;
 };

DrawTextOp(A) =
 vtable_ptr_value(A) &&
 data_ptr_value(A + 0x4) &&
 SkPaint(*(A + 0x4)) &&
 bool_value(A + 0x8) &&
 Rect(&A + 0xC) &&
 data_ptr_value(A + 0x1C) &&
 printable_text(*(A + 0x1C)) &&
 int_value(A + 0x20) &&
 int_value(A + 0x24) &&
 float_value(A + 0x28) &&
 float_value(A + 0x2C) &&
 data_ptr_value(A + 0x30) &&
 float_value(*(A + 0x30)) &&
 float_value(A + 0x34) &&
 mat4(&A+ 0x38);

Figure 4.6.: DrawTextOp class definition and resulting data structure signature.

GUITAR uses a combination of structural and value invariant signatures for each

structure it recovers. Figure 4.6 shows a representative example: The source code def-

inition and signature for the DrawTextOp data structure. Note that each field which

GUITAR relies on for GUI reconstruction is converted into boolean conditions. Dur-

ing memory image scanning, the value-invariant boolean conditions identify potential

signature matches and the structural-invariant functions validate the interconnection

between different objects. For instance, the second field of the DrawTextOp structure

is first checked with a value-invariant (data_ptr_value) and then the interconnection

is checked by validating the pointer target (SkPaint).

89

Table 4.1.: Recovery of backgrounded GUI data structures.

Device App
Foreground

Instances

Background

Instances
% Persists

Recovered

by GUITAR

Samsung S4

Calendar 546 507 92.86 507

Chase Banking 221 168 76.01 168

Contacts 511 476 93.15 476

Facebook 655 634 96.79 634

Instagram 262 240 91.60 240

Messaging 120 102 85.00 102

WhatsApp 172 148 86.05 148

LG G3

Calendar 753 738 98.00 738

Chase Banking 220 172 78.18 172

Contacts 731 640 87.55 640

Facebook 926 884 95.46 884

Instagram 301 259 86.05 259

Messaging 101 90 89.11 90

WhatsApp 214 165 78.97 165

HTC One

Calendar 276 259 93.84 259

Chase Banking 191 170 89.01 170

Contacts 358 285 79.60 285

Facebook 608 593 97.53 593

Instagram 355 319 89.86 319

Messaging 392 371 94.64 371

WhatsApp 130 123 94.61 123

4.3 Evaluation

We have implemented GUITAR as a plug-in for the Android emulator (∼2000 lines

of C++ code). GUITAR takes a subject Android device’s memory image as input

and redraws the recovered app GUIs on the emulator’s screen. GUITAR requires no

90

modification to the Android framework code but leverages the (open-source) data

structure definitions of its windowing system.

Experimental Setup We used three Android smartphones as “suspect devices”:

an HTC One, Samsung Galaxy S4, and LG G3. The devices are all different OEM

customized versions of Android 4.44. We first installed a variety of apps on all 3

devices, and one of the authors interacted with each to cause several GUIs to be

displayed and changed. Among these were 2 of the most popular social networking

apps: Facebook and Instagram, whose GUIs reveal significant personal information

about the device’s owner, friends, and activities. We also evaluated WhatsApp, a

widely used chat and instant messaging app, to reveal a suspect’s recent conversations

and contact list. Also 3 vendor-specific apps (Calendar, Contacts, and Messaging)

were tested, each of which is implemented by smartphone vendors specifically for their

devices with vastly different GUI constructs.

4.3.1 GUI Data Elements (Puzzle Pieces)

As stated in Section 4.1, most GUI data structures are freed and key pointers

nullified when an app is backgrounded. In this section, we evaluate how many of these

data structure instances persist in the app’s free heap space after being backgrounded.

For these tests, we interacted with each app, backgrounded it, and waited 15 minutes

while interacting with another app, before capturing memory images from the app

while it was in the background. Our results will be leveraged in the next subsections

to connect the quantity of recovered data structures to the quality of the redrawn

GUIs.

To establish ground truth, we instrumented each app to log allocations and deallo-

cations of the GUI data structures5. When a data structure instance was deallocated,

4To handle different Android versions, GUITAR only needs to update its data structure signatures
for memory image scanning (if those versions change any GUI object definitions).
5This was done via in-place binary instrumentation of the windowing system library and, by design,
neither interacts with any memory management components nor changes how the structures are
used by the library.

91

we also logged its contents, allowing us to verify which freed instances had been over-

written (fully or partially). We then analyzed the log to identify how many GUI data

structures existed before and after the app was backgrounded. Finally, we tested

GUITAR with each memory image to ensure that all remaining valid data structures

could be located. Note that GUITAR has no knowledge of our profiling results and

relies only on signature-based scanning for data structure recovery.

Table 4.1 presents the results for all 7 apps on each of the 3 devices. The devices

and app names are listed in Columns 1 and 2, respectively. Column 3 shows the

count of GUI data structure instances that were in the app’s heap when the app was

in the foreground. Column 4 shows those which remained in the app’s heap after the

app was backgrounded, and Column 5 shows this as a percentage. Lastly, Column 6

presents the number of data structure instances which GUITAR recovered from the

memory image.

From Table 4.1, we make several observations: First, GUIs are built from a sig-

nificant number of data structure instances. This may seem intuitive, but it confirms

our earlier claim that focusing on individual data structures is insufficient. Many

apps require more than 500 data structure instances for their GUIs. Notably, the LG

G3 Facebook app reports the most data structures: 926. Overall, 11 of the 21 test

cases have more than 300 data structure instances each. Table 4.1 also shows that

vendor-specific apps show very different results on each smartphone. For example,

each vendor’s Calendar app has very different GUI construction and thus contains a

disparate number of data structures: 546 for Samsung, 753 for LG, and 276 for HTC.

In contrast, vendor-generic apps tend to have very similar results (e.g., 262, 301, and

355 for Instagram).

Table 4.1 shows that a large percentage of these data structures persist after the

application is backgrounded. As presented in Section 4.1, this percentage will drop

over time if the app remains in the background — Section 4.3.3 expands on this by

evaluating GUITAR’s GUI recovery capability over a period of 24 hours. For all 21

cases, an average 89.23% of the data structures persist. We only see 4 cases where less

92

than 80% persist. Further, recall that GUITAR can reconstruct an app’s remaining

GUI even if some of the data structures are missing — the missing pieces might simply

be blank spaces on the screen.

Lastly, these results show that GUITAR’s memory image scanner is robust enough

to recover 100% of the data structure instances in the backgrounded apps’ memory

images. Although we point out that individual data structure recovery is not GUI-

TAR’s primary capability and may be performed by other existing memory forensics

techniques.

4.3.2 Reconstructed GUIs (Finished Puzzles)

Using the recovered GUI data “pieces,” we now evaluate how accurately GUITAR

reconstructs each GUI tree and the quality of each redrawn GUI.

We first need to compare a GUITAR-reconstructed GUI tree with a Ground Truth

Tree (i.e., the app’s true GUI tree as it was in the memory image). To obtain the

Ground Truth Tree, we instrumented each app to log the structure and content of

its GUI tree in the foreground. From that log, we subtracted the elements of the

tree that were lost when the app was backgrounded (recall that the tree’s structure

is explicitly destroyed when the app is backgrounded). This yielded the ideal tree

which GUITAR could reconstruct with the remaining data structures.

However, the most important (and interesting) test for GUITAR is: How does the

reconstructed GUI look? To reliably compare each GUITAR-reconstructed GUI to

the app’s original GUI, we used Content Based Image Recognition (CBIR) to score the

similarity between the GUI reconstructed by GUITAR and a screenshot of the original

app (from Android’s screencap program). Note that CBIR is used instead of a naive

per-pixel comparison because GUITAR may rearrange a few GUI elements — causing

many pixels to change though the overall image’s content remains the same. For this,

we employed the widely used LIRE open source CBIR library [46,47] and the default

CEDD indexing feature [48]. Notice that this comparison is actually unfavorable

93

(a) Earlier Screen. (b) Latest Screen. (c) Conflict Branch. (d) Recovered GUI.

Figure 4.7.: Samsung Contacts app with redrawn full conflict branch.

(a) App Screen. (b) Recovered GUI.

Figure 4.8.: HTC Messaging.

(a) App Screen. (b) Recovered GUI.

Figure 4.9.: LG WhatsApp Contacts.

to GUITAR because the screenshot is taken when the app is in the foreground, and

GUITAR has no control over what data is overwritten when the app is backgrounded.

Table 4.2 presents the devices and app names in Columns 1 and 2. Columns

3 and 4 show the size (number of nodes) of the Ground Truth Tree and GUITAR-

reconstructed tree, respectively6. Note that the number of edges is always the number

of nodes minus 1. Column 5 presents the edit distance (number of node additions and

6The number of nodes is smaller than the number of data structure instances because each TreeNode
includes the node plus all elements in its DrawOpList and graphical contents.

94

(a) App Screen. (b) Recovered GUI.

Figure 4.10.: Samsung Facebook.

(a) App Screen. (b) Recovered GUI.

Figure 4.11.: LG Contacts app.

deletions) between the Ground Truth Tree and reconstructed tree. The percentage

of the GUITAR-rebuilt tree that is strictly identical (content, structure, and position

in the tree) to the Ground Truth Tree is shown in Column 6. Lastly, Column 7 lists

the CBIR score between the GUITAR-reconstructed GUI and a screenshot of the

foreground app.

Table 4.2 shows that GUITAR-reconstructed GUI trees are very similar to the

apps’ original GUI trees. Column 6 shows that most of the reconstructed trees (14 out

of 21) are more than 80% strictly identical to the Ground Truth Trees (with an average

of 82.63%). Moreover, the edit distances in Column 5 show that many rebuilt trees

only differ from the (ideal) Ground Truth Trees by less than 10 modifications (node

additions or deletions). Further, as described in Section 4.2, often the reconstructed

tree branches that are not identical to the Ground Truth Tree are simple permutations

of the tree’s structure. In the following section, we will highlight LG G3’s WhatsApp

test to demonstrate how reconstructed GUIs are often a slightly “rearranged” form

of the original GUIs.

Table 4.2 also shows that 7 reconstructed trees are slightly larger than their

Ground Truth Trees. A larger tree is always caused by historic GUI data. For

instance, the Samsung S4 Contacts GUI is reconstructed with several elements that

were present on an even earlier screen. Figure 4.7 shows the two previous GUI screens

95

which contributed to the resulting GUITAR-reconstructed GUIs: one from the most

recently viewed screen (Figure 4.7(b)), and a portion of the earlier screen (a full con-

flicting branch, Figure 4.7(c)). Of the 21 test cases, only 4 have reconstructed trees

smaller than the Ground Truth Trees. Smaller trees are caused when too few data

structures with visual GUI contents are recovered. As detailed in Section 4.2.2, GUI-

TAR removes empty branches of the reconstructed tree, yielding a tree smaller than

the Ground Truth Tree (which does not remove empty branches). Empty branches

result in blank areas in the redrawn GUI. As Figure 4.8 shows, the HTC One’s Mes-

saging app GUI loses three of the icons on the top of the screen and one thumbnail

image when the app is backgrounded.

Most importantly, the CBIR results summarize how visually similar the re-drawn

GUIs are to the original app’s screens. Column 7 of Table 4.2 shows that all test cases

score between 80.16% and 95.47%, with an overall average of 87.16% similarity. To

illustrate this measurement Figure 4.10 shows the best case: Samsung S4’s Facebook,

and Figure 4.11 shows the worst case: LG G3’s Contacts. Even in the worst case

(80.16%) the GUITAR-reconstructed GUI is quite similar to the original GUI.

From the CBIR similarity scores, we make a few observations: First, certain apps

have consistent GUI reconstruction results. For instance, Instagram has good scores

for all devices (89.14% for Samsung, 87.75% for LG, and 93.25% for HTC). Again,

the vendor-specific apps do not show any similarity across devices. For example,

Samsung’s Contacts is among the best cases at 95.47%, but the LG G3 Contacts GUI

is 80.16%. We also find that no device outperforms the others by a significant margin.

The device-specific averages are all very similar: 87.50% for Samsung, 84.25% for LG,

and 86.77% for HTC.

Also note that the GUI tree reconstruction metrics are somewhat misrepresenta-

tive, which prompted us to perform the CBIR similarity comparison. Several apps

have reconstructed trees that seem fairly different from their Ground Truth Trees, but

the displayed GUIs are very similar to the original apps’ GUIs. One such example is

the Samsung S4’s Facebook app. In this case, the reconstructed tree is 77.65% identi-

96

cal to the Ground Truth Tree with an edit distance of 48 (i.e., it would take 48 addi-

tions or deletions to make the trees fully identical). However, the GUITAR-redrawn

GUI scores 95.47% similarity to the app’s screenshot (as highlighted in Figure 4.10).

This is due to many small GUI elements being “best fit” matches for the same GUI

tree nodes. Therefore, GUITAR reconstructed a GUI tree which has many nodes

mapped to alternate locations, but in fact the visual elements are nearly interchange-

able.

Lastly, we found that several test cases had similar data structure destruction

patterns caused by backgrounding the app. Manual investigation revealed that tex-

tual glyphs and UI colors are often the first data structures to be deallocated and

overwritten. This turns out to be favorable for investigators because glyphs and col-

ors can be reconstructed by analyzing the app’s APK from a forensic image of the

smartphone’s SD card (acquired alongside a memory image). For these cases, we used

a python script to extract the glyph icons and colors from the APKs and patch them

into the overwritten data structures.

GUI Reconstruction Time We measured the GUI reconstruction time for each

case in Table 4.2. GUITAR’s running time ranges from 5 minutes to 10 minutes,

including the scanning of the memory image for GUI element data structure recovery.

If such recovery time is excluded (because it is not the main capability of GUITAR),

the GUI reconstruction time alone ranges from 3 to 5 minutes, which is very acceptable

for (off-line) digital forensics investigations.

Case Study: WhatsApp on LG G3

In several test cases presented in Table 4.2 we found that GUITAR-reconstructed

GUIs are slightly “rearranged” forms of the original apps’ GUIs. In this case study, we

examine one such case in detail where this effect is most obvious. When we performed

the LG G3’s WhatsApp experiment, the last GUI we viewed was the app’s Friends

List window. Thus, this is the GUI we aimed to redraw using GUITAR.

97

As shown in Row 14 of Table 4.1, 78.97% of WhatsApp’s GUI data structures

persisted in the backgrounded app’s memory. From those recovered structures, GUI-

TAR was able to reconstruct the app’s GUI tree of 37 nodes. Table 4.2 shows that

the reconstructed tree has the same size as the Ground Truth Tree but is only 76.30%

identical. Curiously, when we looked at the GUITAR-redrawn GUI everything ap-

peared to be drawn correctly.

Through further investigation we found that 4 of the major GUI elements were

virtually interchangeable: each subtree having the same geometric on-screen dimen-

sions and identical tree structure. Correlating these 4 GUI elements to the redrawn

GUI revealed that these were the 4 rows for each friend in our Friends List. While

rebuilding the GUI tree, GUITAR could not determine the order of these subtrees

(given their similarity) and thus broke the tie randomly — swapping 2 of the friends

in the list.

Figure 4.9 presents the foreground screenshot of the app and the GUI recon-

structed by GUITAR. Notice how the first and second friend in the list have swapped

positions in the rebuilt GUI. The only other difference between the GUIs is the miss-

ing icons at the bottom of the screen which were lost when the app was backgrounded.

To correct this, GUITAR could leverage heuristics (e.g., the structures’ offset in the

heap) to help break such “best match” ties more accurately.

Bypassing the Password Check

In this section, we highlight another interesting feature of GUITAR: It helps by-

pass an app’s password protection. Many Android apps (particularly those handling

highly sensitive data) require users to log in when they bring the app back to the

foreground after a certain (short) period of time. One such example is the Chase

Banking app. Like many other highly secure apps, the Chase app requires users to

log into their Chase account every time the app is brought to the foreground. This

login is cached and a timer is used to automatically log the user out after some time

98

of inactivity. Thus, if someone later opened the app it would again ask for login

credentials.

Importantly however, when such a secure app is being used, the last screen the

user views before backgrounding the app is always some internal screen of the app

after the user has already logged in. Further, this most recent internal screen will be

the one present in the app’s heap even after the app has logged the user out. For these

apps, GUITAR can recover confidential personal information frozen in the memory

image long after the app’s session has expired.

We have evaluated GUITAR with memory images from the Chase Banking app

on all three test smartphones. In each case, we logged into our personal Chase Bank

account, checked our account balances, and backgrounded the app. We then waited

for the app’s session timer to expire (thus requiring us to log in if we brought up the

app again) and then took the memory image of the backgrounded app.

Note that Table 4.2 shows “N/A” for the Chase Banking app’s CBIR scores. This

is because the Chase Banking app, like many other secure apps, has explicitly disabled

screenshots from being taken when the app is in the foreground. This however cannot

prevent GUITAR from reconstructing the app’s GUI from the memory image.

Table 4.2 shows that GUITAR was able to rebuild the Chase Banking app’s GUI

tree with very high accuracy: 87.88% identical to the Ground Truth Tree for the

Samsung S4 and HTC One devices and 81.82% identical for the LG G3. For visual

comparison, Figure 4.12 shows the reconstructed app GUIs for all 3 devices (and one

of the authors’ graduate-student-size account balance).

We point out that a broader impact of this case study is the user privacy con-

cerns it raises for running highly sensitive apps on smartphones. Interestingly, even

apps focusing on privacy (such as TextSecure [49]) cannot disrupt GUITAR’s recov-

ery. This is because GUITAR operates on the lowest-level GUI objects (defined by

Android, not by the apps). Such GUI data is used directly by the system for GUI

display. Thus any app which displays a GUI will have to use these objects, leaving

behind the GUI-related data that GUITAR will (later) use for GUI recovery. In our

99

(a) LG G3 (b) Samsung S4 (c) HTC One

Figure 4.12.: Reconstructed Chase Banking GUIs. Although the user was logged

out, recovered GUIs still reveal sensitive information. Note: we manually blocked

out the account number.

targeted application scenario (digital investigation), we assume that the privacy issues

are addressed by legal protocols and policies (e.g., requirement of a search warrant).

(a) 1 hour (b) 5 hours (c) 24 hours (d) 1 hour (e) 5 hours (f) 24 hours

Figure 4.13.: Contacts and WhatsApp GUIs with varying degrees of loss over time.

4.3.3 GUI Reconstruction Over Time

In this section, we evaluate GUITAR’s GUI reconstruction capability for memory

images captured over a longer period of time since the app was backgrounded. As

described in Section 4.1, Android rebuilds an app’s GUI from scratch (i.e., allocates

100

and builds a new GUI tree) every time it is brought to the foreground; as such, data of

its previous GUI are freed and risk being overwritten if the app performs background

processing. However, as shown in Figure 4.2, a non-trivial amount of the GUI data

persist in the app’s free heap space over a period of 24 hours.

Using the memory images of 4 apps taken in Section 4.3.1 as a baseline (i.e.,

time t0), we left the apps in the background, untouched, and took additional memory

images at times t0 + 1 (hour), t0 + 2, t0 + 5, t0 + 10, and t0 + 24. During this time

period, the other apps on the smartphone were heavily used. We employed the same

ground truth collection as in the previous sections, and then applied GUITAR on

these memory images.

Table 4.3 presents our results for the LG G3 phone. For comparison, we include

each app’s foreground data (with 100% of the intact GUI tree in memory). Note

that each app’s GUI reconstruction results for the memory image captured at t0 are

already presented in Tables 1 and 2. Column 1 of Table 4.3 shows each app’s name.

Column 2 shows if the app was in the foreground or background, and Column 3

lists the time each app had been in the background when the memory image was

taken. The number of data structures in the memory images is listed in Column 4

(like before, GUITAR located all recoverable data structures). Column 5 presents the

percentage of the foreground data structures which persist in the memory. Columns

5, 6, and 7 present the reconstructed GUI tree’s size, edit distance, and percentage

that is identical to the Ground Truth Tree, respectively.

Table 4.3 presents several interesting results: First, as expected, after 1 hour in

the background the GUI recovery results are similar to those reported in the previous

sections (i.e., 15 minutes in the background). On average, 81.78% of the data struc-

tures are recoverable — fairly close to the average in Section 4.3.1: 89.23%. Further,

GUITAR reconstructs GUI trees that are all more than 71% identical to their Ground

Truth Trees.

Notably, Table 4.3 shows that loss of GUI data is non-linear over time. For

example, the Instagram GUI data had no loss until 9% of the data structures were

101

overwritten in the 24 hour-memory image. Intuitively, this is because those data

structures remain intact, until one or more bursts of background computation have

requested enough memory to overwrite the GUI data. Because of this, the apps tend

to exhibit “stepwise” GUI data loss. The Messaging app in Table 4.3 shows this

trend: 6% of the data were lost after 2 hours, and then no data were lost until 28%

more data were lost after 10 hours.

To visually compare the reconstructed GUIs, Figure 4.13 shows the gradual (but

graceful) degradation of GUI reconstructed by GUITAR over the 24-hour period.

Again, the GUIs reconstructed from the 1-hour-memory images are very similar to

those reconstructed in the previous subsections. After 24 hours, the GUIs will be

missing some non-trivial content. But GUITAR is robust enough to reconstruct the

partial GUIs showing the graphical content of the remaining GUI data, which (as

shown in Figure 4.13) are still of forensic value.

102

T
ab

le
4.

2.
:

R
ec

on
st

ru
ct

io
n

of
G

U
I

tr
ee

s
of

va
ri

ou
s

ap
p
s

fr
om

d
iff

er
en

t
p
h
on

es
.

D
ev

ic
e

A
p

p
G

ro
u

n
d

T
ru

th

T
re

e
S

iz
e

R
ec

ov
er

ed
T

re
e

S
iz

e
E

d
it

D
is

ta
n

ce
%

O
ri

g
in

a
l

C
B

IR
S

im
il

a
ri

ty

S
am

su
n

g
S

4

C
al

en
d

ar
6
2

5
7

2
2

6
4
.5

1
8
5
.0

5

C
h

as
e

B
an

k
in

g
3
3

3
3

4
8
7
.8

8
N

/
A

C
on

ta
ct

s
5
0

5
7

1
1

9
2
.0

0
9
4
.6

4

F
ac

eb
o
ok

8
5

1
1
3

4
8

7
7
.6

5
9
5
.4

7

In
st

ag
ra

m
5
4

5
7

6
9
4
.4

4
8
9
.1

4

M
es

sa
gi

n
g

2
2

2
2

2
9
0
.9

1
8
5
.7

5

W
h

at
sA

p
p

3
0

3
0

4
8
6
.6

7
8
2
.1

7

L
G

G
3

C
al

en
d

ar
7
9

7
6

1
8

7
7
.2

2
9
4
.6

2

C
h

as
e

B
an

k
in

g
3
3

3
3

6
8
1
.8

2
N

/
A

C
on

ta
ct

s
9
8

1
0
1

1
9

8
3
.6

7
8
0
.1

6

F
ac

eb
o
ok

1
1
6

1
2
8

4
1

7
6
.7

2
8
5
.5

2

In
st

ag
ra

m
5
8

5
8

9
8
4
.4

8
8
7
.7

5

M
es

sa
gi

n
g

2
3

2
3

3
8
6
.9

6
8
0
.7

8

W
h

at
sA

p
p

3
7

3
7

8
7
6
.3

0
8
0
.8

5

H
T

C
O

n
e

C
al

en
d

ar
3
8

4
0

8
8
4
.2

1
8
0
.3

3

C
h

as
e

B
an

k
in

g
3
3

3
4

5
8
7
.8

8
N

/
A

C
on

ta
ct

s
7
3

7
3

1
2

8
3
.5

6
8
4
.1

6

F
ac

eb
o
ok

7
9

7
8

2
3

7
0
.8

9
9
0
.5

2

In
st

ag
ra

m
5
8

5
8

5
9
1
.3

8
9
3
.2

5

M
es

sa
gi

n
g

8
5

8
3

3
4

6
0
.0

0
8
6
.0

2

W
h

at
sA

p
p

2
5

2
5

1
9
6
.0

0
9
2
.7

0

103

T
ab

le
4.

3.
:

R
ec

on
st

ru
ct

io
n

of
b
ac

k
gr

ou
n
d

ap
p
s’

G
U

I
tr

ee
s

ov
er

a
24

h
ou

r
p

er
io

d
.

A
p

p
F

or
e/

B
ac

k
go

u
n

d
B

a
ck

g
ro

u
n

d
ed

T
im

e
In

st
a
n

ce
s

%
P

er
si

st
s

T
re

e
S

iz
e

E
d

it
D

is
ta

n
ce

%
O

ri
g
in

a
l

C
on

ta
ct

s

F
or

eg
ro

u
n

d
7
3
1

9
8

B
ac

k
gr

ou
n

d

1
h

o
u

r
6
4
0

8
7
.5

5
1
0
1

1
9

8
3
.6

7

2
h

o
u

rs
6
4
0

8
7
.5

5
1
0
1

1
9

8
3
.6

7

5
h

o
u

rs
6
3
5

8
6
.8

7
9
7

2
4

7
9
.0

6

1
0

h
o
u

rs
3
6
4

4
9
.7

9
6
5

4
3

5
4
.2

3

2
4

h
o
u

rs
3
2
0

4
3
.7

8
6
3

4
7

5
1
.5

6

In
st

ag
ra

m

F
or

eg
ro

u
n

d
3
0
1

5
8

B
ac

k
gr

ou
n

d

1
h

o
u

r
2
3
2

7
7
.0

8
5
8

1
1

8
2
.0

3

2
h

o
u

rs
2
3
2

7
7
.0

8
5
8

1
1

8
2
.0

3

5
h

o
u

rs
2
3
2

7
7
.0

8
5
8

1
1

8
2
.0

3

1
0

h
o
u

rs
2
3
2

7
7
.0

8
5
8

1
1

8
2
.0

3

2
4

h
o
u

rs
2
0
5

6
8
.1

1
5
1

1
8

7
4
.5

1

M
es

sa
gi

n
g

F
or

eg
ro

u
n

d
1
0
1

2
3

B
ac

k
gr

ou
n

d

1
h

o
u

r
9
0

8
9
.1

1
2
3

3
8
6
.9

6

2
h

o
u

rs
8
4

8
3
.1

7
2
1

6
8
2
.5

2

5
h

o
u

rs
8
4

8
3
.1

7
2
1

6
8
2
.5

2

1
0

h
o
u

rs
5
6

5
5
.4

5
1
8

1
1

5
7
.0

1

2
4

h
o
u

rs
5
6

5
5
.4

5
1
8

1
1

5
7
.0

1

W
h

at
sA

p
p

F
or

eg
ro

u
n

d
2
1
4

3
7

B
ac

k
gr

ou
n

d

1
h

o
u

r
1
5
7

7
3
.3

6
3
7

1
0

7
1
.9

4

2
h

o
u

rs
1
1
6

5
4
.2

1
3
5

1
3

6
5
.0

2

5
h

o
u

rs
1
1
5

5
3
.7

4
3
5

1
3

6
4
.1

3

1
0

h
o
u

rs
1
1
5

5
3
.7

4
3
5

1
3

6
4
.1

3

2
4

h
o
u

rs
1
0
9

5
0
.9

3
3
2

1
8

5
0
.7

1

104

5 RETROSCOPE: SCREEN AFTER PREVIOUS SCREEN

Shortly after GUITAR, I realized that any expansion beyond GUITAR’s capability

would be limited by how much GUI data remained in a smartphone’s memory, which

the previous chapter has shown to be roughly 80% of only a single screen per app.

While this one screen may reveal some evidence to investigators, it can hardly por-

tray a suspect’s actions and motives (e.g., after a suspect logs out, GUITAR will

only recover the “log (back) in” prompt). In this chapter, we demonstrate a pow-

erful forensics capability for Android phones: recovering multiple previous screens

displayed by each app from the phone’s memory image. Different from traditional

memory forensics, this capability enables spatial-temporal forensics by revealing what

the app displayed over a time interval, instead of a single time instance. For example,

investigators will be able to recover the multiple screens of a banking transaction,

deleted messages from an online chat, and even a suspect’s actions before logging out

of an app.

Recall that GUITAR provides a related (but less powerful) capability: recovering

the most recent GUI display of an Android app from a memory image. We call this

GUI display Screen 0. Unfortunately, GUITAR is not able to reconstruct the app’s

previous screens, which we call Screens -1, -2, -3... to reflect their reverse temporal

order. For example, if the user has logged out of an app before the phone’s memory

image is captured, GUITAR will only be able to recover the “log out” screen, which

is far less informative than the previous screens showing the actual app activities and

their progression.

To address this limitation, I will present a novel spatial-temporal solution, called

RetroScope, to reconstruct an Android app’s previous GUI screens (i.e., Screens 0,

-1, -2... -N, N > 0). RetroScope is app-agnostic and does not require any app-specific

knowledge (i.e., data structure definitions and rendering logic). More importantly,

105

RetroScope achieves near perfect accuracy in terms of (1) reconstructed screen display

and (2) temporal order of the reconstructed screens. To achieve these properties,

RetroScope overcomes significant challenges. As indicated by GUITAR, GUI data

structures created for previous screens get overwritten almost completely, as soon as

a new screen is rendered. This is exactly why GUITAR is unable to reconstruct Screen

-i (i > 0), as it cannot find GUI data structures belonging to the previous screens.

In other words, GUITAR is capable of “spatial” — but not “spatial-temporal” —

GUI reconstruction. This limitation motivated us to seek a fundamentally different

approach for RetroScope.

During our research, we noticed that although the GUI data structures for app

screens dissolve quickly, the actual app-internal data displayed on those screens (e.g.,

chat texts, account balances, photos) have a much longer lifespan. Section 2 presents

our profiling results to demonstrate this observation. However, if we follow the tra-

ditional memory forensics methodology of searching for [8, 11, 17, 18] and rendering

instances of those app data (as we have seen in DSCRETE, VCR, and GUITAR),

our solution would require app-specific data structure definitions and rendering logic,

breaking the highly desirable app-agnostic property.

We then turned our attention to the (app-agnostic) display mechanism supplied

by the Android framework, which revealed the most critical (and interesting) idea

behind RetroScope. A smartphone displays the screen of one app at a time; hence

the apps’ screens are frequently switched in and out of the device’s display, following

the user’s actions. Further, when the app is brought back to the foreground, its entire

screen must be redrawn from scratch: by first “repackaging” the app’s internal data

to be displayed into GUI data structures, and then rendering the GUI data structures

according to their layout on the screen. Now, recall that the “old” app-internal data

(displayed on previous screens) are still in memory. Therefore, we propose redirecting

Android’s “draw-from-scratch” mechanism to those old app data. Intuitively, this

would cause the previous screens to be rebuilt and rendered. This turns out to be

both feasible and highly effective, thus enabling the development of RetroScope.

106

Based on these observations, RetroScope is designed to trigger the re-execution

of an app’s screen-drawing code in-place within a memory image — a process we call

selective reanimation. During selective reanimation, the app’s data and drawing code

from the memory image are logically interleaved with a live symbiont app, using our

interleaved re-execution engine and state interleaving finite automata (Section 5.2.2).

This allows RetroScope (within a live Android environment) to issue standard GUI

redrawing commands to the interleaved execution of the target app, until the app

has redrawn all different (previous) screens that its internal data can support. In

this way, RetroScope acts as a “puppeteer,” steering the app’s code and data (the

“puppet”) to reproduce its previous screens.

We have performed extensive evaluation of RetroScope, using memory snapshots

from 15 widely used Android apps on three commercially available phones. For each of

these apps, RetroScope accurately recovered multiple (ranging from 3 to 11) previous

screens. Our results show that RetroScope-recovered app screens provide clear spatial-

temporal evidence of a phone’s activities with high accuracy (only missing 2 of 256

recoverable screens) and efficiency (10 minutes on average to recover all screens for

an app). We have open-sourced RetroScope1 to encourage reproduction of our results

and further research into this new memory forensics paradigm.

5.1 Problem and Opportunity

Different from typical desktop applications, frequent user interactions with An-

droid apps require their screen display to be highly dynamic. For example, nearly

all user interactions (e.g., clicking the “Compose Email” button on the Inbox screen)

and asynchronous notifications (e.g., a pop-up for a newly received text message) lead

to drawing an entirely new screen. Despite such frequent screen changes, GUITAR

shows that every newly rendered app screen destroys and overwrites the GUI data

structures of the previous screen.

1RetroScope is available online, along with a demo video, at: https://github.com/

ProjectRetroScope/RetroScope.

107

0
20
40
60
80

100
120

D
at

a
St

ru
ct

ur
e

C
ou

nt

(T
ho

us
an

ds
)

Time (Relative to Screen Changes From Screen -5 to Screen 0 Above)

Internal Data Screen -5 Screen -4 Screen -3
Screen -2 Screen -1 Screen 0

(a) Screen -5 (b) Screen -4 (c) Screen -3 (d) Screen -2 (e) Screen -1

RetroScope
Recovery

Memory Image Taken

(e) Screen 0

Figure 5.1.: Life cycles of GUI data structures versus app-internal data across

multiple screen changes.

This observation however, seems counter-intuitive as Android apps are able to very

quickly render a screen that is similar or identical to a previous screen. For example,

consider how seamlessly a messenger app returns to the “Recent Conversations” screen

after sending a new message. Given that the previous screen’s data structures have

been destroyed, the app must be able to recreate GUI data structures for the new

screen. More importantly, we conjecture that the raw, app-internal data (e.g., chat

texts, dates/times, and photos) displayed on previous screens must exist in memory

long after their corresponding GUI data structures are lost.

To confirm our conjecture about the life spans of (1) GUI data structures (short)

and (2) app-internal data (long), we performed a profiling study on a variety of

popular Android apps (those in Section 5.3). Via instrumentation, we tracked the

allocation and destruction (i.e., overwriting) of the two types of data following multi-

ple screen changes of each app. Figure 5.1 presents our findings for TextSecure (also

known as Signal Messenger). It is evident that the creation of every new screen causes

the destruction of the previous screen’s GUI data, whereas the app-internal data not

108

ContactList.java

Model View

Conversation.java

MessageItem.java

 class MessageItem {
 …
 String mTimestamp;
 String mAddress;
 String mBody;
 String mContact;
 String mSubject;
 …
 }

SlideView.java

ImageAttachmentView.java

MessageListView.java

 class MessageListView {
 void draw (Canvas canvas){
 …
 String str;
 str = MessageItem.format();
 canvas.drawText(str);
 …
 }
 }

Figure 5.2.: The typical model/view implementation split of Android apps.

only persists but accumulates with every new screen. We observed this trend across

all evaluated apps.

Considering that a memory image reflects the memory’s content at one time in-

stance, Figure 5.1 illustrates a limitation of existing memory forensics techniques

(background on memory image acquisition can be found in Appendix A). Specifically,

given the memory image taken after Screen 0 is rendered (as marked in Figure 5.1),

our GUITAR technique will only have access to the GUI data for Screen 0. Mean-

while, the app’s internal data are maintained by the app itself for as long as the app’s

implementation allows (e.g., we never observed TextSecure deallocating its messages

because they may be needed again). However, without app-specific data definitions

or rendering logic, it is impossible for existing app-agnostic techniques [8,50] to mean-

ingfully recover and redisplay the app’s internal data on Screens -1 to -5 in Figure 5.1.

It turns out that the Android framework instills the “short-lived GUI structures

and long-lived app-internal data” properties in all Android apps. Specifically, Android

apps must follow a “Model/View” design pattern which intentionally separates the

app’s logic into Model and View components. As shown in Figure 5.2, an app’s

Model stores its internal runtime data; whereas its View is responsible for building

and rendering the GUI screens that present the data. For example, the MessageItem,

109

Conversation, and ContactList (Model) classes in Figure 5.2 store raw, app-internal

data, which are then formatted into GUI data structures, and drawn on screen by the

MessageListView class. This design allows the app’s View screens to respond quickly

to the highly dynamic user-phone interactions, while delegating slower operations

(e.g., fetching data updates from a remote server) to the background Model threads.

Further, the Android framework provides a Java class (aptly named View) which

apps must extend in order to implement their own GUI screens. As illustrated by

Figure 5.2’s MessageListView class, each of the app’s screens correspond to an app-

customized View object and possibly many sub-Views drawn within the top-level

View. Most importantly, each View object defines a draw function. draw functions are

prohibited from performing blocking operations and may be invoked by the Android

framework whenever that specific screen needs to be redrawn. This makes any screen’s

GUI data (e.g., formatted text, graphics buffers, and drawing operations which build

the screen) easily disposable, because the Android framework can quickly recreate

them by issuing a redraw command to an app at any time. This design pattern

provides an interesting opportunity for RetroScope, which will intercept and reuse

the context of a live redraw command to support the reanimation of draw functions

in a memory image.

5.2 Design of RetroScope

RetroScope’s operation is fully automated and only requires a memory image from

the Android app being investigated (referred to as the target app) as input. From

this memory image, RetroScope will recreate as many previous screens as the app’s

internal data (in the memory image) can support. However, without app-specific

data definitions, RetroScope is unable to locate or understand such internal data.

But recall from Section 5.1 that the Android framework can cause the app to draw

its screen by issuing a redraw command, without handling the app-internal data

directly. This is possible because the app’s draw functions are invoked in a context-

110

free manner: The Android framework only supplies a buffer (called a Canvas) to draw

the screen into, and the draw function obtains the app’s internal data via previously

stored, global, or static variables — analogous to starting a car with a key (the redraw

command) versus manually cranking the engine (app internals). Thus, RetroScope is

able to leverage such commands, avoiding the low-level “dirty work” as in previous

forensics/reverse engineering approaches, e.g., DSCRETE and VCR.

RetroScope mimics this process within the target app’s memory image by selec-

tively reanimating the app’s screen drawing functions via an interleaved re-execution

engine (IRE). RetroScope can then inject redraw commands to goad the target app

into recreating its previous screens. An app’s draw functions are ideal for reanimation

because they are (1) functionally closed, (2) defined by the Android framework (thus

we know their interface definition), and (3) prevented from performing I/O or other

blocking operations which would otherwise require patching system dependencies.

Finally, RetroScope saves the redrawn screens in the temporal order that they were

previously displayed, unless the draw function crashes — indicating the app-internal

data could not support that screen.

To support selective reanimation, RetroScope leverages the open-source Android

emulator to start, control, and modify the execution of a symbiont app, a minimal

implementation of an Android app which will serve as a “shell” for selective reanima-

tion.

5.2.1 Selective Reanimation

Before selective reanimation can begin, RetroScope must first set up enough of the

target app’s runtime environment for re-executing the app’s draw functions. There-

fore RetroScope first starts a new process in the Android emulator, which will later

become the symbiont app and the IRE (Section 3.2). RetroScope then synthetically

recreates a subset of the target app’s memory space from the subject memory image.

Specifically, RetroScope loads the target app’s data segments (native and Java) and

111

code segments (native C/C++ and Java code segments) back to their original ad-

dresses (Lines 1-4 of Algorithm 5) — this would allow pointers within those segments

to remain valid in the symbiont app’s memory space. RetroScope then starts the

symbiont app which will initialize its native execution environment and Java run-

time. Note that the IRE will not be activated until later when state interleaving

(Section 5.2.2) is needed.

Isolating Different Runtime States. The majority of an Android app’s runtime

state is maintained by its Java runtime environment2. For RetroScope, it is not

sufficient to simply reload the target app’s memory segments. Instead the symbiont

app’s Java runtime must also be made aware of the added (target app’s) runtime

data prior to selective reanimation. Later, the IRE will need to dynamically switch

between the target app’s runtime state and that of the symbiont app to present each

piece of interleaved execution with the proper runtime environment.

RetroScope traverses a number of global Java runtime data structures from the

subject memory image with information such as known/loaded Java classes, app-

specific class definitions, and garbage collection trackers (Lines 5–9 of Algorithm 5).

Such data are then copied and isolated into the symbiont app’s Java runtime by

inserting them (via the built in Android class-loading logic) into duplicates of the

Java runtime structures in the symbiont app. Note that, at this point, the duplicate

runtime data structures will not affect the execution of the symbiont app, but they

must be set up during the symbiont app’s initialization so that any app-specific classes

and object allocations from the memory image can be handled later by the IRE.

At this point, the symbiont app’s memory space contains (nearly) two full appli-

cations (shown in Figure 5.4). The symbiont app has been initialized naturally by

the Android system with its own execution environment. In addition, RetroScope has

reserved and loaded a subset of the target app’s memory segments (those required

for selective reanimation) and isolated the necessary old (target app’s) Java runtime

data into the new (symbiont app’s) Java runtime. The remainder of RetroScope’s op-

2Please see Section 5.4 regarding Dalvik JVM versus ART runtimes.

112

eration is to (1) mark the target app’s View draw functions so that they can receive

redraw commands and (2) reanimate those drawing functions inside the symbiont app

via the IRE.

Marking Top-Level Draw Functions. RetroScope traverses the target app’s

loaded classes to find top-level Views (Lines 10–17 in Algorithm 5). Top-level Views

are identified as those which inherit from Android’s parent View class ViewParent

and are not drawn inside any other Views. As described in Section 5.1, top-level

Views are default Android classes which contain app-customized sub-Views. Further,

we know that all Views must implement a draw function (which invokes the sub-

Views’ draw functions). Thus RetroScope marks each top-level draw function as a

reanimation starting point.

Selective Reanimation. Once all top-level draw functions are identified, Ret-

roScope can begin selective reanimation of each. First, RetroScope invalidates the

symbiont app’s current View (Line 19 of Algorithm 5). This will cause Android to

set up and issue a redraw command to the symbiont app along with a buffer to draw

into. However, RetroScope first intercepts this command and replaces the symbiont

app’s top-level View with one of the target app’s top-level Views identified previously

(Lines 20–27 in Algorithm 5). Note that RetroScope does not distinguish between

different instances of top-level Views, it simply reissues redraw commands for every

previously identified top-level View instance, even if duplicates exist.

Since the top-level Views of the symbiont app and the target app are both default

instances of (or inherit from) the same Android View class, they are interchangeable

as far as the Android framework is concerned (both with the same functionality).

Now RetroScope can inject the redraw command into the symbiont app which, upon

receiving this command, will naturally invoke the target app’s top-level draw function

(previously marked for reanimation).

This will trigger the IRE to begin logically interleaving the draw function execution

with the symbiont app’s GUI drawing environment. Most importantly, this will direct

input code/data accesses (i.e., queries to the target app’s Model) to the appropriate

113

target app functions and output code/data accesses (i.e., drawing of screens) to the

symbiont app’s running GUI framework. Upon successful completion of each draw

function reanimation, RetroScope retrieves and stores the symbiont app’s (now filled)

screen buffer, switches the top-level View to another marked target app View, and

re-injects the redraw command — reloading the memory image in between to avoid

side effects.

Finally, RetroScope reorders the redrawn screens to match the temporal order

in which they were displayed. This is done via comparison of View ID fields in the

target app’s Views (recovered from the memory image). A View’s ID is an integer

that identifies a View. The ID may not be unique, as some Views may alias others,

but it is always set from a monotonically increasing counter. This yields the property

that app screens can be ordered temporally by comparing the largest ID among their

sub-Views. Intuitively, the most recently modified portion of the screen (sub-View)

will yield an increasingly large ID.

5.2.2 Interleaved Re-Execution Engine

o'.m() | o'. (m)()

o.m() | o. (m)()

α

β

δ

γ

o.* | Pass o'.* | Pass

o.f | Passo'.f | Pass

o
'.f

| o
'.

(f)o
.f

|
o

.
(f

)

o .m() | Pass o'.m() | Pass

o
'.

f
|

o
'.

(f
) o

.f
| o

.
(f)

C
o

d
e

 C
o

n
te

x
t B

a
rrie

r

Figure 5.3.: State interleaving finite automata.

114

The key enabling technique behind RetroScope is its IRE which logically inter-

leaves the state of the target app into the symbiont app just before it is needed by

the execution. To monitor and interleave the execution contexts, the IRE intercepts

the execution of Java byte-code instructions corresponding to function invocations, re-

turns, and data accesses (i.e., instance/static field reads/writes). The IRE’s operation

is similar to parsing a lexical context-free grammar: The current byte-code instruc-

tion (i.e., token) and the context of its operands (e.g., new/old data) are matched to

a state interleaving finite automata (Figure 5.3), where each state transition defines

which runtime environment the IRE should present to that instruction.

In RetroScope, state interleaving begins at the invocation of one of the marked top-

level draw functions within the target app. As a running example, Figure 5.4 shows a

snippet of a draw function’s code along with the live memory space (containing both

the symbiont app and the target app’s execution environment).

IRE State Tracking. For each byte code instruction, the IRE tracks two pieces

of information: (1) if the code being executed is from the memory image (old code)

or from the symbiont app (new code) and (2) if the current runtime information (i.e.,

loaded classes, object layouts, etc.) originates from the memory image (old runtime)

or the symbiont app (new runtime). Based on that, the execution context may be in

any of four possible states:

(new code,new runtime) = α

(new code, old runtime) = β

(old code,new runtime) = γ

(old code, old runtime) = δ

(5.1)

In Figure 5.4, we have denoted which state the IRE is in before and after executing

each line of code. For ease of explanation, Figure 5.4 presents source code, but Retro-

Scope operates on byte-code instructions only. For example, before executing Line 1,

the IRE is in α because no old code or data has been introduced yet. Likewise, after

Line 1, the IRE is in δ as the IRE is then executing the target app’s draw function

(old code) within the target app’s top-level View object (old runtime). However, note

115

that the context of runtime data may not (and often does not) match the context of

the code: For example, in Line 4, fetching the mDensity field from the new Canvas

requires using the new runtime data but is being performed by old code (resulting in

state γ).

Modeling State-Transitions. In Figure 5.3, we generalize the state-transition

rule matching to two primitive operations: Given an object o, state transitions may

occur when accessing a field f within o (o.f) or when invoking a method m defined by

o (o.m()). Further, o may be an object loaded from the target app’s memory image

or allocated by the target app’s code (i.e., interacting with this object requires the

old runtime data), thus we denote such old objects as o′ in Figure 5.3. Note that our

discussion will follow Java’s object-oriented design, but the transitions in Figure 5.3

are equally applicable to static (i.e., o == NULL) execution.

The state transitions in Figure 5.3 are modeled as a Mealy machine [51] with the

input of each state-transition being a matched operation and the output being the

corresponding state correction performed by the IRE. These state corrections (i.e.,

transition outputs) fall into three categories: (1) a transition from the new runtime

data to the old runtime data (the function θ), (2) a transition from old to new runtime

data (the function λ), and (3) no change in runtime data (“Pass”). For example, the

transition from α to δ is represented as:

α → δ : o′.m() | o′.θ(m)() (5.2)

where the input to this transition is a match on o′.m() (invoking an old object’s

method) and the output state correction is to switch to the old runtime prior to

invoking the method (o′.θ(m)()). This is exactly the IRE’s transition before executing

Line 1 in Figure 5.4 as the IRE must switch to the old runtime prior to invoking the

old View object’s draw function to look up the method’s implementation. Conversely,

the transition from γ to α is represented as:

γ → α : o.m() | Pass (5.3)

because this transition occurs when a new object’s method is invoked (o.m) but the

IRE is already using the new runtime data, thus no runtime data correction is needed

116

(i.e., “Pass”). This case is observed in Line 11 of Figure 5.4. At the beginning of

Line 11, the IRE is in state γ due to the lookup of the new Canvas’s mDensity field

on Line 4. Thus, the invocation of getClipBounds on Line 11 does not require the

runtime to change (a “Pass” transition), but does change from old code to new.

Another important corrective action in Figure 5.3 is whether or not a transition

crosses the code context barrier (i.e., a horizontal transition). Crossing the code

context barrier signifies a switch between fetching new code (from the symbiont app)

to old code (from the memory image) or vice versa. Although crossing the context

barrier alone does not require active correction by the IRE (e.g., the old runtime’s

method definitions will naturally direct the execution to the old code), the IRE must

note that the change occurred.

Monitoring which context the code is fetched from is essential for a number of

runtime checks and corrections that the IRE must perform. Firstly, objects allocated

while executing old code should use the class definitions from the target app (as the

Android framework classes may be vendor-customized or the class may be defined

by the target app itself). Secondly, type comparisons (e.g., the Java instanceof

operator) executed by old code must consider both new and old classes but prefer

old classes. This is because new objects (which are instances of classes loaded by

the symbiont app’s runtime) will be passed into old code functions — which use the

target app’s loaded classes that contain “old duplicates” of classes common to both

executions (e.g., system classes). The reverse is true for new code type comparisons.

Lastly, exceptions thrown during interleaved execution should be catchable by both

old and new code. Interestingly, we find a number of test cases in Section 5.3 purposely

throw exceptions inside their inner drawing functions, and allowing new code to catch

old code exceptions (or vice versa) requires patching type lookups (as before) and

stack walking.

Return Transitions. Although Figure 5.3 does not illustrate state transitions for

return instructions, the IRE does perform state correction for them. Unlike the tran-

sitions in Figure 5.3 (which rely on the current IRE state to determine a new state),

117

method returns simply restore the IRE state from before the matching invocation.

This is tracked by a stack implemented in the IRE which pushes the current IRE

state before invoking a method and pops/restores that IRE state upon the method’s

return. This behavior is seen in Line 12 in Figure 5.4. Before the invocation of

getClipBounds (Line 11), the IRE is in state γ . Function getClipBounds executes

in state α , and upon its return the IRE pops state γ from the stack and restores

that state prior to executing Line 12.

Another notable simplification of the IRE’s design is that it is sufficient to only

perform state correction at function invocations, returns, and field accesses. Intu-

itively, this is because other “self-contained” instructions (e.g., mathematical oper-

ations) do not require support from the runtime. But another advantage is that

state-interleaving tends to occur after bunches of instructions. Our evaluation shows

that on average 10.24 instructions in a row will cause loop-back transitions before a

state correction is needed. Further, many functions execute entirely in state α or δ

because no data from the other environment enter those functions.

Native Execution. The IRE operates on the Java byte-code instructions of the

functions marked for selective reanimation. However, it is possible that app developers

utilize the Java Native Interface (JNI) to implement some of their app’s functionality

in native C/C++ code. Further, the Android framework heavily uses JNI functions.

When the IRE observes an invocation of a C/C++ function, it follows the same state

transitions defined in Figure 5.3 (i.e., new code only invokes new C/C++ functions

and vice versa).

Luckily, due to the tightly controlled interaction between C/C++ functions and

the Java runtime data, the IRE’s state correction can be further simplified. To access

data or invoke methods from the Java runtime, C/C++ functions must use a set of

helper functions defined by the Java runtime. The IRE hooks these functions and

checks if the data or method being requested is in the old or new context. The IRE

can then properly patch the helper function’s return value and allow the C/C++

function to execute as intended. Note that, because all the target app’s native code

118

and data segments have been mapped back to their original addresses, all pointers

(code and data) in those segments remain valid.

Lastly, although the IRE executes app-specific code, it does so on a syntactic

basis without understanding the code’s semantics, hence maintaining RetroScope’s

app-agnostic property.

5.2.3 Escaping Execution and Data Accesses

To monitor and interleave the target app’s reanimation, the IRE must accurately

track the current state of the execution environment. However, due to the relative

complexity of Android apps, it is possible that the target app’s control flow causes the

IRE to miss a state transition, potentially failing to correct the execution environment

despite the actual execution being in a different state. We call such missed state

transitions escaping execution or escaping data accesses.

Escaping Execution. This occurs when the target app’s reanimation invokes a

function but the IRE is unable to determine which context to transition to. This is

primarily due to the invocation of a static method which exists in both the old and

new environments — leading to an ambiguous state-transition, where the IRE does

not have sufficient information at the function invocation site to determine which

state (α or δ) to transition to. Simply put, the IRE must discover if the execution

intended to invoke the old or new method. To decide that, the IRE performs a simple

data flow analysis on each version. If the method writes data to a static variable, then

the IRE always invokes the method in state α , otherwise the IRE keeps the same state

that the method was invoked by (to avoid an unnecessary transition). This ensures

that any accesses to static values which exist in both old and new environments are

always directed to the new one. Note that app-defined static variables will only exist

in the old environment, and thus their accesses do not lead to ambiguous transitions.

Escaping Data Accesses. This occurs when an app implements a non-standard

means of accessing an object’s fields. For example, the two most common causes of

119

escaping data accesses we observed are: (1) C/C++ code using a hard-coded Java

object layout to access an object’s fields and (2) old Java code which has cached an

old version of an object which RetroScope is trying to replace with a new version

(e.g., some Views will save and reuse a reference to the previously drawn on Canvas).

Although escaping data accesses are caused by app implementation differences, they

can be handled uniformly by the IRE.

Escaping data accesses caused by Java code can be identified automatically when

the fields of the object are accessed incorrectly. For example, there should not exist

any old Canvas objects during selective reanimation and thus the IRE will identify its

field accesses and replace the object with the new instance. Escaping data accesses

caused by C/C++ code are handled by preventing C/C++ code from directly access-

ing Java objects. Instead, the IRE requires all pointers to Java objects to be encoded

before they are given to C/C++ code. These pointers can be decoded when they are

used in the standard JNI field access helper functions, but will cause a segmentation

fault when dereferenced erroneously. This segmentation fault can then be handled

by RetroScope to patch the field access with the appropriate JNI helper function. In

fact, support for encoded/decoded JNI pointers already exists but may be avoided in

Android, so the IRE only needs to require that all JNI pointers are encoded/decoded

and handle the segmentation fault for those that previously avoided this functionality.

5.3 Evaluation

Evaluation Setup. Our evaluation of RetroScope involved three Android phones

(a Samsung Galaxy S4, HTC One, and LG G3)3 as evidentiary devices. On each

phone, we installed and interacted with 15 different apps to cause the generation,

modification, and deletion of as many screens as possible. The interactions took an

average of 16 minutes per app, and we installed and interacted with the apps on each

phone at random times over a 4-day period. Then, for each phone, we waited 60

3These devices all run vendor-customized versions of Android Kitkat (the most widely used Android
version [28]).

120

minutes for any background activity of the 15 apps to complete, after which we took

a memory image from the phone (as described in Appendix A).

The set of 15 apps was chosen to represent both typical app categories (to highlight

RetroScope’s generic applicability) and diverse app implementation (to evaluate the

robustness of RetroScope’s selective reanimation). Based on the importance of per-

sonal communication in criminal investigations, we included Gmail, Skype, WeChat,

WhatsApp, TextSecure (also known as Signal, notable for its privacy-oriented design

which limits evidence recovery [52]), Telegram (whose encrypted broadcast channels

are popular with terrorist organizations [53]), and each device’s default MMS app (im-

plemented by the device vendor). We also included the two most popular social net-

working apps: Facebook (known for its highly complex/obfuscated implementation)

and Instagram. Finally we consider several apps which, by nature, display sensitive

personal information: Chase Banking, IRS2Go (the official IRS mobile app), My-

Chart (the most popular medical record portfolio app), Microsoft Word for Android,

and the vendor-specific Calendar and Contacts/Recent Calls apps.

We then used RetroScope to recreate as many previous app screens as still exist

in the memory images of the 45 (15 × 3) apps. The recovery results are reported in

Tables 5.1, 5.2, and 5.3. These tables presents the device and app name in Columns

1 and 2, respectively. Column 3 shows the ground-truth number of screens that

RetroScope should recover, and Column 4 reports the number of screens recovered.

Columns 5 through 9 present several metrics recorded over the selective reanimation

of all screen redrawing functions for each app: Column 5 shows the number of reani-

mated Java byte-code instructions, Column 6 reports the number of JNI invocations

(i.e., C/C++ functions invoked from Java code) observed, and Columns 7 and 8 re-

port the total number of newly allocated Java objects and C/C++ structures that

made up the new screens. Column 9 shows RetroScope’s runtime for each case.

Selective Reanimation Metrics. Tables 5.1, 5.2, and 5.3 provide interesting

insights into the complexity and scale of screen redrawing via selective reanimation.

From these, we learn that an average of 231,867 byte-code instructions and 5,047 JNI

121

T
ab

le
5.

1.
:

S
am

su
n
g

S
4

re
su

lt
s

of
R

et
ro

S
co

p
e

ev
al

u
at

io
n
.

D
ev

ic
e

A
p

p
E

x
p

ec
te

d
#

of
S

cr
ee

n
s

R
et

ro
S

co
p

e

R
ec

ov
er

y

M
et

ri
cs

fo
r

E
va

lu
a
ti

n
g

S
el

ec
ti

v
e

R
ea

n
im

a
ti

o
n

B
y
te

-C
o
d

e
J
N

I
A

ll
o
ca

te
d

N
ew

C
/
C

+
+

R
u

n
ti

m
e

In
st

ru
ct

io
n

s
In

vo
ca

ti
o
n

s
J
av

a
O

b
je

ct
s

S
tr

u
ct

u
re

s
(s

ec
o
n

d
s)

S
am

su
n

g
S

4

C
al

en
d

ar
8

8
2
5
9
1
9
6

4
6
9
9

9
3
0

7
9
1
1
9

5
0
2

C
h

as
e

B
an

k
in

g
9

9
4
2
4
3
3
6

9
3
1
8

1
9
0
5

1
0
6
1
6
8

1
6
1
0

C
on

ta
ct

s
5

5
1
9
9
7
5
5

4
6
0
6

9
2
8

4
9
3
2
2

3
6
9

F
ac

eb
o
ok

6
6

3
3
8
1
9
5

7
9
2
8

1
4
3
2

4
5
4
2
0

1
0
5
9

G
m

ai
l

5
5

1
8
8
4
6
3

4
1
8
5

8
2
6

8
0
8
0
8

4
8
7

In
st

ag
ra

m
7

7
2
4
0
1
3
9

5
1
9
1

4
8
2

8
6
3
1
9

6
7
2

IR
S

2G
o

5
5

1
9
5
4
1
3

4
4
5
0

7
9
0

2
1
0
2
7

6
7
4

M
M

S
3

3
9
6
8
5
6

2
0
0
4

3
3
3

2
5
3
1
1

2
7
6

M
ic

ro
so

ft
W

or
d

3
3

2
1
1
7
6
2

4
2
7
3

4
6
0

5
8
2
9
1

6
3
7

M
y
C

h
ar

t
4

4
7
4
2
1
3

1
6
3
2

3
6
7

1
8
9
0
2

2
5
9

S
k
y
p

e
6

6
2
3
6
2
1
3

5
2
5
6

1
0
7
2

3
0
7
5
3

4
8
6

T
el

eg
ra

m
6

7
1
7
7
9
7
3

3
4
8
8

3
1
4

4
1
8
1
5

6
6
4

T
ex

tS
ec

u
re

4
4

1
4
5
4
3
6

3
4
6
1

7
6
3

2
7
4
5
0

4
5
0

W
eC

h
at

3
3

1
2
1
6
3
0

2
8
2
3

6
3
8

2
4
7
3
0

8
3
1

W
h

at
sA

p
p

7
8

4
0
2
5
3
6

8
1
8
6

1
3
7
3

6
5
8
1
8

1
3
9
0

122

T
ab

le
5.

2.
:

L
G

G
3

re
su

lt
s

of
R

et
ro

S
co

p
e

ev
al

u
at

io
n
.

D
ev

ic
e

A
p

p
E

x
p

ec
te

d
#

of
S

cr
ee

n
s

R
et

ro
S

co
p

e

R
ec

ov
er

y

M
et

ri
cs

fo
r

E
va

lu
a
ti

n
g

S
el

ec
ti

v
e

R
ea

n
im

a
ti

o
n

B
y
te

-C
o
d

e
J
N

I
A

ll
o
ca

te
d

N
ew

C
/
C

+
+

R
u

n
ti

m
e

In
st

ru
ct

io
n

s
In

vo
ca

ti
o
n

s
J
av

a
O

b
je

ct
s

S
tr

u
ct

u
re

s
(s

ec
o
n

d
s)

L
G

G
3

C
al

en
d

ar
7

7
1
9
9
2
9
0

4
1
9
3

6
6
5

7
2
9
4
4

4
7
8

C
h

as
e

B
an

k
in

g
8

8
3
6
0
6
0
7

8
4
3
6

1
8
4
3

1
2
7
3
3
7

1
7
3
1

C
on

ta
ct

s
5

5
3
1
3
0
6
8

6
2
8
9

1
1
8
4

1
0
5
0
0
4

4
3
0

F
ac

eb
o
ok

7
7

4
4
8
5
3
5

1
0
0
3
8

1
8
9
2

8
8
9
4
9

1
4
1
3

G
m

ai
l

6
6

2
6
3
8
5
0

6
1
4
8

1
3
5
3

2
3
9
7
1
1

1
2
4
8

In
st

ag
ra

m
5

5
2
4
5
0
9
4

5
0
9
7

4
8
9

1
0
4
3
9
1

4
4
6

IR
S

2G
o

6
6

3
3
5
3
2
3

7
5
9
9

1
4
5
8

8
2
0
7
7

7
0
9

M
M

S
6

6
1
4
7
4
2
8

3
0
7
7

4
2
2

6
1
2
1
0

3
0
3

M
ic

ro
so

ft
W

or
d

4
4

1
7
5
3
9
4

4
1
8
9

6
5
2

5
1
7
6
9

3
7
5

M
y
C

h
ar

t
3

3
5
9
2
8
4

1
2
9
1

2
0
2

2
4
9
9
5

3
3
5

S
k
y
p

e
6

5
2
3
8
2
2
7

4
9
1
4

9
1
4

6
3
0
0
7

3
8
2

T
el

eg
ra

m
6

6
1
2
5
0
8
5

2
4
5
2

1
8
3

4
8
4
9
6

2
9
7

T
ex

tS
ec

u
re

6
6

2
0
6
1
4
6

4
3
8
8

8
6
0

8
0
6
7
2

3
8
1

W
eC

h
at

4
5

2
2
5
2
4
5

5
2
9
6

1
2
9
3

7
2
3
1
0

6
3
2

W
h

at
sA

p
p

7
8

2
0
5
6
6
1

4
5
4
8

8
8
4

6
7
7
8
9

4
6
6

123

T
ab

le
5.

3.
:

H
T

C
O

n
e

re
su

lt
s

of
R

et
ro

S
co

p
e

ev
al

u
at

io
n
.

D
ev

ic
e

A
p

p
E

x
p

ec
te

d
#

of
S

cr
ee

n
s

R
et

ro
S

co
p

e

R
ec

ov
er

y

M
et

ri
cs

fo
r

E
va

lu
a
ti

n
g

S
el

ec
ti

v
e

R
ea

n
im

a
ti

o
n

B
y
te

-C
o
d

e
J
N

I
A

ll
o
ca

te
d

N
ew

C
/
C

+
+

R
u

n
ti

m
e

In
st

ru
ct

io
n

s
In

vo
ca

ti
o
n

s
J
av

a
O

b
je

ct
s

S
tr

u
ct

u
re

s
(s

ec
o
n

d
s)

H
T

C
O

n
e

C
al

en
d

ar
6

6
1
9
7
3
1
6

3
6
7
5

7
3
2

1
0
2
6
4
2

7
4
9

C
h

as
e

B
an

k
in

g
1
1

1
1

5
8
4
5
8
7

1
2
5
9
1

2
0
9
1

2
6
6
9
6
5

8
5
0

C
on

ta
ct

s
3

3
1
9
0
8
4
7

4
0
2
3

7
2
3

7
1
5
7
8

3
8
0

F
ac

eb
o
ok

6
5

3
8
2
5
2
2

8
6
2
9

1
4
5
1

9
5
5
1
6

1
1
2
8

G
m

ai
l

6
6

2
3
5
9
7
3

5
3
6
6

9
2
9

1
2
9
8
0
4

1
1
2
8

In
st

ag
ra

m
3

3
8
6
8
2
9

2
0
7
8

4
3
3

4
2
0
3
7

3
9
9

IR
S

2G
o

5
5

2
0
0
1
9
6

4
5
1
0

8
3
2

5
2
0
9
7

5
4
7

M
M

S
4

4
9
3
9
7
1

1
9
5
0

2
8
7

4
5
0
8
5

4
9
3

M
ic

ro
so

ft
W

or
d

3
3

1
3
7
9
7
8

3
2
4
9

5
6
2

4
3
2
0
9

4
5
6

M
y
C

h
ar

t
6

6
1
3
1
8
7
6

2
5
9
9

3
5
3

6
5
3
7
7

4
0
3

S
k
y
p

e
9

9
4
6
8
2
5
8

9
8
1
7

1
2
3
2

1
4
9
3
7
2

8
9
0

T
el

eg
ra

m
4

4
9
8
6
6
2

1
9
8
9

1
8
5

4
9
9
0
2

2
9
1

T
ex

tS
ec

u
re

7
8

2
3
1
8
9
1

5
2
6
8

9
2
4

9
8
5
7
1

4
8
8

W
eC

h
at

5
5

2
1
1
5
1
8

4
8
3
6

9
0
1

6
9
5
8
7

7
2
3

W
h

at
sA

p
p

6
6

3
2
1
2
2
9

7
0
7
5

1
5
7
1

1
0
4
2
1
6

5
7
3

124

function invocations are required to redraw all of the screens for a single app. This

yields an average of 41,078 byte-code instructions and 894 JNI function invocations per

screen. Higher than our initial expectations, these numbers attest to the complexity

of the screen drawing implementation and robustness of RetroScope’s IRE.

Another metric above our expectation was the number of data structures that had

to be newly allocated to redraw each screen. While redrawing all previous screens of

each app, the reanimated code allocated an average of 891 Java objects and 76,397

C/C++ structures per app, and an average of 158 Java objects and 13,535 C/C++

structures per screen. These numbers confirm the claim in GUITAR that each screen

is made of “thousands of GUI data structures.” Most importantly, as also shown

previously, only the structures for Screen 0 may still exist in a memory image, whereas

RetroScope actively triggers the rebuilding of the lost data for Screens 0, -1, -2, ...

-N.

5.3.1 Spatial-Temporal Evidence Recovery

Ground Truth. We now evaluate how accurately RetroScope recreates the screens

displayed during our last interaction session with each app. However, obtaining the

ground truth (how many previous screens RetroScope should recover) is not straight-

forward because the screens’ recoverability is decided by the availability of the app’s

internal data in the memory image. Therefore, to identify the recoverable previous

screens, we instrumented each app to log any non-GUI-related data allocations and

accesses performed by each screen-drawing function. We then compared this log to

the content of the final memory image to identify which screens’ entire app-internal

data still existed4. This gives us a strict lower bound on the number of screens that

RetroScope should recover (i.e., all the internal data for those screens exist in the

memory image). Without app-specific reverse engineering efforts, it is impossible to

4Note that RetroScope did not have access to nor could benefit from this ground truth information.
Further, we utilized in-place binary instrumentation (which does not interact nor interfere with the
app’s execution or memory management) to ensure the accuracy of our experiments.

125

know the upper bound that the app’s internal data could support. But as we discuss

later, screen redrawing is often “all or nothing” and adheres closely to this lower

bound.

Highlights of Results. RetroScope recovered a total of 254 screens for the 45

apps, from a low of 3 to a high of 11 screens — ironically for the privacy sensitive

Chase Banking app on the HTC One phone (Figure 5.6). Overall, Tables 5.1, 5.2,

and 5.3 show that RetroScope recovers an average of 5.64 screens per app, with the

majority of the test cases (33 out of 45) having 5 or more screens.

Tables 5.1, 5.2, and 5.3 highlight the depth of temporal evidence that RetroScope

makes available to forensic investigators, but even more intriguing is the clear pro-

gression of user-app interaction portrayed by the recovered screens. Figure 5.5 shows

the 7 screens recovered for the Facebook app on the LG G3 phone. From these screens

we can infer the “suspect’s” progression: from his own profile (Screen -6), to search

results for “hitman” (Screen -5), to the Facebook profile (Screen -4), Photos screen

(Screen -3), a photo album (Screen -2) of the Hitman movie, to a single photo (Screen

-1), and lastly to that photo’s comments (Screen 0). Such powerful spatial-temporal

recovery — from a single memory image — is not possible via any existing memory

forensics technique.

Another interesting observation from those tables is that, although RetroScope’s

recovery is app-agnostic, the apps’ diverse implementations lead to very different

redrawing procedures. For example, for both Skype and Facebook apps on the Sam-

sung S4, RetroScope reproduced all 6 screens from each app. However, Facebook’s

redrawing implementation appears much more complex, requiring 338,195 byte-code

instructions and 7,928 JNI invocations, compared to Skype’s 236,213 byte-code in-

structions and 5,256 JNI invocations. This also leads to varied RetroScope run times:

from the shortest, Samsung S4’s MyChart, at 259 seconds to the longest, LG G3’s

Chase Banking, at 1731 seconds. The average runtime across all apps is 655 seconds

(10 minutes, 55 seconds).

126

Lastly, Tables 5.1, 5.2, and 5.3 show that in two cases (Rows 26 and 34), Ret-

roScope missed a single screen. Manual investigation of these cases revealed that

the app-specific drawing functions for the missed screens had thrown unhandled Java

exceptions. For the HTC One device’s Facebook case, we found that the app had

stored a pointer to the Thread object which handled its user interface and during

redrawing the app failed on a check that the current Thread (handled by RetroScope

during reanimation) is the same as the previously stored Thread (from the memory

image). For the LG G3 Skype case, when drawing the “video call” screen, a saved

timer value (in the memory image) was compared against the system’s current time,

which also failed during reanimation. These were addressed by reverse engineering to

determine which field/condition in the app caused the fault, and RetroScope can be

instructed to set/avoid them during interleaved execution. Also of note, several cases

required recovering on-screen elements (e.g., user avatars) which were cached on per-

sistent storage until they are loaded on the screen. Currently, RetroScope attempts

to detect (e.g., via the unhandled exception) but can not automatically correct such

implementation-specific semantic constraints. We leave this as future work.

5.3.2 Case Study I: Behind the Logout

We now elaborate on the Chase Banking app case and highlight RetroScope’s abil-

ity to recreate an app’s previous screens even after the user has logged out. Table 5.3

Row 2 shows that RetroScope recovered 11 out of 11 screens (the highest of all cases).

Not surprisingly, the recovery required the most reanimated byte-code instructions

(584,587) and JNI function invocations (12,591), as well as the most re-allocated Java

objects (2,091) and C/C++ structures (266,965).

The recovered screens are shown in Figure 5.6. Starting from the Account screen

(Screen -10), the “suspect” looks up a nearby ATM (Screen -9). He then reviews his

recent money transfers (Screen -8) and begins a new transfer to a friend via the app’s

options menu (Screen -7). Screens -6 to -4 fill in the transfer’s recipient and amount.

127

Screen -3 asks the user to confirm the transfer. Screen -2 shows the app’s “Log Out”

menu, Screen -1 presents a loading screen while the app logs out, and Screen 0 is (as

expected) the app’s log in screen.

This case yields some interesting observations: First, it highlights the robustness

of RetroScope to recover a large number of screens when an app’s internal data

continues to accumulate. More importantly, the case shows that, after logging out,

the Chase app (as well as many others we have tested) does not clear its internal data.

This is not surprising because programmers usually consider their app’s memory to

be private (compared to network communications or files on persistent storage). This

is further evidenced by the TextSecure app, which also allows for a significant post-

logout recovery (of pre-logout screens), despite the app’s message database being

locked in the device’s storage.

5.3.3 Case Study II: Background Updates

Another interesting case is WhatsApp Messenger on the Samsung S4. Table 5.1

Row 15 shows that RetroScope reanimated 402,536 byte-code instructions and 8,186

JNI functions in 23 minutes, 10 seconds, yielding an average of 50,317 instructions and

1,023 JNI functions per screen. What was unexpected however is that RetroScope

recovered an extra screen (8 out of the 7 expected screens) from the memory image.

Our investigation into this extra screen found that it was not a screen we had pre-

viously seen during our phone usage. Instead, after we had finished interacting with

WhatsApp, the app received a new chat message while it was in the background and,

to our surprise, this prompted the app to prepare a new chat screen that appended

the newly received message to the chat. Figure 5.7 presents the screens recovered by

RetroScope, and again we see a clear temporal progression through the app by the

“suspect.” First, Screen -6 shows the call log screen. The app’s Settings screen is

seen in Screen -5 followed by a screen that is only accessible through the Settings: the

device owner’s profile (our fictitious device owner is Dr. King Schultz) in Screen -4.

128

Screen -3 shows the recent chats; Screen -2 shows the “suspect’s” chat with a friend;

then Dr. Schultz places a call to that friend in Screen -1. Lastly, Screen 0 shows

the friend’s profile. Then, the extra Screen +1 shows the chat screen as prepared by

the app while in the background. Indeed it shows the newly received message, even

time-stamped (“TODAY” and “4:51 AM” in Figure 5.7(h)) after the previous chat

had taken place.

To ensure that this result was not an accident, we repeated the experiment (re-

ceiving chat messages while the app was in the background) six more times (twice per

device). In every test, we found that RetroScope recovered the additional pre-built

chat screen containing the new message. Strangely, after testing the other apps which

can receive background updates, we found that WhatsApp is the only app, among our

15 apps, that exhibited this behavior. We suspect that this is a WhatsApp-specific

implementation feature to speed up displaying the chat screen (Screen +1) when the

device user clicks the “New Message” pop-up notification.

5.3.4 Case Study III: Deleted Messages

In addition to the WhatsApp case above, RetroScope recovered extra screens

for four other cases: Telegram (Table 5.1 Row 12), WeChat (Table 5.2 Row 14),

WhatsApp (Table 5.2 Row 15), and TextSecure (Table 5.3 Row 13). However, the

extra screens here are for a different reason: RetroScope can recover explicitly deleted

chat messages. In these tests, we began a chat in each app and then explicitly

deleted one of the messages (as a suspect would do in an attempt to hide evidence),

and then used RetroScope to recover the deleted message. Additionally, RetroScope

also recovered proof of the suspect’s intent to delete the message: For WeChat and

WhatsApp, RetroScope recovered the app’s pop-up menu (just prior to the deleted

message) which displays the “Delete Message” option. For TextSecure, RetroScope

recovered both the pop-up menu and a loading screen showing the text “Deleting

Messages.”

129

Figure 5.8 shows one example: RetroScope’s recovery for the WeChat app on the

LG G3. Screen -4 shows the “suspect’s” recent chats followed by a chat conversation

with a friend in Screen -3. Screen -2 is the pop-up menu displaying the “Delete”

option. The deleted message (now disconnected from the previous chat window) is

displayed in Screen -1, and the friend’s profile page (which the “suspect” navigated

to last) is shown in Screen 0.

This result, in particular, highlights one of the most powerful features of Retro-

Scope, given that it works for many apps and even provides proof of the suspect’s

intent. Further, all four apps tout their encrypted communication and some (e.g.,

TextSecure) even encrypt the message database in the device. In light of this, law

enforcement has routinely had trouble convincing developers of such apps to back-

door their encryption in support of investigations [52,54]. Despite the few hardening

measures discussed in Section 5.4, RetroScope can provide such alternative evidence

which would otherwise be unavailable to investigators.

5.4 RetroScope and Privacy Implications

RetroScope provides a powerful new capability to forensic investigators. But de-

spite being developed to aid criminal investigations, RetroScope also raises privacy

concerns. In digital forensics practice, the privacy of device users is protected by strict

legal protocols and regulations [40, 41], the most important of which is the require-

ment to obtain a search warrant prior to performing “invasive” digital forensics such

as memory image analysis. Outside the forensics context, even some of the authors

were surprised by the temporal depth of screens that RetroScope recovered for many

privacy-sensitive apps (e.g., banking, tax, and healthcare). In light of this, we discuss

possible mitigation techniques which, despite their significant drawbacks, might be

considered worthwhile by privacy-conscientious users/developers.

RetroScope’s recovery is based on two fundamental features of Android app design:

(1) All apps which present a GUI must draw that GUI through the provided View

130

class’s draw function and (2) The Android framework calls drawing functions on-

demand and prevents those drawing functions from performing blocking operations

(file/network reads/writes, etc.). As such, an app that aims to disrupt RetroScope’s

recovery would need to hinder its own ability to draw screens.

Previous anti-memory-forensics schemes focused on encrypting in-memory data

after its immediate use. This ensures that traditional memory scanning or data

structure carving approaches (e.g., [8, 17, 18]) would not find any useful evidence

beyond the few pieces of decrypted in-use data. However, these solutions cannot

hinder RetroScope’s recovery because RetroScope recovers evidence via the app’s

existing draw functions, which would have to include decryption routines as part

of building the app screen. App developers may add state-dependent conditions to

their draw functions which would crash when executed by RetroScope, but as seen

in Section 5.3 these can still be handled via additional debugging/reverse engineering

efforts to skip/fix the conditions.

One approach that may disable RetroScope’s recovery is to overwrite (i.e., zero)

all app-internal data immediately after they are drawn on screen. By doing so, Ret-

roScope would find that the app’s internal state could not support the execution of

any of its draw functions. Unfortunately, this approach would significantly degrade

usability and increase implementation complexity: First, frequently overwriting app-

internal data would incur execution overhead (especially during screen changes which

are expected to be fast and dynamic). More importantly, this would require the app

to download its internal data from a remote server every time the app needs to draw

a screen. An app may attempt to amortize these overheads (e.g., only zeroing a

prior session’s memory upon logout) but this would require: (1) tracking used/freed

memory throughout the session (to be zeroed later) and (2) users to regularly log

out, which is uncommon and inconvenient for frequently used apps such as email,

messengers, etc.

Current vs. Future Android Runtimes. It is worth noting that Google has

begun shifting the Android framework’s runtime from the Dalvik JVM to a Java-

131

to-native compilation and native execution environment (named ART). Our imple-

mentation of RetroScope was based on the original (and still the most widely used

by far [28]) Dalvik JVM runtime. However, during our development of RetroScope,

specific care was taken to design RetroScope to utilize only features present in both

runtimes. Specifically, ART still provides the same Java runtime tracking and support

as Dalvik does (implemented now via C/C++ libraries) and all apps’ implementa-

tions (e.g., their Views and draw functions) remain unchanged. Our study of ART

revealed that the only engineering effort required to port RetroScope is the intercep-

tion of state-changing instructions in the compiled byte-code, rather than the literal

byte-code as it exists in Dalvik. We leave this as future work.

132

Algorithm 5 RetroScope Selective Reanimation.

Input: Target App Memory Image M

Output: GUI Screen Ordered Set S
. Rebuild the Target App runtime environment.

1: for Segment S ∈M do . Remap memory segments.

2: if isNeededForReanimation(S) then

3: Map(S.startAddress, S.length, S.content)

4: SymbiontApp.initialize() . Set up Symbiont App.

5: JavaGlobalStructs G ← ∅ . Isolate the Target App runtime state.

6: for Segment S ∈M do . Find Java control data.

7: if containsJavaGlobals(S) then

8: G ← getJavaGlobals(S)

9: break

. Register reanimation points with the IRE.

10: InterleavedReexecutionEngine IRE

11: View Set V ← ∅ . Top-level Views.

12: for Class C ∈ G Classes do . Find top-level Views.

13: if C <: V iewParent then . ‘<:’ denotes subtype.

14: if not isSubView(C) then

15: IRE.beginOn(C.draw) . Register drawing function.

16: View Set views← C.instances

17: V ← V ∪ views

18: View T ← SymbiontApp.getTopLevelView()

19: T .invalidate() . Cause screen redraw command to be issued.

20: procedure CatchRedrawCommand

. Invoked when redraw command is issued.

21: for View view ∈ V do

22: T ← view . Override the Symbiont App’s top-level View.

. Record largest subView ID.

23: largestID ← max
v∈view.subV iews

v.getField(ID)

24: deliverRedrawCommand()

. IRE handles re-execution of redrawing code.

25: Screen s← T .copyGUIBuffer()

26: S.insert(largestID, s)

27: end procedure

133

1
.
 p

u
b

li
c

v
o

id
 d

ra
w

(C
an

v
as

 c
an

v
as

)
2

.
 {

…
4

.
in

t
d
en

si
ty

 =
 c

an
v

as
.m

D
en

si
ty

;

8
.

if
 (

d
en

si
ty

 !
=

 B
it

m
ap

.D
E

N
S

IT
Y

_
N

O
N

E
)

9
.

{
1

0
.

R
ec

t
b

o
u

n
d

s;

1
1

.

ca
n

v
as

.g
et

C
li

p
B

o
u

n
d

s(
b

o
u

n
d
s)

;

1
2

.

B
o
u

n
d

s.
ri

g
h

t
=

 t
h

is
.m

S
li

d
ea

b
le

.g
et

R
ig

h
t(

);

1
3

.

ca
n

v
as

.c
li

p
R

ec
t(

b
o

u
n

d
s)

;
…

1
.
p

u
b

li
c

b
o

o
le

an
g
et

C
li

p
B

o
u

n
d

s(
R

ec
t

b
o

u
n
d

s)
2

.
{

3
.

 …

4
.
}

T
ar

g
et

A
p

p
S

ta
te

T
ar

g
et

 A
p

p
 C

o
d

e
S

y
m

b
io

n
t

A
p

p
 C

o
d

e
α

IR
E

 S
ta

te

αδ γ δ α

P
o

p
p
ed

 F
ro

m
 I

R
E

 S
ta

te
 S

ta
ck

C
o

d
e

C
o
n

te
xt

B
a

rr
ie

r
C

ro
ss

es

γ

V
ie

w
 t

h
is

:

m
S

li
d

er
C

o
lo

r
2

5
5

m
S

li
d

ea
b

le

m
C

an
S

li
d

e
1

m
S

li
d

ea
b

le
:

m
T

ag
0

x
0

m
V

ie
w

F
la

g
s

6
4

m
P

ar
en

t

S
y
m

b
io

n
t

A
p

p
 S

ta
te

ca
n
va

s:

m
D

en
si

ty
0

m
W

id
th

1
0
8

0

m
H

ei
g
h

t
1

9
2

0

m
B

it
m

ap

o
.f

d
a

ta
 a

cc
es

s

F
ig

u
re

5.
4.

:
E

x
am

p
le

of
in

te
rl

ea
ve

d
re

-e
x
ec

u
ti

on
.

134

(a) Screen -6. (b) Screen -5. (c) Screen -4. (d) Screen -3. (e) Screen -2. (f) Screen -1.

(g) Screen 0.

Figure 5.5.: LG G3 Facebook recovery.

(a) Screen -10. (b) Screen -9. (c) Screen -8. (d) Screen -7. (e) Screen -6. (f) Screen -5.

(g) Screen -4. (h) Screen -3. (i) Screen -2. (j) Screen -1. (k) Screen 0.

Figure 5.6.: HTC One Chase Banking recovery.

135

(a) Screen -6. (b) Screen -5. (c) Screen -4. (d) Screen -3. (e) Screen -2. (f) Screen -1.

(g) Screen 0. (h) Screen +1.

Figure 5.7.: Samsung S4 WhatsApp recovery.

(a) Screen -4. (b) Screen -3. (c) Screen -2. (d) Screen -1. (e) Screen 0.

Figure 5.8.: LG G3 WeChat recovery.

136

6 RELATED WORKS

Acquisition of Memory Images. A prerequisite of memory forensics is the timely

acquisition of a memory image from the subject device. Memory images typically con-

tain a byte-for-byte copy of the entire physical RAM of a device or the virtual memory

of an operating system or specific process(es). Traditionally, acquisition is performed

by investigators, before the subject device is powered down, using minimally inva-

sive software (e.g., fmem [55], LiME [56]) or hardware (e.g., Tibble [6], CoPilot [57])

tools. Other notable techniques have used the DMA-capable Firewire port [58] to

acquire memory images, existing hibernation or swap files [10, 59–61], or cold/warm

booted devices [62–64], but such approaches are only employed for highly specialized

investigations. A more comprehensive list of memory image acquisition tools can be

found in [65].

Android memory forensics was initially proposed during the development of mem-

ory acquisition tools for the devices. Most known among these are the software-based

LiME [56] and TrustDump [66] techniques. In an alternative approach, Hilgers et

al. [62] proposed cold-booting Android phones to perform memory forensics. Our

evaluation used both LiME and a ptrace-based tool we developed (also available with

the open source RetroScope code). Meanwhile, hardware-based memory acquisition

from a mobile device is often performed via the ARM processor’s JTAG port [67,68].

Memory Image Analysis. Prior to my work, researchers and investigators alike

considered data-structure recovery the ultimate goal of memory image forensics. Ear-

lier techniques for the analysis of memory images can be roughly divided into the

following two categories based on the data structure signatures they employ:

1. Value-invariant signatures leverage known in-memory value patterns or invari-

ants to locate data structure instances via brute-force scanning [8–13].

137

2. Structural-invariant (or “points-to”) signatures rely on the interconnection of

data structure networks. SigGraph [17] most embodies this line of work as it uses

such signatures for brute-force memory image scanning. To date, most forensic tools

and reverse engineering systems rely on traversing data structures (making use of

structural-invariant assumptions) [15, 22,69–71].

Binary reverse engineering techniques [15,16,70] or unsupervised learning [72] can

be used to reverse engineer data structure definitions (e.g., field types) from bina-

ries. Such tools are essential when the subject data structures are entirely unknown.

Building upon these, DIMSUM [18] used probabilistic inference to locate known data

structures in un-mapped memory. However, DIMSUM requires input data structure

definitions to be correct. These works are most related to VCR, but the challenge

VCR faces is unique (and not observed in any of these prior works): VCR relies

on the availability of the AOSP structure definitions but assumes that they are not

correct and therefore employs probabilistic inference to derive signatures for vendor

customization.

Compared to the work presented in this dissertation, these techniques represent

the traditional methodology of memory forensics: recovering individual pieces of raw

data. Their recovery capabilities lack any semantic contextual understanding of this

evidence. This limitation is what motivated my initial content reverse engineering

efforts pioneered by DSCRETE. My later work moved away from relying on struc-

ture definitions, most notably, as a fundamentally new memory forensics technique,

RetroScope requires neither structure signature generation nor memory scanning.

Smartphone Memory Forensics. Due to the relatively recent interest in Android

memory forensics, few works have focused specifically on the topic. DEC0DE [73]

employed probabilistic finite state machines to recover plain-text call logs and ad-

dress book entries from phone storage. Spurred by the release of Android memory

acquisition tools [56,66], several efforts began recovering app-specific data from mem-

ory images. Originally, Thing et al. [74] investigated recovering Android in-memory

138

message-based communications. Sylve et al. [7], followed by my earlier work [43],

ported Linux memory analysis tools to recover Android kernel data.

Later, Macht [75] recovered raw Dalvik-JVM control structures. Dalvik Inspector

[50] built on that to recover Java objects from app memory dumps. Apostolopoulos

et al. [76] recovered login credentials from memory images of certain apps. Lastly,

Hilgers et al. [62] proposed using memory analysis on cold-booted Android phones.

The work presented in this dissertation shares the same analysis subjects with

these efforts: Android memory images. However, these techniques focus on the re-

covery of low-level raw data (e.g., Dalvik JVM structures or app-specific login creden-

tial). My work has specifically sought to develop application generic and application

agnostic solutions for both recovering and semantic contextual evidence, which is

a step beyond only locating data structure instances. Further, the work presented

in this dissertation uniquely enables the fundamentally more powerful capability of

spatial-temporal evidence recovery from the same smartphone memory images.

Binary Component Identification and Reuse. At the heart of many of my

techniques is application logic reuse. For example, DSCRETE uses dynamic binary

program tracing to identify which functional component of a binary application is

responsible for generating forensically interesting output. They hence shares some

common underlying techniques with existing binary identification and reuse tech-

niques [77–79] and program feature identification [80,81].

Similar to how DSCRETE employed a data dependence graph, Wong et. al. [80]

used program slicing to identify the code region for a program feature. To further un-

derstand which application components contribute to an observed runtime behavior,

Greevy et al. [81] used feature-driven dynamic analysis to isolate computational units

of an application. In contrast, DSCRETE uses only an application’s data dependence

to identify candidates for later construction of a memory scanner+renderer.

Binary Code Reutilization (BCR) [77] involved using a combination of dynamic

and static binary analysis to identify and extract malware encryption and decryption

139

functions. The goal of BCR was to reuse such extracted logic as a functional compo-

nent in a different program developed by the user. Inspector Gadget [78] uses dynamic

slicing to identify specific malware behavior for extraction and later reuse/analysis.

Lin et al. [79] suggested using dynamic slicing to identify applications’ functional

components to compose reuse-based trojan attacks. In contrast, my work does not

aim to extract application logic from a target binary, but rather re-execute it in-place

to analyze a memory image and the semantic contextual evidence it contains.

Virtuoso [82] involves using dynamic slicing to identify logic from in-guest appli-

cations which could be reused for virtual machine introspection. However, Virtuoso

is not able to handle input that is not encountered during off-line training. Later,

VMST [83] and Hybrid-Bridge [84] use system-wide instruction monitoring to allow

introspection of one VM’s kernel data from another. DSCRETE is most similar to

works in this area. Compared to VMST, which redirects memory accesses for every

instruction of the reused logic, DSCRETE only needs to replace the data structure

pointer at the closure point. Further, VMST relies on system call definitions to start

logic reuse, while DSCRETE must automatically identify such a starting point (i.e.,

the closure point) in the subject binary.

140

7 CONCLUSION

In this dissertation, I have presented a line of research which has proposed a paradigm

shift in memory image analysis. My work has purposely broken away from traditional

data-recovery-oriented forensics, and instead I have developed a memory forensics

framework which leverages program analysis to automatically understand the artifacts

that applications leave in a memory image. In doing so, this framework has enabled

the recovery of spatial-temporal evidence from only such in-memory artifacts. These

four techniques, and the new program analysis techniques which enable them, have

introduced new encryption-oblivious forensics capabilities far exceeding traditional

data-structure recovery.

DSCRETE reuses an application’s own logic from a subject binary program to

uncover and render forensically interesting data in a memory image. DSCRETE is

able to recreate intuitive, human-observable application output from the memory

image, without the burden of reverse engineering data structure definitions.

VCR contributed novel memory forensics techniques to recover key data structures

in the face of vendor customizations in order to recover and render photographic

evidence from Android device memory images.

To address the real-world smartphone forensics challenge of GUI reconstruction,

I presented GUITAR. Instead of focusing on recovering individual data structures,

GUITAR pieces back together GUI data structures — already deallocated by Android

— to recreate an original GUI.

Finally, RetroScope invented a spatial-temporal memory forensics technique (and

new paradigm) that recovers multiple previous screens from an app’s memory image.

Based on a novel interleaved re-execution engine, RetroScope selectively reanimates

an app’s screen redrawing functionality without requiring any app-specific knowledge.

141

Our experiments show that DSCRETE is able to effectively identify interpreta-

tion/rendering functions in a variety of real-world applications — overcoming the long

standing content reverse engineering challenge. Our tests with a variety of different

versions of the Android framework led to several key observations about the impor-

tance of VCR rendered photographic evidence and the temporal evidence which they

provide to investigations. We found that GUITAR achieves high accuracy in GUI tree

reconstruction and redrawing, and tolerates loss of GUI data elements over time by

reconstructing partial yet meaningful GUIs. Lastly, RetroScope is shown to recover

visually accurate, temporally ordered screens (ranging from 3 to 11 screens) for a

variety of apps on three different Android phones.

In conclusion, the robust, encryption-oblivious forensics capabilities realized by

this new memory image analysis framework highlight the impactful benefit and pos-

sibilities of program-analysis-driven forensics techniques.

REFERENCES

142

REFERENCES

[1] American Civil Liberties Union. This Map Shows How the Apple-FBI Fight Was
About Much More Than One Phone. https://www.aclu.org/blog/speak-
freely/map-shows-how-apple-fbi-fight-was-about-much-more-one-
phone, 2016.

[2] Brendan Saltaformaggio, Zhongshu Gu, Xiangyu Zhang, and Dongyan Xu.
DSCRETE: Automatic rendering of forensic information from memory im-
ages via application logic reuse. In Proc. USENIX Security Symposium, 2014.
Best Student Paper Award.

[3] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. VCR: App-agnostic recovery of photographic evidence from an-
droid device memory images. In Proc. ACM Conference on Computer and Com-
munications Security, 2015.

[4] Brendan Saltaformaggio, Rohit Bhatia, Zhongshu Gu, Xiangyu Zhang, and
Dongyan Xu. GUITAR: Piecing together android app GUIs from memory im-
ages. In Proc. ACM Conference on Computer and Communications Security,
2015. Best Paper Award.

[5] Brendan Saltaformaggio, Rohit Bhatia, Xiangyu Zhang, Dongyan Xu, and
Golden G Richard III. Screen after previous screens: Spatial-temporal recre-
ation of android app displays from memory images. In Proc. USENIX Security
Symposium, 2016.

[6] Brian D Carrier and Joe Grand. A hardware-based memory acquisition procedure
for digital investigations. Digital Investigation, 1, 2004.

[7] Joe Sylve, Andrew Case, Lodovico Marziale, and Golden G Richard. Acquisition
and analysis of volatile memory from android devices. Digital Investigation, 8,
2012.

[8] The Volatility Framework. https://www.volatilesystems.com/default/
volatility.

[9] Andreas Schuster. Searching for processes and threads in microsoft windows
memory dumps. Digital Investigation, 3, 2006.

[10] Nick L Petroni Jr, Aaron Walters, Timothy Fraser, and William A Arbaugh.
FATKit: A framework for the extraction and analysis of digital forensic data
from volatile system memory. Digital Investigation, 3, 2006.

[11] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon Gif-
fin. Robust signatures for kernel data structures. In Proc. ACM Conference on
Computer and Communications Security, 2009.

143

[12] Chris Betz. Memparser forensics tool. http://www.dfrws.org/2005/
challenge/memparser.shtml, 2005.

[13] C Bugcheck. Grepexec: Grepping executive objects from pool memory. In Proc.
Digital Forensic Research Workshop, 2006.

[14] Martim Carbone, Weidong Cui, Long Lu, Wenke Lee, Marcus Peinado, and
Xuxian Jiang. Mapping kernel objects to enable systematic integrity checking.
In Proc. ACM Conference on Computer and Communications Security, 2009.

[15] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering
of data structures from binary execution. In Proc. Network and Distributed
System Security Symposium, 2010.

[16] Asia Slowinska, Traian Stancescu, and Herbert Bos. Howard: A dynamic exca-
vator for reverse engineering data structures. In Proc. Network and Distributed
System Security Symposium, 2011.

[17] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian Jiang.
SigGraph: Brute force scanning of kernel data structure instances using graph-
based signatures. In Proc. Network and Distributed System Security Symposium,
2011.

[18] Zhiqiang Lin, Junghwan Rhee, Chao Wu, Xiangyu Zhang, and Dongyan Xu.
DIMSUM: Discovering semantic data of interest from un-mappable memory with
confidence. In Proc. Network and Distributed System Security Symposium, 2012.

[19] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Pro-
cessing Letters, 29(3), 1988.

[20] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Build-
ing customized program analysis tools with dynamic instrumentation. In ACM
SIGPLAN Notices, volume 40, 2005.

[21] Daniel Ayers. A second generation computer forensic analysis system. Digital
Investigation, 6, 2009.

[22] Junyuan Zeng, Yangchun Fu, Kenneth A. Miller, Zhiqiang Lin, Xiangyu Zhang,
and Dongyan Xu. Obfuscation resilient binary code reuse through trace-oriented
programming. In Proc. ACM Conference on Computer and Communications
Security, 2013.

[23] Riley v. California. 134 S. Ct. 2473, (2014).

[24] Brian D Carrier. Risks of live digital forensic analysis. Communications of the
ACM, 49(2), 2006.

[25] Frank Adelstein. Live forensics: Diagnosing your system without killing it first.
Communications of the ACM, 49(2), 2006.

[26] Rolando R. Lopez. Battling Human Trafficking with Big Data. Invited talk,
USENIX Security Symposium, 2014.

[27] Per-Erik Danielsson. Euclidean distance mapping. Computer Graphics and image
processing, 14(3), 1980.

144

[28] Google, Inc. Android dashboards - platform versions. https://developer.
android.com/about/dashboards/index.html, 2015.

[29] Qi Alfred Chen, Zhiyun Qian, and Z Morley Mao. Peeking into your app without
actually seeing it: UI state inference and novel android attacks. In Proc. USENIX
Security Symposium, 2014.

[30] Chia-Chi Lin, Hongyang Li, Xiaoyong Zhou, and XiaoFeng Wang. Screenmilker:
How to milk your android screen for secrets. In Proc. Network and Distributed
System Security Symposium, 2014.

[31] Gates Rubber Co. v. Bando Chemical Industries, Ltd. 9 F. 3d 823, (1993).

[32] Schaghticoke Tribal Nation v. Kempthorne. 587 F. Supp. 2d 389, (2008).

[33] US v. Scholle. 553 F. 2d 1109, (1977).

[34] US v. Vela. 673 F. 2d 86, (1982).

[35] US v. Bonallo. 858 F. 2d 1427, (1988).

[36] John Paul Mitchell Systems v. Quality King Distributors, Inc. 106 F. Supp. 2d
462, (2000).

[37] Pearl Brewing Co. v. Jos. Schlitz Brewing Co. 415 F. Supp. 1122, (1976).

[38] Illinois Tool Works v. Metro Mark Products, Ltd. 43 F. Supp. 2d 951, (1999).

[39] Nat. Union Elec. Corp. v. Matsushita Elec. Indus. Co. 494 F. Supp. 1257, (1980).

[40] John Ashcroft, Deborah J Daniels, and Sara V Hart. Forensic examination of
digital evidence: A guide for law enforcement. U.S. National Institute of Justice,
Office of Justice Programs, NIJ Special Report, NCJ 199408, 2004.

[41] H Marshall Jarrett, Michael W Bailie, E Hagen, and N Judish. Searching and
seizing computers and obtaining electronic evidence in criminal investigations.
U.S. Department of Justice, Computer Crime and Intellectual Property Section
Criminal Division, 2009.

[42] 7 American Law Reports. 4th, 8, 2b.

[43] Brendan Saltaformaggio. Forensic carving of wireless network information from
the android linux kernel. University of New Orleans Theses and Dissertations,
Paper 20, 2012.

[44] Michael Graves. Digital Archaeology: The Art and Science of Digital Forensics.
Addison-Wesley, 2013.

[45] Hungarian algorithm method source. https://github.com/maandree/
hungarian-algorithm-n3/blob/master/hungarian.c, 2014.

[46] Mathias Lux and Savvas A Chatzichristofis. Lire: Lucene image retrieval: An
extensible java CBIR library. In Proc. ACM International Conference on Multi-
media, 2008.

145

[47] Mathias Lux. Content based image retrieval with lire. In Proc. ACM Interna-
tional Conference on Multimedia, 2011.

[48] Savvas A Chatzichristofis and Yiannis S Boutalis. CEDD: Color and edge di-
rectivity descriptor: a compact descriptor for image indexing and retrieval. In
Computer Vision Systems. 2008.

[49] Open Whisper Systems. TextSecure Private Messenger. https://play.google.
com/store/apps/details?id=org.thoughtcrime.securesms, 2015.

[50] 504ENSICS Labs. Dalvik Inspector. http://www.504ensics.com/automated-
volatility-plugin-generation-with-dalvik-inspector/, 2013.

[51] George H Mealy. A Method for Synthesizing Sequential Circuits. Bell System
Technical Journal, 34(5):1045–1079, 1955.

[52] Signal, the Snowden-Approved Crypto App, Comes to Android.
http://www.wired.com/2015/11/signals-snowden-approved-phone-
crypto-app-comes-to-android/, 2015.

[53] ISIS still using Telegram channels - Business Insider. http://www.
businessinsider.com/isis-telegram-channels-2015-11, 2015.

[54] Apple vs. the FBI: Google, WhatsApp, John McAfee and more are taking
sides - LA Times. http://www.latimes.com/business/technology/la-fi-
tn-tech-response-apple-20160218-snap-htmlstory.html, 2016.

[55] Ivor Kollár. Forensic ram dump image analyser. Master’s Thesis, Charles Uni-
versity in Prague, 2010.

[56] 504ENSICS Labs. LiME Linux Memory Extractor. https://github.com/
504ensicsLabs/LiME, 2013.

[57] Nick Petroni, Timothy Fraser, Jesus Molina, and William Arbaugh. Copilot - a
coprocessor-based kernel runtime integrity monitor. In Proc. USENIX Security
Symposium, 2004.

[58] Michael Becher, Maximillian Dornseif, and Christian Klein. Firewire: All your
memory are belong to us. CanSecWest, 2005.

[59] Jesse D Kornblum. Using every part of the buffalo in windows memory analysis.
Digital Investigation, 4, 2007.

[60] Michael Gruhn. Windows NT pagefile.sys virtual memory analysis. In Proc. IT
Security Incident Management & IT Forensics (IMF), 2015.

[61] Golden G Richard and Andrew Case. In lieu of swap: Analyzing compressed
ram in mac os x and linux. Digital Investigation, 11, 2014.

[62] Christian Hilgers, Holger Macht, Tilo Muller, and Michael Spreitzenbarth. Post-
mortem memory analysis of cold-booted android devices. In Proc. IT Security
Incident Management & IT Forensics (IMF), 2014.

146

[63] J Alex Halderman, Seth D Schoen, Nadia Heninger, William Clarkson, William
Paul, Joseph A Calandrino, Ariel J Feldman, Jacob Appelbaum, and Edward W
Felten. Lest we remember: Cold-boot attacks on encryption keys. In Proc.
USENIX Security Symposium, 2008.

[64] Timothy Vidas. Volatile memory acquisition via warm boot memory survivabil-
ity. In Proc. Hawaii International Conference on System Sciences, 2010.

[65] Forensics wiki - memory imaging tools. http://forensicswiki.org/wiki/
Tools:Memory_Imaging, 2015.

[66] He Sun, Kun Sun, Yuewu Wang, Jiwu Jing, and Sushil Jajodia. Trustdump:
Reliable memory acquisition on smartphones. In Proc. European Symposium on
Research in Computer Security. 2014.

[67] Seung Jei Yang, Jung Ho Choi, Ki Bom Kim, and Taejoo Chang. New acquisition
method based on firmware update protocols for android smartphones. Digital
Investigation, 14, 2015.

[68] Advanced jtag mobile device forensics training. http://www.teeltech.com/
mobile-device-forensics-training/jtag-forensics/, 2015.

[69] Andrew Case, Andrew Cristina, Lodovico Marziale, Golden G Richard, and Vas-
sil Roussev. FACE: Automated digital evidence discovery and correlation. Digital
Investigation, 5, 2008.

[70] JongHyup Lee, Thanassis Avgerinos, and David Brumley. TIE: Principled re-
verse engineering of types in binary programs. In Proc. Network and Distributed
System Security Symposium, 2011.

[71] Paul Movall, Ward Nelson, and Shaun Wetzstein. Linux physical memory anal-
ysis. In Proc. USENIX Annual Technical Conference, FREENIX Track, 2005.

[72] Anthony Cozzie, Frank Stratton, Hui Xue, and Samuel T King. Digging for data
structures. In Proc. Symposium on Operating Systems Design and Implementa-
tion, 2008.

[73] Robert Walls, Brian N Levine, and Erik G Learned-Miller. Forensic triage for
mobile phones with DEC0DE. In Proc. USENIX Security Symposium, 2011.

[74] Vrizlynn LL Thing, Kian-Yong Ng, and Ee-Chien Chang. Live memory forensics
of mobile phones. Digital Investigation, 7, 2010.

[75] Holger Macht. Live memory forensics on android with volatility. Friedrich-
Alexander University Erlangen-Nuremberg, 2013.

[76] Dimitris Apostolopoulos, Giannis Marinakis, Christoforos Ntantogian, and
Christos Xenakis. Discovering authentication credentials in volatile memory
of android mobile devices. In Collaborative, Trusted and Privacy-Aware e/m-
Services. 2013.

[77] Juan Caballero, Noah M Johnson, Stephen McCamant, and Dawn Song. Binary
code extraction and interface identification for security applications. In Proc.
Network and Distributed System Security Symposium, 2010.

147

[78] Clemens Kolbitsch, Thorsten Holz, Christopher Kruegel, and Engin Kirda. In-
spector Gadget: Automated extraction of proprietary gadgets from malware
binaries. In Proc. IEEE Symposium on Security and Privacy, 2010.

[79] Zhiqiang Lin, Xiangyu Zhang, and Dongyan Xu. Reuse-oriented camouflaging
trojan: Vulnerability detection and attack construction. In Proc. IEEE/IFIP
International Conference on Dependable Systems and Networks, 2010.

[80] W Eric Wong, Swapna S Gokhale, and Joseph R Horgan. Quantifying the close-
ness between program components and features. Journal of Systems and Soft-
ware, 54(2), 2000.

[81] Orla Greevy and Stéphane Ducasse. Correlating features and code using a com-
pact two-sided trace analysis approach. In Proc. European Conference on Soft-
ware Maintenance and Reengineering, 2005.

[82] Brendan Dolan-Gavitt, Tim Leek, Michael Zhivich, Jonathon Giffin, and Wenke
Lee. Virtuoso: Narrowing the semantic gap in virtual machine introspection. In
Proc. IEEE Symposium on Security and Privacy, 2011.

[83] Yangchun Fu and Zhiqiang Lin. Space traveling across VM: Automatically bridg-
ing the semantic gap in virtual machine introspection via online kernel data
redirection. In Proc. IEEE Symposium on Security and Privacy, 2012.

[84] Yangchun Saberi, Alireza Fu and Zhiqiang Lin. Hybrid-Bridge: Efficiently bridg-
ing the semantic gap in virtual machine introspection via decoupled execution
and training memoization. In Proc. Network and Distributed System Security
Symposium, 2013.

VITA

148

VITA

Brendan Dominic Saltaformaggio earned a Master of Science in Computer Science

from Purdue University and a Bachelor of Science with Honors in Computer Science

from the University of New Orleans in New Orleans, LA (where he was born and

raised). His research interests lie in computer systems security and cyber forensics

with focuses on memory forensics, binary analysis and instrumentation, vetting of

untrusted software, and cloud computing security. His work has been awarded the

Best Student Paper Award at Usenix Security 2014 and the Best Paper Award at

ACM CCS 2015. His Ph.D. research has been partially funded via the 2016 Symantec

Research Labs Graduate Fellowship, and he was recently honored as the inaugural

recipient of the Emil Stefanov Memorial Fellowship. In the Spring of 2017, he will

begin a brief appointment as a postdoctoral researcher with his advisors at Purdue.

At the time of writing this dissertation, he is beginning his job search for a position

as an Assistant Professor to begin in the Fall of 2017.

