
Mistrust Plugins You Must: A Large-Scale Study Of Malicious Plugins
In WordPress Marketplaces

Ranjita Pai Kasturi, Jonathan Fuller, Yiting Sun, Omar Chabklo,
Andres Rodriguez, Jeman Park∗, Brendan Saltaformaggio∗

Georgia Institute of Technology

Abstract
Modern websites owe most of their aesthetics and
functionalities to Content Management Systems (CMS)
plugins, which are bought and sold on widely popular
marketplaces. Driven by economic incentives, attackers
abuse the trust in this economy: selling malware on
legitimate marketplaces, pirating popular plugins, and
infecting plugins post-deployment. This research
studied the evolution of CMS plugins in over 400K
production webservers dating back to 2012. We
developed YODA, an automated framework to detect
malicious plugins and track down their origin. YODA
uncovered 47,337 malicious plugins on 24,931 unique
websites. Among these, $41.5K had been spent on 3,685
malicious plugins sold on legitimate plugin
marketplaces. Pirated plugins cheated developers out of
$228K in revenues. Post-deployment attacks infected
$834K worth of previously benign plugins with malware.
Lastly, YODA informs our remediation efforts, as over
94% of these malicious plugins are still active today.

1 Introduction
Many modern websites are almost entirely constructed
from plugins and themes, which place implicit trust on
large amounts of un-vetted code with limitless access to
the webserver. Our research uncovered that this trust is
often broken for monetary gains and that malicious
plugin authors are literally selling plugins packed with
malware to unsuspecting victims. Worse still, we found
that most malicious plugins sold on popular plugin
marketplaces do not employ evasion or obfuscation
techniques, preferring to brazenly hide in plain sight.
Popular content management system (CMS) plugin

marketplaces generate over a billion dollars in revenue
every year [1], but little has been done by the research
community to evaluate, assess, and ensure the safety of
the consumers (website owners). Past research studied

*Co-corresponding author.

malicious apps in the Google Play Store [2], malicious
extensions on the Chrome Web Store [3], [4], and
malicious packages in package registries [5]. Prior work
also exposed malicious behaviors on webservers, such as
the presence of vulnerabilities [6], [7], webshells [8], and
backdoors [9], but none analyzed the underlying plugins
which lead to many of these attacks. Further, the
complexities of prior research solutions have prevented
the average CMS-user from adopting them.
CMS website owners often rely on simple indicators

such as plugin popularity, ratings, and reviews on the
plugin marketplaces to determine that a plugin is safe to
install on their website [10]. The diligent CMS-user may
consult freely available [11] or commercial [12], [13] plugin
vulnerability scan databases before installing a plugin.
Unfortunately, these sources provide neither complete
nor robust measures of security. Driven by economic
incentives, attackers buy the codebase of popular free
plugins, add malicious code, and wait for plugin users to
auto-update [14]. In such cases, none of the commonly
used simple indicators can help prevent malware from
infiltrating the website.

Our research performed a global measurement of the
malicious WordPress plugins ecosystem. We worked
with CodeGuard1, to analyze the WordPress plugins in
over 400,000 unique webservers dating back to 2012. We
uncovered 47,337 malicious plugin installs on 24,931
unique websites. Even worse, 3,685 of these plugin
instances were sold on legitimate plugin marketplaces.
Tracking the webservers and plugins over 8 years gave
us a unique vantage point to study the temporal
evolution of malicious plugins from a global perspective.
We found that the number of malicious plugins on
websites has steadily increased over the years, and
malicious activity peaked in March 2020. Shockingly,
94% of the malicious plugins installed over those 8 years
are still active today.

1One of the largest corporate website security and backup
solutions on the market.

Throughout our study, we found that solving this
problem is challenging due to the diverse range of
stakeholders in the CMS plugin ecosystem. Each has
different motivations and visibilities into this malicious
plugin problem. Website owners have full visibility over
the webserver activity, but they rely on naive indicators
when installing plugins. Hosting providers have no
visibility into the plugin installations but need to ensure
their hosting platform remains malware-free. Plugin
marketplaces have visibility over the plugins they host
but need a scalable and efficient measurement of the
malicious plugins being sold on their marketplaces.

An ideal solution must ensure ease of use and reliable
detection since plugins could be malicious anywhere in
this supply chain: from the source marketplace to a
post-deployment web attack (i.e., fake plugin injection).

To address these challenges, we developed YODA, an
automated framework to identify malicious plugins and
their origin. Towards usability, this can be integrated as
part of the webserver hosting platform or deployed by the
plugin marketplace. Website owners are often unaware
of the plugins installed or injected into their website,
so when deployed by a hosting provider, YODA starts
by detecting a webserver’s (possibly hidden) plugins.
YODA also crawls popular CMS plugin marketplaces
to identify each plugin’s provenance, ownership, and
global impact. Using YODA, website owners and hosting
providers can identify malicious plugins on the webserver;
plugin developers and marketplaces can vet their plugins
before distribution.
Our 8-year study using YODA revealed several

concerning facts: While the website owners trusted the
plugin ecosystem and spent a total of $7.3M on only the
plugins in our dataset, we found that this trust is often
broken for the attackers’ monetary gains. Attackers
impersonated benign plugin authors and spread
malware by distributing pirated plugins. YODA found
1,354 instances of pirated plugins responsible for one of
the largest known malvertising campaigns [15], many of
which are still active today. Furthermore, $41.5K was
spent on malicious plugins sold on legitimate plugin
marketplaces, and plugins that cost a total of $834K
were infected post-deployment by attackers. We hope
that YODA can regulate and reinstate the trust
between all stakeholders in the plugin ecosystem. Lastly,
we have made YODA’s source code available at:
https://cyfi.ece.gatech.edu/

2 Preliminary Study: Perilous Economy
Plugins are groups of files that work together to add
aesthetic features and functionalities to a CMS website.
Upon each visit to the website, the CMS loads all active
plugins (i.e., executes plugin code) on the webserver.
Our Dataset. Our collaboration with CodeGuard

furnished access to the nightly backups of over 400K
unique WordPress websites. These backups contain the
server-side files and their version-controlled changes
collected from July 2012 to July 2020. They give
YODA the vantage point of both an individual website
owner as well as a hosting provider (i.e., access to the
webserver files). This allows us to retroactively deploy
YODA over 8 years by executing YODA on each
nightly backup for every website. Note that CodeGuard
anonymized the website owner profiles — only a
random ID and the URL were linked to each website
backup. Furthermore, we only analyzed the webserver
files with no database access. All websites in our study
are CodeGuard’s active clients, i.e., if a client stops
using CodeGuard’s service all their data is immediately
deleted, thus we will not have access to it.
Responsible Disclosure. The individual
website-owners are anonymized by CodeGuard.
However, all of CodeGuard’s customers agree to their
Privacy Policy whereby their data may be shared with
third-parties to help CodeGuard safeguard their
websites. Since we cannot directly contact the affected
victims, we have alerted CodeGuard about our findings
and they are processing the disclosure.
Plugin Marketplaces. WordPress plugins and themes
generate millions of dollars in sales every year [1]. These
plugins2 are either created by an individual or teams
of developers, including WordPress themselves. After
detecting the plugins in our dataset (5.7M of them), we
performed a preliminary study to understand the scale
of this economy. We measured the plugin downloads and
price data in July 2020 for the plugins in our dataset.
This required scraping and cross-correlating data from
the plugin code and online marketplaces. Table 1 lists
the plugin marketplaces, the total number of plugins, and
the unique number of plugins from these marketplaces in
our dataset. As seen in Table 1, thousands of plugins are
freely available on the WordPress repositories [16], [17]
and software development platforms, such as Github [18].
In rare cases (below 0.5% in our dataset), some plugins
are available on multiple marketplaces.
Paid versions of the plugins are sold through

marketplaces, e.g., ThemeForest [20], CodeCanyon [19],
and Easy Digital Downloads (EDD) [22]. Here,
individual plugins are sold for as little as $2, while the
bestselling plugins are valued at around $63. Table 1
Columns 4-6 highlight the plugin popularity in terms of
the number of downloads. WP Plugins [16] is the most
popular marketplace overall, with 7.5M average
downloads per plugin. Some marketplaces do not sell
individual plugins and instead provide a subscription
service for all plugins at a flat rate. For example,

2Plugins and themes are together referred to as plugins.

https://cyfi.ece.gatech.edu/

Markeplace
#Plugins Downloads Range Cost of Plugins Money Spent

Total Unique Min. Avg. Max. Min. Avg. Max. Dataset Global

Fr
ee

P
lu

gi
ns WP Plugins [16] 5,276,450 27,430 14 7.5M 260M - - - - -

WP Themes [17] 506,342 5,450 3 293K 7.4M - - - - -
Github [18] 1 448,324 5,155 0 3 9 - - - - -

P
ai

d
P

lu
gi

ns

CodeCanyon [19]2 38,060 2,428 1 1.2K 9K $2 $32 $1,104 $1.2M $82.6M
ThemeForest [20] 61,574 5,837 1 29.6K 611K $2 $84 $499 $5.1M $31.3M
WPMU DEV [21] 3 5,984 110 55.4K 1.4M 10.5M $15 $63 $190 $370K $96.4M
EDD [22] 4 13,123 245 - - - $6 $49 $199 $643K -

Total 5,782,783 43,621 1 939K 260M $2 $63 $1,104 $7.3M $210.3M

1: Since Github does not provide the repository download info, we used the number of stars as a measure of popularity.
2: We found a plugin, Choco Drops [23], on CodeCanyon for $10,000,003. Since this is an outlier, it has been excluded here.
3: WPMU DEV charges a $15 monthly subscription to use any plugin on this marketplace. The price range re�ects the yearly cost.
4: Downloads range was not publicly available for EDD and has been excluded in this table.

Table 1: The Economy of WordPress Plugin Marketplaces.

WPMU DEV [21] has a $49/month subscription and is
the most popular paid plugin marketplace in our
dataset with 1.4M average downloads per plugin.
Less-popular plugins are also directly available from
freelance developers or small businesses [24]�[26].

Since plugin marketplaces do not provide any price
history, we used the reported download counts and the
prices from July 2020 to estimate the money spent on
these plugins. Table 1 shows that website owners from
our dataset alone spent $7.3M at plugin marketplaces,
and we estimate the revenue earned by these plugins
globally to be over $210M based on a conservative
estimate of the reported download counts. We found
several plugins sold with an extended license for more
developer support time. We considered the regular
support pricing to estimate a lower-bound for spending
in the plugin ecosystem. Our estimate is also con�rmed
by themeshunter.com, one of the biggest WordPress
themes catalogue on the market [27].
Nulled Marketplaces. Since most paid plugin
marketplaces do not o�er a trial option, several
marketplaces started a�try before you buy� initiative.
Unfortunately, this gave rise to pirated �trial plugin�
marketplaces, referred to as nulled marketplaces. Nulled
plugins are pirated versions of originally paid plugins,
freely distributed via nulled marketplaces (unbeknownst
to the original creator). Generally, these plugins have
been hacked or contain modi�ed code to cause user
harm or collect sensitive user data and made to work
inde�nitely without a license key [28]. Our study has
found that, more often than not, nulled plugins
introduce malicious code onto webservers (Ÿ5.3).
Insu�cient Market Oversight. While these
marketplaces are growing rapidly, the regulations to
assess plugins are minimal. For example, as mentioned
in Table 1, our study found a CodeCanyon plugin for
$10,000,003 [23] with a note from the plugin author to
not buy the plugin. The fact that the plugin author was
able to set the price so high, to dissuade downloaders,

rather than legitimately removing the listing
underscores how little oversight these marketplaces
provide. We also found that attackers include malicious
behaviors in plugins then sell them on reputable plugin
marketplaces, such as the WordPress repository. A
report by Wordfence [14], a leading WordPress malware
scanner, found nine popular plugins updated at source
(i.e., the WordPress plugin store) with malicious code as
part of a coordinated spam campaign (see Ÿ7). It is
more urgent now than ever to study the impact of this
problem and address the challenges toward securing the
plugin ecosystem.

3 Design

Figure 1 shows an overview of theYODA pipeline.
YODA �rst conducts Plugin Detection (Ÿ3.1). Hosting
providers and website owners can deploy this to detect
plugins on their websites. But, marketplaces or plugin
developers can skip directly to YODA 's Malicious
Behavior Detection (Ÿ3.2) for a given plugin. Next,
YODA identi�es the Origin of Malicious Plugins (Ÿ3.3).
Finally, it performs an Impact Study (Ÿ3.4) to
understand the scale and impact of the plugin economy.

3.1 Plugin Detection

YODA detects all of the webserver's plugins by
identifying the plugin root and all the associated �les
that belong to the plugin. Reliably detecting plugins
based on the webserver �les alone can be challenging
because CMSs provide limited guidelines leading to a
lack of code consistency. CMS-users (plugin developers,
website owners, and attackers) often customize their
plugins and do not follow coding guidelines. CMSs
provide directories to maintain plugins and themes, but
users often place them in random locations on the
server, so we cannot solely rely on the directory
structure to reliably detect plugins.

To address these challenges,YODA performs (1)
metadata analysisto identify the plugin root �les and

Figure 1: YODA Design Overview.

(2) code analysisto identify all of the associated �les as
part of the plugin (shown in Figure 1).

Metadata Analysis. YODA parses the comments
from all of the server-side code �les and performs regular
expression matching to identify the plugin root �les (i.e.,
�les containing the plugin header, a specially formatted
block comment that contains metadata about the plugin).
This ensures that bad coding practices and possibly
hidden plugins injected by attackers do not go undetected.
A typical plugin header is shown in Figure 4, Appendix A.
Note that WordPress only identi�es and loads plugins
with a header, and all plugins must contain a single plugin
root. If an attacker tries to evade YODA 's detection by
dropping the header, the plugin will not be loaded by the
WordPress core and remain dormant on the webserver.
For every plugin root, YODA extracts and records the
plugin metadata from the header, including the plugin
name, plugin URI, author name, author URI, and plugin
version. As we will see later (Ÿ4.1), we use this plugin
version to understand how many CMS-users maintain
their plugins updated to the latest version.

Code Analysis. With the plugin root �les identi�ed,
YODA proceeds to �nd all associated plugin �les Pi ,
i.e., Pi = f f i 1 ; f i 2 ; :::g where f i j is the j th �le in plugin
Pi . To do this, YODA generates and parses the
abstract syntax tree (AST) of all of the server-side code
�les in parallel and sub-directories of the plugin root.
Since several CMS-users customize their plugins either
by using con�guration �les or explicitly modifying the
PHP code, YODA will detect f i j based on three scores,
listed in decreasing order of importance. We use
constant weights (3, 2, and 1) coupled with inverse
exponentials to rank these scores since it is a common
approach for ranking program modules [29]. While we
could have chosen any decreasing range, we found that
this combination produced distinct ranges that identify
plugin �les from non-plugin �les.

1. Header Score. The existence of a plugin headernj
in a �le f i j (computed during metadata analysis) is used
to derive the header scorehj (weight = 3). Here, nj can
take values 1 (for plugin root with a single header) or 0
(for the associated �les with no header). However, the
header score is included in the reliability score with the
highest weight to ensure a group of plugin-like �les with

no header is not incorrectly identi�ed as a plugin.

Header Score hj = 3 � nj

2. Reference Score. YODA uses the number of
reference callsmj linking other �les as part of the
plugin to derive the reference scorer j (weight = 2).
Each score is a sum of the individual contributions from
all of the linked �les towards the entire plugin. This
contribution is scaled by an integer weight in the
numerator to model the importance of linked �les and
an exponential in the denominator to account for a
large number of referenced �les. Here, the exponentx
starts with nj to further ensure the reference score
contribution is lower than the header score.

Reference Score rj =
n j + m j � 1X

x = n j

2
2x

3. API Score. The number of occurrences of plugin-
speci�c API calls l j (the full list of APIs is shown in
Appendix B) is used to derive the API scoreaj (weight
= 1). Since APIs alone are insu�cient to detect a plugin,
l j is scaled using a weight of 1 (numerator). Here, the
exponent x starts with nj + mj to ensure the API score
contribution is lower than the header and reference scores.

AP I Score aj =
n j + m j + l j � 1X

x = n j + m j

1
2x

The sum of all three scores for all plugin �les in parallel
and sub-directories of the plugin root is divided by the
upper bound of this sum to calculate the reliability score
Ri for each plugin Pi .
8 plugin �les f i j 2 Pi ,

Reliability Score Ri =

P

f i j

(hj + r j + aj)

2� max(hj ; r j ;aj)
� 100%

The reliability score is a measure of the likelihood of
a group of �les being part of a plugin. If this score is
greater than 95% for a group of �les, YODA detects
it as a plugin. We set the strictest possible threshold
because we found that for a true positive plugin this
score is always >98% and <55% otherwise.

An additional challenge (a special case of the above) is
child plugins. They are extensions of the original plugin
that enable the website owners to add customization, i.e.,
modify functionalities without having them disappear
after an upgrade.YODA handles child plugin detection

Malicious Behavior Semantic Models

Webshell Super_ Global [input] ! Exec
Post Injection (URL 2 Blacklist) ^ (URL ! Download ! Add_ P ost)
Input Gating Super_ Global [password] ! Conditional ! Exec
SSO Backdoor Create _ User ! Chng _ User_ P erm ! Register _ User ! Redirect _ NewUser _ Admin _ URL
Library Function Exists Conditional ! F unc _ Exists ! Create _ F unc
Spam Injection (URL 2 Blacklist) ^ (URL ! Download ! Add_ Content)
Code Obfuscation (Jumbed_ Obfus _ Long _ Line) _ (Decode ! Exec)
Blackhat SEO Conditional ! SE _ Bots ! (URL 2 Blacklist) ^ Download ! Replace_ Content
Downloader (URL 2 Blacklist) ^ (URL ! Download)
Function Reconstruction (Str 1;Str 2; ::;StrN) ! Concat ! Create _ F unc
Insert User Create _ User ! Register _ User
Malvertising (URL 2 Blacklist) ^ (URL ! Download ! (Redirect _ Insert _ P opup))
Fake Plugin Conditional ! Super_ Global [Str] ! Decode ! Exec ! Delete _ P ayload
Cryptominer (URL 2 Blacklist) ^ (URL ! Download ! F ile _ RW ! Chng _ F ile _ P erm ! Exec)

Table 2: High-level Data�ow Sequence of the Semantic Malicious Behavior Models from Source to Sink.

by recursively searching through plugin sub-directories
to �nd plugin roots and storing them as separate child
plugins under their respective parent plugins.
E�ective Plugin State. Since YODA can
retroactively run on temporal webserver snapshots, it
records the e�ective plugin state in each of these
snapshots. For each plugin,YODA uses the individual
�le states of all plugin �les, i.e., added (`A'),
modi�ed (`M'), no change (̀NC'), or deleted (̀ D') to
derive the e�ective plugin state that could also take one
of the four values: A/ M/ NC/ D. If all individual plugin �le
states are added, deleted, or no change, then the
e�ective plugin state is `A' , `D' , or `NC' , respectively.
All other individual �le state combinations produce an
e�ective plugin state `M' .

3.2 Malicious Behavior Detection

Preliminary Study. We started by analyzing all
plugins from 85 known-compromised website backups
taken between April 2018 and June 2020. CodeGuard
provided this subset based on signature-based AV alerts
for well-known web malware. We also referenced all
reports of malicious plugins being removed from
popular marketplaces between 2013-2018 [14], [30]�[32]
to identify and collect available malicious plugin
samples. Since most of the removed plugins were not
accessible on the marketplaces, we used the plugin
name and version to scan our dataset and collect all
additional malicious plugin samples3.

We manually investigated all the plugins from above
and identi�ed 14 distinct malicious behaviors, listed in
Table 2 Column 1. We will describe the modeling of these
behaviors in the rest of this section. We also found that
each of these behaviors had multiple implementations
and using rule-based syntactic detection alone would
quickly leave the rules obsolete. Further, state-of-the-art
web malware detection relies on structure-aware semantic

3Available at: https://cyfi.ece.gatech.edu/ .

features (e.g., code implementations of webshell features)
within a single code �le [33], [34]. Existing techniques
do not consider the interactions between �le groups.
This is necessary because attackers distribute malicious
behavior implementations across multiple plugin �les,
thus evading existing techniques.

YODA addresses these challenges by employing both
syntactic features (e.g., �le meta-data, sensitive APIs)
and context-aware semantic features of all plugin code
�les (e.g., AST with resolved �le dependencies). Syntactic
analysis uses data �ow analysis to identify suspicious
APIs being used as sinks in plugin code �les. Owing to
space constraints, this is presented in Appendix C.
Semantic Analysis. The presence of suspicious APIs
alone does not equate to malicious plugin behavior. To
ensure that the malicious behaviors are detected across
multiple plugin �les, YODA performs context-aware
semantic analysis. In the dependency resolved ASTs, it
marks all the sensitive APIs identi�ed earlier as sinks
and performs targeted inter-procedural backward slicing
on the AST from each sink to the prede�ned sources
using php-ast [35]. These source-sink data�ows, called
`semantic models'are summarized in Table 2.

Note that YODA 's models are bothcomposableand
extensible. For some data�ows, the sinks can also act as
an intermediate node. For example,Download is a sink
for the downloader malicious behavior and an
intermediate node for the blackhat SEO, post injection,
malvertizing, and spam injection behaviors. Since
attackers extend existing techniques, this composability
allows YODA to scale with evolving malware. Further,
as new malware behaviors emerge (e.g., the recent trend
of SSO Backdoor), analysts can easily extendYODA 's
models by composing existing primitive models with
new API sinks used in the attack. Next, we describe
each of the semantic models from Table 2.
1. Webshell. The plugin takes executable code as
input via superglobal variables (�Super_ Global[input]�
in Table 2) which is then passed to anExec sink that

executes this code on the webserver.
2. Post Injection. The plugin code contains a URL
that has beenBlacklist ed as malicious by VirusTotal [36]
or URLHaus [37], and it Downloads content from this
URL and inserts it as a WordPress post (Add_ Post). We
found that the URLs used by attackers are not always
�agged as malicious by VirusTotal or URLHaus. We
identi�ed randomly generated strings used as throwaway
domain names (e.g.,www.fatots.top , www.gacocs.com)
to deliver malicious content to these plugins. We provide
this full list as part of the YODA source code.
3. Input Gating. Attackers protect their injected
code based on a prede�ned password. Here, the
`password' parameter in a super global variable
(Super_ Global[password]) is set, it is conditionally
evaluated, and code is executed (Exec) based on the
conditional evaluation success. While this may appear
like harmless password-protected code execution, benign
plugins store client credentials in the website's database
and do not employ only hard-coded passwords.
4. SSO Backdoor. Attackers are abusing the single
sign on feature to create a backdoor via user accounts
with admin privileges. Here, the plugin creates a user
object (e.g., Create_ User via $user = array(
`user_login' => $uname, `user_pass' => $pword)),
changes the user permissions to provide administrator
privileges, registers this user with the CMS (e.g.
Register_ User via wp_user_insert), and �nally
redirects all requests to this new user's admin URL.
5. Library Function Exists. If the plugin �nds a
missing library function (Conditional ! Func
_ Exists), it locally implements the function (Create
_ Func) to rede�ne it. While it is common to check if a
function exists, benign plugins do not reimplement
library functions but instead include the library.
6. Spam Injection. The plugin code contains a
blacklisted URL (VirusTotal, URLHaus, or in-house
curated URL list), and it Downloads content from this
URL and injects the downloaded content to the HTML
output (Add_ Content) each time the website is loaded.
7. Code Obfuscation. The plugin contains (1)
jumbled obfuscation patterns (Jumbed_ Obfus), (2)
long lines of code with over 50 code instructions in the
same line (Long_ Line) during syntactic analysis, or (3)
encoded strings passed toDecode and Exec sinks.
These are the 3 predominant categories of code
obfuscation seen in our study.YODA could identify
di�erent obfuscation variants, and the detection module
is made available as part of theYODA source code.
8. Blackhat SEO. Attackers employ conditional
checks to detect if the website is being loaded by search
engine bots (SE_ Bots), e.g., googlebot, bingbot,
baiduspider. They Download SEO campaign content

from a URL 2 Blacklist and replace concealed HTML
elements (Replace_ Content) in the plugins with this
downloaded content. This impacts the website's
indexing by search engines.
9. Downloader. The plugin Downloads content from
URL 2 Blacklist . Note that, if YODA �nds Download
as an intermediate sink for other attack behaviors, it
assigns the appropriate attack behavior and does not
�ag the plugin as a downloader.
10. Function Reconstruction. To evade signature-
based AVs, attackers break suspicious function names to
substrings (Str 1;Str 2; ::) that can then be concatenated
to form the function name. Attackers then use PHP's
Create_ Func to create a function that internally
performs an eval() or executes this function.
11. Insert User. The plugin creates a user object
(Create_ User) and registers this user account with the
CMS (Register_ User). Benign plugins hardly add new
user accounts to the CMS. Di�erent from SSO
backdoor, this user is created for one-time use and this
user's contents are not loaded each time a web page is
requested.
12. Malvertizing. Attackers monetize plugins to
serve malicious ads. The pluginDownloads content
from a URL 2 Blacklist and redirects website visitors
to a malicious site or inserts a downloaded popup
(Redirect _ Insert _ Popup in Table 2).
13. Fake Plugin. Attackers inject full-�edged plugins
that not only give backdoor access but also run
malicious code each time the website is loaded. In
particular, fake plugins receive encoded payloads
(generally using base64 decoding) from superglobal
variables (Super_ Global[Str]), Decode and Exec this
payload, and then delete it (Delete_ Payload).
14. Cryptominer. The plugin Downloads a mining
script from a URL 2 Blacklist , writes it to a �le
(F ile _ RW), changes the �le permission to executable,
and then Execs the �le.

3.3 Origin of Malicious Plugins

YODA then determines the origin of these malicious
behaviors. This helps understand the di�erent attacker
entry points within the CMS ecosystem. Our preliminary
study uncovered that the malicious plugin behaviors
originate from one of these four sources.
1. Nulled Plugin Marketplace. Nulled plugins
commonly include multiple malicious domains (adds
redundancy during domain takedown) to download
malicious content on the webserver. IfYODA records
downloader, malvertizing, or spam injection behaviors
when the e�ective plugin state was `A' , and if the
plugin contains multiple redundant blacklisted URLs, it
is categorized as nulled based on its behavior. Also, if

the plugin name contains nulled marketplace metadata
(e.g., �Shared on VestaThemes.com�), it is categorized
as nulled based on its metadata. Note that not all
metadata-based nulled plugins are malicious (Ÿ5.3).
2. Legitimate Plugin Marketplace. YODA marks
the malicious origin as a legitimate plugin marketplace
if: (1) one or more malicious behaviors are seen when
the e�ective plugin state is `A' ; or (2) the e�ective
plugin state is `M' due to plugin version and/or author
change4. Since some nulled plugins masquerade as
legitimate plugins, YODA �rst categorizes nulled
plugins with redundant malicious domains and excludes
them from the legitimate marketplace category.
3. Injected Plugin. If YODA �nds (1) fake plugin
behavior when the e�ective plugin state was`A' , or (2)
fake plugin and code obfuscation behaviors when the
e�ective plugin state is `M' , the plugin is categorized as
an injected plugin. Note, plugins with code obfuscation
are not always injected plugins. Only if the plugin did
not originate from nulled or legitimate marketplaces,
then YODA marks it as an injected plugin since these
plugins are not sold on marketplaces.
4. Infected Plugin. We found that malicious plugins
on the webserver tried to increase the attack's coverage
by hijacking other plugins. If YODA found malicious
behaviors in a plugin with e�ective plugin state `M' in
an already compromised website (i.e., it has one or
more malicious plugins prior to the snapshot under
analysis), it is marked as infected. If it was infected
when the e�ective plugin state was `A' , YODA may
incorrectly label an infected plugin as originating from
a legitimate marketplace. This is resolved via
cross-website veri�cation.
Cross-Website Veri�cation. Using backups from
over 400K web servers, we employ cross-website
veri�cation as an additional guarantee for the malicious
origin categorization applied at a single-website level.
Note, legitimate marketplace, nulled marketplace, and
injected plugin categories are mutually exclusive.
However, plugins from all of these categories can be
infected by other malicious plugins on the webserver.
YODA performs a cross-website comparison of all
malicious plugins originating from legitimate or nulled
marketplaces. In particular, if the identi�ed malicious
behaviors are common across all websites, then the
labeled categorization is validated as correct. Otherwise,
they will be correctly relabeled as infected plugins.

3.4 Impact Study
The origin of malicious plugins in Ÿ3.3 reveals the broad
attacker platforms used to victimize CMS users. To

4The e�ective state can be `M' for several reasons such as code
customization by the website owner, code injected by an attacker,
etc. Still, the plugin version or the plugin author does not change.

understand the scale of this impact on the plugin
marketplaces, YODA extracts the impact metrics
associated with each plugin (i.e., monetary impact in
terms of plugin cost and popularity impact in terms of
the number of downloads) by mapping the plugins in
our dataset to the plugin marketplace it originated
from. We chose the 7 most popular plugin markets �
three unpaid (WordPress Plugins, WordPress Themes,
and Github) and four paid (ThemeForest, CodeCanyon,
WPMU DEV, and Easy Digital Downloads) � to
perform this study. This can be challenging because the
impact metrics extraction varies between markets due
to the lack of code consistency.

To address this, we reverse-engineered the
plugin-name-to-URL translation for these marketplaces,
and YODA was programmed to scrape the impact
metrics. YODA �rst constructs the URL to visit by
appending the plugin name (e.g., twentytwenty) to the
market-speci�c URL (e.g., https://wordpress.org/
themes/) and performs a GET request on the e�ective
URL (e.g.,https://wordpress.org/themes/twentytwenty)
to determine if the plugin is in the marketplace. For
some marketplaces (e.g., CodeCanyon), the required
URL cannot be constructed solely from the plugin
name. To address this, a search query is constructed
using the plugin's name. The search results are parsed
to �nd if the target plugin exists in the marketplace.
This impact metrics extraction can be extended to
other marketplaces by updating YODA with the new
plugin-name-to-URL translation and scraping patterns.

After obtaining the plugin's marketplace listing (i.e.,
a successful GET request response), the impact metrics
extraction is similar across marketplaces, speci�c only
to the web page formatting. All available metadata on
the listing is stored in a database for easier queries. This
metadata consists of the plugin's latest version, plugin
rating, cost, and the number of sales and downloads,
which when applied to a large-scale study, reveal the
impact of these plugins on the community. This data will
be used to infer any correlations that may exist between
malicious plugins, their cost, and their popularity.

4 Validating YODA

To validate YODA 's design considerations, we used 120
unique WordPress websites collected between Apr 2018
and Feb 2021. 60 were compromised with web-attacks as
classi�ed by pattern-based AV and the remaining 60 were
randomly chosen unbiased websites. We used this dataset
to establish ground truth and validate YODA 's accuracy
in detecting plugins and malicious plugin behaviors on
a local workstation running Ubuntu 16.04 with 32GB
memory and 8 x 3.60GHz Intel Core i7 CPUs.

Total #Websites: 120 Total #Plugins: 3,168

Plugin Name #Y
TP

FP FN 3 LVm LVMEM 1 C2

Yoast SEO 47 27 18 2 0 26 38
Contact Form 7 41 28 12 1 0 23 28
Wordfence Security 37 30 6 1 0 3 26
Manage WP - Worker 34 20 14 0 0 14 23
Add From Server 31 19 12 0 0 16 24
Shield Security 29 12 16 1 0 4 13
WP Rocket 27 10 15 2 0 10 12
MainWP Child 25 18 6 1 1 11 19
Easy WP SMTP 24 12 12 0 0 9 13
Amazon Web Services 20 18 2 0 0 6 17
Simple Social Icons 19 19 0 0 0 15 15
WP O�oad S3 Lite 18 17 0 1 0 7 14
Jetpack 17 10 6 1 0 2 12
Sharedaddy 15 12 2 1 0 13 13
Akismet Anti-Spam 14 13 1 0 0 1 11

Total Top 15 398 265 122 11 1 160 278

Total Overall 3,168 2,240 889 39 3 728 2,060

1: #W where the plugin exactly matches the ground truth plugin.
2: #W with customized plugins correctly identi�ed by YODA .
3: #W with customized plugins incorrectly identi�ed by YODA .

Table 3: Plugin Detection Evaluation.

4.1 Plugin Detection Evaluation

Ground Truth. We �rst evaluate YODA 's plugin
detection. As mentioned in Ÿ3.1, website owners often
customize their plugins, either using con�guration �les
or explicitly modifying the PHP code. Thus, it is di�cult
to verify that a detected plugin matches a known plugin
from the marketplace. To evaluateYODA , we need to
determine if each plugin that YODA detected is either:
(1) an exact match (EM), (2) a true positive match with
customization (C), (3) a false positive (FP), i.e., YODA
labeled a non-existent plugin, or (4) a false negative (FN),
i.e., YODA missed labeling a group of �les as a plugin.

We usedYODA to identify an initial list of plugins
in all 120 website backups. This list contained EMs, Cs,
or FPs (per above). To determine which, we created a
ground truth plugin set by downloading these plugins
from the plugin marketplaces. We also contacted the
authors of paid plugins found in our dataset and received
all versions of these plugins as well. We compared all
the �les (via MD5 hash) for each plugin detected by
YODA against the �les for the same versionof the plugin
within the ground truth set. If 100% of the �les from
the ground truth plugin matched those in the detected
plugin, we classify it as an EM (Table 3 Column 3).
Greater than 90% match is considered a true positive
with customization (C, Column 4). If the comparison
led to a less than 90% match, we classi�ed this plugin
as an FP (Column 5). In fact, customized plugins rarely
di�er by more than one �le (we found only 8 instances
of multi-�le customization in our dataset), thus a 90%
match is so strict that it is less favorable to YODA ,

but we aim to aggressively �ag any FPs. We manually
investigated all mismatches.

To check for the FNs, we pulled every version of all
freely available plugins from the WordPress SVN5 plugin
repository. We also added all versions of the free and paid
plugins from above. We then compared all �le hashes
from the downloaded plugins against the �les in each
website. If 90% or more of the plugin's �les match �les
in the website and YODA did not mark the group of
�les as a plugin, we count this is as an FN.
Detection Results. In the 120 websites,YODA
found a total of 3,168 plugin instances (#Y). Table 3
summarizes the results for all plugins and drills down
into these results for the top 15 plugins based on their
popularity in our dataset. Of the 3,168 plugin instances
in Table 3, YODA correctly detected 3,129 (i.e., 2,240
+ 889) plugins. 2,240 of these plugins exactly matched
the ground truth dataset, and 889 plugins were
customized � a TP rate of 98.7%.

We manually veri�ed all the plugins marked as FP
and found that only 11 of the 39 plugins were actually
FPs (i.e., a group of �les incorrectly identi�ed as a
plugin). Here, the website owner copied the plugin root
�le (containing plugin APIs and missing referenced �les)
to their home directory (likely part of customization or
backup), misleading YODA into identifying a group of
�les as a plugin. The remaining 28 of the 39 plugins
either rede�ned the base WordPress APIs or replaced
them entirely with custom APIs; such heavy
customization in a single �le put them below the strict
90% match. Thus, despite using a strict measure for
FPs, the FP rate is reasonable (1.2%). The 3 FNs we
found were due to the website owners deleting the
plugin header as part of customization. Since the header
holds the highest weight for determining a plugin group,
YODA missed identifying these plugins.

We now use this dataset and the plugin version
extracted by YODA to understand if CMS-users keep
their plugins updated to the latest version. Columns 7
and 8 show the number of websites that had the plugins
at the latest minor version (LVm) and the latest major
version (LVM). For example, if the latest plugin version
on the marketplace is 4.3.6 and it matches our dataset
plugin version, we count it as LVm . If our dataset
plugin version is 4.3.2, since the major version (i.e., 4.3)
is still up to date, we count this as LVM .6 Only 40%
(160 of 398) of the top 15 plugins and 23% (728 of
3,168) of all plugins were updated to the latest minor
version. From Column 8, we �nd that about 70% (278
of 398) of the top 15 plugins and 65% (2,060 of 3,168)
of all plugins are updated to the latest major version.
Over 35% of all plugins used are clearly outdated.

5WordPress uses SVN to maintain version-controlled plugins.
6Latest major version includes all latest minor versions.

Total #Websites: 120 Total #Plugins: 3,132

Malicious Behavior #W #GT #Y TP FP FP

Code Obfuscation 15 28 28 28 0 0
Webshell 19 23 26 23 3 0
Function Reconstruction 7 16 18 16 2 0
Downloader 7 12 14 12 2 0
Library Function Exists 10 13 14 13 1 0
Input Gating 4 13 13 13 0 0
Fake Plugin 3 7 7 7 0 0
Spam Injection 3 6 6 6 0 0
Malvertising 2 5 5 5 0 0
Insert User 2 3 3 3 0 0
Blackhat SEO 1 2 2 2 0 0
Post Injection 1 2 2 2 0 0
SSO Backdoor 1 2 2 2 0 0
Cryptominer 1 1 1 1 0 0

Total Malicious Plugins 1 61 84 89 84 5 0

Total Benign Plugins 120 3,048 3,043 3,043 0 5

1: This is not the sum of the columns, but the total #websites
and #plugins in the evaluation dataset with malicious behaviors.

Table 4: Evaluation of the Malicious Behavior Detection.

4.2 Malicious Behavior Evaluation

Ground Truth. After establishing con�dence in
YODA 's plugin detection, we now evaluate the
accuracy of identifying malicious plugins. We eliminated
the 39 FP and included the 3 FN plugins from the same
3,168 plugins from above, and our team manually
veri�ed the server-side code �les in all 3,132 plugins and
tagged them with corresponding malicious behavior
labels.7 We then ran YODA 's malicious behavior
detection on all of these plugins and compared the
labels assigned byYODA with the manually derived
labels. The results are presented in Table 4.
Detection Results. In our dataset of 3,168 plugins
across 120 websites,YODA reported 61 websites (#W)
containing 89 plugin instances (#Y) that exhibit
malicious behaviors whereas our manually labelled
ground truth (#GT) showed that only 84 plugins across
these websites were malicious. Recall, our dataset has
60 websites with known-compromises (i.e., web attacks
detected), and 58 of these websites contained malicious
plugins. In addition, YODA found 3 websites
containing malicious plugins in the 60 randomly chosen
websites. The malicious behaviors reported byYODA
matched our ground truth for plugins from these 61
websites (i.e., TP). Based on our manual veri�cation,
we did not �nd any plugins that contained malicious
behaviors missed byYODA , thus showing zero FNs.

Table 4 showsYODA produced FP detections for 8
behavior instances in 5 plugins. Our manual
investigation revealed that 4 of these plugins used a
combination of behaviors that resembled webshells (i.e.,
executing decoded content) and checking if the library

7YODA did not have access to our manually derived labels.

function base64_decodeexists and rede�ning it if not.
Our investigation con�rmed that these plugins did not
show any outright malicious activity, but this
rarely-benign code implementation misled YODA .
Also, 2 plugins were falsely labeled as downloaders, due
to VirusTotal falsely blacklisting the extracted URLs as
malicious. This gives us con�dence that YODA
accurately detects plugins and malicious behaviors.
Table 4 also summarizes the benign plugins in this
dataset that we veri�ed were not malicious.

5 Deploying YODA

#Websites 410,122

Min. Duration 102 days Min. #Plugins 1
Avg. Duration 406 days Avg. #Plugins 49
Max. Duration 3,259 days Max. #Plugins 68

Table 5: Dataset Summary.

We deployed YODA on the full dataset of 410,122
unique WordPress websites' nightly backups (Table 5).
This dataset provides a realistic view of the plugin
ecosystem because over 37% of the world's websites and
over 63% of CMS-based websites run on WordPress [38].
It also allows us to retroactively deploy YODA over 8
years. The backups contain an average of 406
day-snapshots per website. Many backups went all the
way back to 2012, representing some of the earliest
customers of CodeGuard. Each website had between
1-68 plugins, with an average of 49 plugins per website.
This high average shows that most website owners place
unwarranted trust in plugins to keep their websites up
and running.
Experimental Setup. We used Amazon Web Services
(AWS) Elastic Compute (EC2) r5.2xlarge instances with
8 virtual CPUs and 64 GB of RAM to run YODA on
the website backups. These instances were supervised by
the AWS Batch job scheduling engine to deployYODA
on hundreds of backups in parallel.

5.1 Malicious Behavior Evolution

YODA found malicious plugin instances (#P) in 24,931
of the 410,122 websites (#W), shown in Table 6. As
expected, over 10K malicious plugin instances used the
age-old web attack techniques: webshells and code
obfuscation. The infection ratio (IR, the ratio of #P to
#W) shows a measure of infection spread. Several
malicious behaviors have IR >3, implying that multiple
plugins within the same website contain these same
malicious behaviors. Closer inspection revealed that
these are due to plugin-to-plugin infection : a single
malicious plugin on the webserver infects multiple
benign plugins, replicating the behavior.

Malicious
Behavior

#W #P IR 1 First
Seen

Temporal Evolution Marketplace Injected Nulled Infected

(07-2012 - 07-2020) #W #P #W #P #W #P #W #P

Webshell 7,921 10,279 1.3 Jul 2012 10 12 854 994 160 232 7,117 9,943
Code Obf 6,752 10,064 1.5 Aug 2012 0 0 409 558 1,055 1,214 5,509 8,819
Input Gating 5,928 23,140 3.9 Jul 2012 0 0 47 50 3,445 7,821 5,588 20,684
Downloader 2,314 5,944 3.6 Mar 2014 151 288 19 20 1,540 2,683 1,562 4,254
Spam Injection 1,202 3,723 3.1 Oct 2016 1,166 3,452 0 0 0 0 36 271
Lib Func Exists 2,233 3,576 1.6 Aug 2012 25 29 5 5 154 241 2,195 3,475
Blackhat SEO 1,358 1,714 1.3 Oct 2013 86 86 8 21 534 650 857 1,421
Fake Plugin 1,121 1,336 1.2 Jul 2014 0 0 1,121 1,336 0 0 0 0
Func Reconst 636 929 1.5 Jan 2016 3 3 52 54 12 13 579 890
Insert User 357 1,531 4.3 Dec 2015 0 0 266 266 2 6 292 1,490
Post Injection 281 1,407 5.0 May 2016 0 0 266 266 1 1 315 1,415
Malvertising 915 1,354 1.5 May 2017 12 13 0 0 894 1,330 13 13
SSO Backdoor 191 905 4.7 May 2019 2 2 0 0 36 91 190 879
Cryptominer 4 4 1.0 Jul 2018 0 0 4 4 0 0 0 0

Total 2 24,931 47,337 1.9 Jul 2012 1,345 3,685 1,201 2,814 5,244 8,525 18,034 40,533

1: Infection Ratio (IR) is the ratio of #P to #W, shows a measure of infection spread.
2: This is not the sum of the columns, but the total #websites and #plugins with malicious behaviors in our dataset.

Table 6: Distribution and Temporal Evolution of the Malicious Behaviors Across all Websites in our Dataset.

Dating back to 2012, we studied the evolution of
these malicious behaviors. Since the absolute number of
websites in our dataset increased over time, in Table 6
Temporal Evolution, we plot the newly infected websites
as a percentage of all malicious websites to remove
dataset bias. While some attack behaviors were popular
since late 2012, other behaviors such as spam injection
(2016), malvertising (2017), and SSO backdoor (2019)
were introduced recently. However, it is interesting to
note that regardless of when they were �rst introduced,
all of these behaviors are still prevalent in present-day
malicious plugins. A closer look at the absolute values
of the newly introduced malicious behaviors reveals that
the number of malicious plugins peaked in March 2020,
which notably coincides with the COVID-19 outbreak.

Thousands of malicious plugins originated from
legitimate plugin marketplaces. Table 6's Marketplace
Columns show their distribution (i.e., number of
websites #W and number of plugins #P with malicious
behaviors). Row 2 shows thatnone of these plugins use
code obfuscation techniques� despite being sold on
legitimate marketplaces they brazenly hide in plain
sight. Attackers (rightly) assume that an average
website owner will not inspect the plugin code before
installing it on their webserver. In fact, we found
instances of well commented malicious code in 2,379 of
the 3,452 plugins that performed spam injection
originating from legitimate plugin marketplaces.
Evidently, these plugins enabled illegal monetization via
blackhat SEO, downloader, and spam injection in 86,
288, and 3,452 plugin instances, respectively.

Attackers exploited the scalable CMS infrastructure to
inject malicious plugins into websites. Table 6's Injected
Columns show that the injected plugins aim to gain
and maintain access to the webserver. They are injected
without the website owners' knowledge and over 80% of

these plugins had fake plugin behaviors (1,336), webshells
(994), or obfuscated code (558). Although cryptomining is
gaining popularity, we only found 4 injected cryptominer
plugins on 4 websites revealing its infancy in pervading
the CMS landscape.

We found 8,525 malicious nulled plugin instances in
our dataset that exploit human vulnerabilities to
rapidly spread malware. Table 6's Nulled Columns show
that over 91% (7,821 of 8,525) of these plugin instances
used input gating (i.e., password-protecting the publicly
accessible code) to thwart competing attackers from
introducing malicious payloads. We also found that the
plugins introduced after December 2018 primarily
employed downloader, blackhat SEO, and malvertizing
behaviors in 2,683, 650, and 1,330 plugin instances,
respectively, to infect other benign plugins.

It was concerning that over 40K plugin instances
were infected post-deployment. Table 6's Infected
Columns show that these plugins portray a variety of
malicious behaviors. Most attackers employ behaviors
such as webshells, obfuscation, and downloaders in
9,943, 8,819, and 4,254 plugin instances, respectively.
Interestingly, over 50% (20,684 of 40,533) of these
plugins employed input gating showing attackers'
diligence in marking their conquered territories.

5.2 Fueling the Malware Economy
Next, we turned our attention to the economic drivers of
these malicious plugins. Table 7 categorizes our results
based on the origin of malicious behaviors, i.e., legitimate
marketplaces, nulled marketplaces, and infected plugins.

Table 7 begins with malicious plugins originating
from legitimate plugin marketplaces. About 70% of
these (2,597 of 3,685) were found on 5 of the 7 most
popular marketplaces. Our dataset alone constituted
over $41K in purchases of malicious plugins from

Markeplace
Malicious Downloads Range

Cost
#P #U 1 %M 2 Min. Avg. Max.

Legitimate Marketplace
WP Themes 523 62 1.1% 7.7K 336K 3.6M -
WP Plugins 1,583 69 0.25% 4 945K 25M -
Github 0 0 0% - - - -
WPMU DEV 132 2 1.8% 54K 510K 524K $25.8K
CodeCanyon 164 10 0.4% 1 40 73 $6.8K
ThemeForest 195 22 0.37% 9 20K 213K $8.9K
EDD 0 0 0% - - - $0
Subtotal 2,597 165 0.38% - - - $41.5K

Nulled Plugins
WP Themes 1,074 59 1.08% 11K 203K 5.7M -
WP Plugins 146 43 0.16% 65 4K 37K -
Github 0 0 0% - - - -
WPMU DEV 4 1 0.9% 572K 572K 572K $2.3K
CodeCanyon 2,085 122 5.02% 1 70 570 $82.3K
ThemeForest 3,059 223 3.82% 3 12K 213K $142K
EDD 39 3 1.2% - - - $1.3K
Subtotal 6,407 451 1.03% - - - $228K

Infected Plugins
WP Themes 9,776 1,864 34.2% 1 367K 7.4M -
WP Plugins 8,049 6,520 23.8% 2 4M 260M -
Github 15 1 0.01% 2 2 2 -
WPMU DEV 450 9 8.2% 187K 2M 10.5M $88.2K
CodeCanyon 1,873 469 19.3% 1 62 563 $59.9K
ThemeForest 5,858 1,072 18.4% 2 10K 213K $264K
EDD 634 57 23.3% - - - $422K
Subtotal 26,655 9,992 22.9% - - - $834K

1: #U: Number of unique malicious plugins, 2: %M: Percentage
of the plugins on the marketplace that were �agged as malicious

Table 7: The Economy of Malicious Plugin Marketplaces.

legitimate marketplaces. We found 62 unique malicious
plugins from WP Themes and 69 from WP Plugins
(unpaid marketplaces), contributing to 1.1% and 0.25%
of these marketplaces, respectively (%M Column).
Furthermore, the malicious plugins from these
marketplaces are extremely popular, averaging 336K
and 945K downloads per plugin. We also found 34
unique malicious plugins sold on paid marketplaces.

Nulled plugins impersonate plugins from legitimate
marketplaces.YODA extracts their popularity and cost
from legitimate marketplaces. The cost represents the
explicit losses incurred by the legitimate plugin authors.
About 75% of the malicious nulled plugins (i.e., 6,407 of
8,525) in our dataset contain legitimate counterparts in
these 7 popular marketplaces. Since nulled marketplaces
distribute plugins free of cost, we did not expect to �nd
plugins from unpaid marketplaces. Surprisingly, we
found a total of 102 plugins from WP Plugins and WP
Themes sold on nulled marketplaces. As expected, we
also found that over 77% (349 of 451) of the nulled
plugin counterparts were sold on paid marketplaces.
Attackers impersonated 122 and 223 best-selling plugins
from CodeCanyon and ThemeForest, respectively.
Overall, the website owners from our dataset alone
contributed to $228K in explicit loss to the plugin
authors. This shows that attackers are successfully

targeting psychological human vulnerabilities and the
less-technical CMS users are installing pirated plugins.

Finally, Table 7 considers the origin of
post-deployment infected plugins. About 65% of the
infected plugins (i.e., 26,655 of 40,533) were downloaded
from these 7 popular marketplaces. Since the plugins
from WP Plugins and WP Themes are widely used,
they are also commonly infected. 34.2% and 23.8% of
plugins from WP Themes and WP Plugins became
victims of plugin infections. Despite paying a premium
for plugins from paid marketplaces, a signi�cant number
of these were found to be infected, i.e., 8.2% of WPMU
DEV, 19.3% of CodeCanyon, 18.4% of ThemeForest,
and 23.3% of EDD. The website owners spent a total of
$834K on these plugins, only to �nd them compromised.
This encapsulates the additional implicit cost of
malware cleanup incurred by installing malicious
plugins from legitimate and nulled marketplaces.

5.3 Nulled Marketplace Study

Since nulled plugins require some tampering with the
WordPress backend (too complex for the typical CMS
user), we did not expect to �nd many nulled plugin
instances in our dataset. Surprisingly, Table 8 reveals
6,223 websites had at least one nulled plugin. We found
that these plugins are gaining popularity by optimizing
for search engine ranking (discussed in Appendix D).

Table 8 shows the nulled marketplaces extracted from
the plugin metadata. If YODA identi�es a plugin as
nulled based on its behavior alone and if it cannot
extract a nulled marketplace from the plugin metadata,
we categorize the marketplace as `Unknown'. Table 8
shows vestathemes.com as the most popular nulled
plugin marketplace in our dataset, with 3,177 plugin
instances (#P) downloaded across 2,398 websites (#W).
Recall from Ÿ3.3, not all nulled plugins portray
malicious behaviors. Columns 4-5 present the number of
websites (#MW) containing malicious nulled plugins
(#MP). Overall, over 97% of all nulled plugins deliver
malicious behaviors (%M). In particular, 100% of the
plugins we saw from theme123.net , themelot.net ,
and `Unknown' marketplace were malicious.

Interestingly, the `Unknown' marketplaces have
distributed over 31% of all malicious nulled plugins
(2,603 of 8,525) in our dataset. They impersonate the
plugin author entirely and hide that they were
downloaded from a nulled source as opposed to the
other nulled marketplaces in Column 1. A comparison
of the plugin header from an `Unknown' nulled plugin
and a legitimate marketplace plugin did not reveal any
di�erences. Only after matching the code �les were we
able to tell a nulled malicious plugin apart from the
legitimate plugin. However, since the website owners
cannot compare the nulled plugin's code to the paid

Nulled Marketplace #W #P #MW 1 #MP 2 %M 1st Seen 1st Mal. Seen Popular Mal. Plg. Cost #Instances

vestathemes.com 2,398 3,177 2,283 3,057 96.2% Aug 2014 Jul 2018 Flatsome [39] $59 195

www.themes24x7.com 989 1,363 928 1,282 94.1% Mar 2016 Mar 2016 WPBakery Page Builder [40] $64 140

www.wplocker.com 841 1,035 829 1,017 98.3% Nov 2013 Jan 2014 FormCraft [41] $36 80

www.jojo-themes.net 133 141 109 117 82.9% Feb 2016 Feb 2016 Gravity Forms [42] $59 9

theme123.net 127 144 127 144 100% Dec 2013 Dec 2013 WP Robot 5 [43] $89 9

ma�ashare.net 121 149 117 142 95.3% Jan 2014 Dec 2015 BeTheme [44] $59 9

www.wptry.org 79 99 79 98 98.9% Apr 2020 Apr 2020 Woodmart [45] $59 3

themlot.net 60 65 60 65 100% Dec 2014 Dec 2014 BeTheme [44] $59 4

Unknown 1,906 2,603 1,906 2,603 100% Oct 2016 Oct 2016 Flatsome [39] $59 252

Total 1 6,223 8,776 5,244 8,525 97.1% Nov 2013 Dec 2013 Flatsome [39] $59 483

1: #MW: The number of websites with malicious nulled plugins, 2: #MP: The number of malicious nulled plugins.

3: The total here is not the sum of the columns, but the total #W and #P from nulled marketplaces in our dataset.

Table 8: Study of Malicious Plugins From Nulled Marketplaces.

Malicious
Origin

Malicious Cleaned Up Reinfected Still Infected

#W #P #W % W #P #W % W #P #W % W #P

Marketplace 1,345 3,685 324 24.1% 389 32 9.9% 32 1,090 81.0% 3,327
Injected 1,201 2,814 169 14.1% 221 21 12.4% 41 1,067 88.8% 2,608
Nulled 5,244 8,525 353 6.7% 471 63 17.8% 81 5,003 95.4% 8,115
Infected 18,034 40,533 2,174 12.1% 5,962 254 11.7% 551 16,881 93.6% 34,956

Total 1 24,931 47,337 2,697 10.8% 7,042 336 12.5% 705 23,577 94.6% 40,787

1: The total here is not the sum of the columns, but the total #W and #P in our dataset.

Table 9: The Cleanup and Reinfection Distribution of Malicious Plugins.

legitimate plugin, it is impossible for them to identify
the nulled plugin as malicious. However,YODA can
detect malicious plugins by only analyzing its code �les.

Table 8 also shows that most nulled marketplaces
have been around for a long time, since 2013-2014.
However, over 50% of the marketplaces displayed
malicious behaviors starting in 2016. In particular, the
`Unknown' marketplaces have attempted to spread
malware since 2016 and have been successful through
2020. The most popular nulled plugins cost between $36
and $89, with an average of $59 per plugin. 447 of the
483 popular malicious nulled plugin instances were
Flatsome [39], a WordPress theme that would normally
cost the website owner $59 and provided pre-de�ned
layouts for user-friendly e-commerce shop features.

5.4 Are Infected Plugins Cleaned Up?

Lastly, Table 9 studies the plugin clean-up statistics to
understand how attackers are evading website owners.
Very few website owners (2,697 of 24,931 or 10.8% of the
compromised websites overall) attempt to clean up the
malicious plugins on their webserver. We hypothesize
that those website owners are unaware of the malicious
plugins or they cannot correlate malware side-e�ects
(such as server slowdown) with the plugins. As seen in
Table 9, 24.1% of websites with malicious plugins from
legitimate marketplaces are cleaned up, the highest rate

by far. Only 6.7% of nulled plugins are cleaned up, which
further strengthens our hypothesis (Ÿ6) that despite much
later adoption, nulled plugins provide robust persistence
for attackers.

Of the 2,697 websites that attempted to clean up
7,042 malicious plugins, 12.5% of the websites (336 of
2,697) were reinfected. Interestingly, nulled plugins were
most consistently reinfected (17.8% or 63 of 353
websites). Plugins downloaded from legitimate
marketplaces show the least rate of reinfection (9.9%).
This can be attributed to community engagement in
identifying malicious plugins on legitimate marketplaces.
Such plugins are either purged from the marketplace or
their authors are forced to remove the malicious code.

Lastly, we measured the websites that remained
infected up to the time of writing. Despite cleanup
e�orts, over 94% of all websites with malicious plugins
remained infected. This proves that CMS plugins have
provided a reliable webserver in�ltration vector for
nearly a decade.

6 Persistence of Malicious Plugins

To understand the persistence patterns of malicious
plugins, Figure 2 shows a box plot measuring the
number of days malicious plugins were identi�ed on the
webserver, categorized by their origin. The median
persistence ranges between 189-209 days. Thus, over

Figure 2: Persistence of Malicious Plugins.

50% of the malicious plugins persist for over 6 months.
We also noted that over 80% of the remaining malicious
plugins (those that persisted for less than 6 months)
were introduced during Feb - Mar 2020 and persisted
through the end of our study. This con�rms our
previous observation (Table 9) that 94% of the
malicious plugins in our dataset installed over 8 years
are still active today.

Popular plugins on legitimate marketplaces mostly
introduce malicious behaviors via plugin updates. Thus,
we assumed that these behaviors would be cleaned up
with updates8 as well. As seen from Figure 2, malicious
plugins from legitimate marketplaces are not
immediately identi�ed at source and persist for 176 -
380 days. Recall from Ÿ4.1, over 60% of the website
owners do not enable auto-updates and use outdated
plugin versions. If these website owners happen to
install a malicious version of a plugin from a legitimate
marketplace, it persists for months or years.

Figure 2 also shows that the persistence of nulled
plugins (131 - 232 days) is shorter compared to other
origins. This can be attributed to the fact that even
though nulled marketplaces existed since 2013, they
gained popularity around 2018, and their blackhat SEO
campaigns accelerated in early 2019. We found that
once nulled plugins are installed on the webserver, they
are rarely removed (Ÿ5.4). The website remains
compromised since the website owner is unaware of the
plugin's malicious intentions. So despite much later
adoption, 25% of these plugins persist for over 232 days.

Notably, it is the injected plugins that win the
persistence war. Over 75% of these plugins remain
active for at least 177 days, and over 25% of these
plugins persist for at least 525 days. This proves that
injected plugins are never noticed by the website
owners, who typically use GUIs to manage their CMS.

7 Case Studies
1. Malvertizing URLs. Discovered in 2019, the largest
known malvertizing campaign downloaded content from
malicious domains in plugins to the webserver [15]. To

8The marketplace takes down community-identi�ed malicious
plugins or mandates reverting the malicious behaviors.

Figure 3: Malicious URLs Created and Updated.

understand the lifecycle of these domains, we extracted
352 URLs from all malvertizing plugins in our dataset
and analyzed the domain creation date, last updated date
(i.e., registration renewed), and their registrars. Figure 3
shows the distribution of URLs created and updated over
time. The majority of these URLs were created in 2018,
but attackers are re-registering the same URLs with
peak activity in 2021. Thus, the malvertizing campaign
is still active (con�rmed by their use in recent malicious
plugins) and has evaded detection. In fact, only 56 of
these URLs were no longer registered at the time of
writing. We believe that these were throwaway URLs
generated for a short targeted attack. We also found
38 of these URLs captured by the internet archive [46],
further supporting our hypothesis.
2. Spam Injection Insights. Starting in 2016, a
proli�c spammer bought and updated several
WordPress plugins for a coordinated spam campaign
over a 4.5-year period [14]. Hoping to �nd how
widespread this campaign was among our dataset, we
drilled down into the spam injection plugins YODA
detected. Apart from downloading malicious spam
content from the spammer's own domains onto the
webserver, we discovered these same plugins also
collected details on visitors to the infected website, such
as URL, IP, user agent, and other attacker-de�ned
variables. Of the 3,723 spam injection plugins, 94% sent
back IP and user agent using the PHP superglobal
variables. Of these, 66% encoded the IP using
$_SERVER[`REMOTE_ADDR']and 34% used$_SERVER[
`SERVER_ADDR']. These plugins also sent attacker-
de�ned variables `p' (set to 2, 29, or 9) and`v' (set to
11 or 18). While we cannot accurately decipher what
these variables mean, we speculate that they identify
the spammer's campaign and distribute pro�ts similar
to a�liate tracking. 6% of the plugins did not send any
data back to the attacker. Interestingly, these where all
the earliest cases that appeared in late 2016.

8 Limitations and Future Work

Additional CMS Platforms. YODA can accurately
detect malicious plugins on WordPress-based websites.
However, scaling to other CMSs only requires updating
YODA 's plugin detection and semantic models.
YODA 's modularity enables porting to other platforms
by reviewing the API documentation of the target CMS.

We leave handling other CMSs as future work.
Static Behavior Detection. SinceYODA relies on
static analysis, it carries the limitations of static analysis.
Like any static data �ow analysis framework, YODA can
identify obfuscated code but it cannot detect malicious
behaviors within the obfuscated code. This is further
discussed in Appendix C.YODA could be augmented
with dynamic analysis [47], [48] to achieve better coverage
of dynamic PHP code.
Semantic Model Evasion. Since the semantic models
rely on data �ows, they cannot be evaded by rearranging
code, inserting junk code, or splitting the attack behavior
across �les. That said, attackers can try to evadeYODA
in two ways: (1) evolve to entirely new behaviors (e.g.,
the recently introduced SSO Backdoor behavior) or (2)
novel implementations of known attack behaviors (via
new PHP APIs). Such evolution is expected, and in both
cases, new semantic models can be crafted for the new
data source-sink combinations.

9 Related Work
Web Attacks. Past research studied web attacks as
seen from the web browser [8], [49]�[53]. Other studies
used webserver backups [9], [54] and high-interaction
honeypots [55]�[57] to understand web attacks. Several
techniques studied the role of hosting providers [58] and
the response landscape from post-compromise
noti�cation campaigns [59], [60]. While these studies
focused on generic web attacks,YODA analyzed the
spread of malware via CMS plugins.

Our previous work, TARDIS [9] also analyzed nightly
backups to investigate targeted long-lived malware at
an entire-website granularity, but TARDIS is neither
proactive nor �ne-grained enough to vet
previously-unseen plugins for malicious behavior.
TARDIS's detection is coarse-grained as it relies upon
strict temporal sequences of website-level indicators
(e.g., stand-alone backdoor �le injection followed by �le
deletion). Malicious plugins do not exhibit overt
temporal sequences of such indicators (that TARDIS
relies upon). They are deployed all at once and lie in
wait until the website is loaded (e.g., blackhat SEO),
requiring a plugin-centric detection and analysis.
Web Malware Analysis. Recent web-based malware
analysis research analyzed targeted attack classes like
webshells [33], [34], ad injection [61]�[63], survey
scams [64], [65], cross-site scripting [66]�[69], PHP code
and SQL injection [69]�[74], �le inclusion attacks [75],
[76], dictionary attacks [77], etc. Their adoption by
website operators to detect malicious CMS plugins is
limited by signi�cant instrumentation and training
complexities associated with these techniques.
Conversely, YODA is an automated investigation
framework, agnostic to targeted attack classes, and can

be deployed by all stakeholders in the CMS ecosystem.
Measurement Studies. WordPress plugin research
focused on measuring vulnerabilities [78]�[80] and
comparing plugin ratings with vulnerability
exploits [81]. Researchers also assessed the role of web
hosting providers to detect compromised websites [82],
studied malicious web apps [2], malicious browser
extensions [3], [4], and malicious packages in package
registries [5]. Caballero et. al. [83] measured
pay-per-install malware distribution in benign software.
However, unlike YODA , prior work has not studied the
impact of malicious plugins on CMS marketplaces.

10 Conclusion

YODA provides an automated investigation framework
that uncovered 47,337 malicious plugin installs on 24,931
unique websites, 94% of whichare stil l active today. We
have disclosed the results to CodeGuard and they are
working on remediating the identi�ed attacks.

Acknowledgment

The authors would like to thank the anonymous
reviewers for their constructive comments and feedback.
In particular, we thank Professor Alexandros
Kapravelos for his guidance while shepherding this
paper as well as our collaborators at CodeGuard for
their insightful comments and suggestions throughout
this research. This work was supported, in part, by NSF
under Award 1916550, DARPA under contract
HR00112190087, and Cisco Systems under an
unrestricted gift. Any opinions, �ndings, and
conclusions in this paper are those of the authors and
do not necessarily re�ect the views of our sponsors or
collaborators.

References
[1] Is WordPress Really A 10 Bil lion Dollar Economy? https:

/ / www . presstitan . com / is - wordpress - really - a - 10 -
billion-dollar-economy/ , [Accessed: 2020-05-08].

[2] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang, �Hey, you, get
o� of my market: Detecting malicious apps in o�cial and
alternative android markets.,� in Proc. 19th NDSS , San
Diego, CA, Feb. 2012.

[3] N. Jagpal, E. Dingle, J. -P. Gravel, P. Mavrommatis,
N. Provos, M. A. Rajab, and K. Thomas, �Trends and
lessons from three years �ghting malicious extensions,� in
Proc. 24th USENIX Sec. , Washington, DC, Aug. 2015.

[4] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna,
and V. Paxson, �Hulk: Eliciting malicious behavior in
browser extensions,� in Proc. 23rd USENIX Sec. , San
Diego, CA, Aug. 2014.

[5] R. Duan, O. Alrawi, R. Pai Kasturi, R. Elder,
B. Saltaformaggio, and W. Lee, �Towards Measuring
Supply Chain Attacks on Package Managers,� in Proc.
2021 NDSS, San Diego, CA, Feb. 2021.

	Introduction
	Preliminary Study: Perilous Economy
	Design
	Plugin Detection
	Malicious Behavior Detection
	Origin of Malicious Plugins
	Impact Study

	Validating YODA
	Plugin Detection Evaluation
	Malicious Behavior Evaluation

	Deploying YODA
	Malicious Behavior Evolution
	Fueling the Malware Economy
	Nulled Marketplace Study
	Are Infected Plugins Cleaned Up?

	Persistence of Malicious Plugins
	Case Studies
	Limitations and Future Work
	Related Work
	Conclusion
	WordPress Plugin Header
	WordPress Plugin Architecture
	Syntactic Analysis
	SEO By Nulled Plugins

