
1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

1

This Hacker Knows Physics: Device Physics
Aware Mimicry Attacks in Cyber-Physical

Systems
Qinchen Gu, David Formby, Shouling Ji, Brendan Saltaformaggio, Anu Bourgeois, and Raheem Beyah

F

Abstract—Recent work proposed to improve the security of CPSs by
authenticating the CPS devices through the device operation times in
the response packets from the devices, due to the strong correlation
between the timing fingerprints and the physics of the devices. Al-
though such a technique may be effective in defending against naive
attackers, an advanced attacker may monitor the operation of the CPS
before launching a device physics aware mimicry attack. In this paper,
we show how the spoofed response packets can be crafted by an
attacker to deceive the CPS device authentication method based on
the device operation times. Specifically, we use the timing and physical
measurements embedded in the packets to reconstruct the devices in
the physical system, which can be used to spoof response packets
corresponding to the actual model and configuration of the devices in
the CPS. We demonstrate the performance of our technique in realistic
testbeds with real devices. Finally, we propose an upgraded defense
mechanism that may be used against such mimicry attacks.

1 INTRODUCTION

With the increased proliferation of Cyber-Physical Systems
(CPSs), there have also been more frequent attacks on CPSs.
While some attacks are wide-spread similar to computer
malware that aims for better coverage, the most devastating
attacks tend to be targeted. The most well-known such
attack on a CPS is Stuxnet, which is a malicious worm
targeting the Supervisory Control And Data Acquisition
(SCADA) systems, specifically infecting and reprogram-
ming Programmable Logic Controllers (PLCs). It was re-
sponsible for causing tremendous damage to Iran’s nuclear
program, by driving the fast-spinning centrifuges in Iran’s
nuclear facilities to a failed state. Although there have been
no official conclusion as to who is responsible for this attack,
the size and sophistication of the worm have led researchers
to believe that at least one nation-state was involved [19].
Noticeably, a dossier published by Symantec suggested that

• Qinchen Gu is with Department of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, USA.

• David Formby is with Fortiphyd Logic, Atlanta, GA, USA.
• Shouling Ji is with Zhejiang University, Hangzhou, Zhejiang, China.
• Brendan Saltaformaggio is with Department of Electrical and Computer

Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
• Anu Bourgeois is with Department of Computer Science, Georgia State

University, Atlanta, GA, USA.
• Raheem Beyah is with Department of Electrical and Computer Engineer-

ing, Georgia Institute of Technology, Atlanta, GA, USA.

the attackers were most likely to have conducted a signif-
icant amount of reconnaissance [13]. As each PLC is con-
figured in a unique manner, the attackers would first need
the schematics of the industrial control system (ICS) [7]. An
attacker would then need to know details of the individual
device’s physical behavior in order to maximize the dam-
age in the following targeted attack. For example, Stuxnet
checks a Profibus identification number corresponding to
two different models of variable frequency drive (VFD) 1,
which are used to control the motors. Two different attack
sequences are chosen depending on the type of VFD found.
A similar incident where attackers retrieved information
about the target system before mounting the actual attack
occurred in December 2015. A piece of malware specially
crafted to attack a Ukrainian electric utility caused a black-
out in a portion of its capital equivalent to a fifth of its total
power capacity [2]. It even sabotaged power distribution
equipment, complicating the restoration of power [4]. A
critical step in this attack was to seize control of the SCADA
system and to remotely shut down substations. The attack
was found to be a premeditated multi-level invasion. The
attackers were thought to have hidden in the IT network of
a utility company for six months, collecting data to figure
out the inner-workings of the system before performing
the actual attacks.

The key difference between the attacks on CPSs and
those on traditional IT systems is the physical nature of CPSs.
While the goal of attackers in traditional IT systems may be
stealing users’ private information, those who target CPSs
can cause serious damage to the real world. An attack on
critical infrastructures may directly threaten people’s daily
lives, leaving millions of dollars and even human lives at
risk. However, the physical nature of CPSs can be a double-
edged sword. For example, many studies have proposed to
leverage the physical domain as a channel to secure CPSs
[8], [10], [15], [20], [24], [25]. Specifically in [15], Formby et
al. modeled the physics of ICS devices and demonstrated
that the operation times of these devices can be used to
generate fingerprints, which are capable of verifying the
integrity of the devices’ response packets subject to a false
data/response injection attack. Their technique uses a high

1. Part number KFC750V3 manufactured by Fararo Paya in Tehran,
Iran. Vacon NX VFD manufactured by Vacon in Finland.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

fidelity intrusion detection system (IDS) to detect the minute
differences between the network packets sent by authenti-
cated devices and those spoofed by the attacker. Although
such a technique may detect naive attackers who are un-
aware of the physics-related response packets or lack proper
equipment to craft accurately timed packets, we show in this
paper that an advanced attacker may bypass the defense
by launching a mimicry attack via a compromised PLC.
Existing work have demonstrated the vulnerability of the
PLC. For example, Garcia et al. showed that a PLC rootkit
can be implemented to launch a stealthy attack in CPS
[16]. Such exploits provide a basis for attackers to directly
access and manipulate the commands for actuators and
sensory data, as well as means to produce packets with
accurate timing. Hence, the defense proposed in [15] may
be defeated under such circumstances.

This work intends to study how an advanced attacker
who is aware of the detection system can spoof packets
that correspond to the actual device model and configura-
tion (DMC) to avoid being detected by the techniques as
described in [15]. More specifically, we illustrate that an
advanced attacker who can perform reconnaissance when
attacking a targeted system and obtain the DMC in the
CPSs can better evade detection, and hence calls for a
more in-depth defense. Note that for the rest of this paper,
“device” refers to the “actuator” in the CPSs. To give a
brief description of our method presented in this paper,
we start with modeling different types of devices based
on their construction and the physical process in their
operation. Mathematical equations are derived to describe
the operation of the devices and used to characterize the
devices in the network domain. Using real testbeds that we
built, we demonstrate the process of inferring the models
and configurations of the devices from their response traffic,
which in turn are used to forge the responses of the same
devices. With the results from the testbeds, we show that
the forged responses are much more difficult to be detected
using device physics fingerprinting methods.

1.1 Observation

In CPSs, physical devices either take commands from the
cyber side of the CPS and operate objects in the physical
world (i.e., actuators), or provide digitized information of
the physical objects to the controller or monitoring system
(i.e., sensors). In [15], Formby et al. discussed how the
actuators have to obey the laws of physics when executing
commands sent by the controllers. During our experiments,
we found that these actuators exhibit different temporal
features which are correlated with the device physics when
carrying out the actions.

For example, two motors given the same command of set
to full speed may take a different amount of time to accelerate
to full speed, depending on the torque generated by the
motor and the magnitude of its load. Likewise, a valve given
a command of close or open can take an interval of time
defined by its specification set according to the mechanical
and electrical properties, which include the physical compo-
sition of the valve (e.g., torque characteristics of the motor,
power rating, gear ratio, size of the fluid passage, etc.). In
some cases, such responses may be recorded and used as

replay attack. However, there are two problems that must be
addressed for such an attack to succeed. First, the responses
for certain types of devices are not constant over time, and
may be a function of the run-time condition of the devices.
Second, the accuracy required to reproduce such responses
may exceed the capability of many embedded devices as
shown in [15].

We also noticed that an actuator can generate feedback
information during the execution or after the completion
of a command, either actively or passively. The feedback
signal carries the information about the actuator’s physical
attributes, which can then be used to infer the model and
configuration of the device. Taking the valve again as an
example, all valves used in our experiment are capable of
outputting signals to indicate its real-time status, such as
open/closed or the percentage of opening. The response can
be used as a fingerprint that uniquely identifies the device.

In this work, we leverage the device responses to infer
the knowledge of the devices in the CPS. Without loss of
generality, we look at a typical set of devices that adequately
represent the common types of actuators in CPS. We find
that the response packets contain useful information that
reflects the model and configurations of the device. Finally,
we apply the obtained information to forge response packets
corresponding to the actual devices.

1.2 Contributions

The contributions we make in this paper are summarized as
follows:

• Our work incorporates the physical domain of the
CPSs, and extends the idea of reconnaissance in an
attack down to the physical level of CPSs.

• We exploit the timing-based fingerprinting tech-
niques to infer the models and configurations of the
devices in CPSs. Our method not only can defeat the
device-physics based defenses (e.g., [15]), but also
provides the information for the attacker to launch
more targeted attacks against the physical processes.

• We build testbeds that emulate common industrial
systems and collect data from multiple types of
real CPS devices to verify the effectiveness of our
technique. The results are promising and show that
both the devices’ models and configurations can be
inferred through the response packets, and responses
can be forged using the inferred values.

• We discuss several possible defenses and propose a
challenge-response based defense mechanism for the
device physics aware response-spoofing attacks.

2 BACKGROUND

2.1 Overview of CPSs

A CPS is composed of four major types of components,
plants (also known as processes), controllers, actuators,
and sensors. Figure 1 shows the interaction among these
components in the simplest form of CPS, using the control
of a robotic arm as an example. In reality, a CPS can be a
cascaded structure, where one or more control loops may be
embedded in the plant of a higher level loop.

2

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

Fig. 1: Interconnections among different elements in a CPS.

The plant is a physical process that often entails the
primary objective of the CPS, such as a room where the
temperature must be maintained within a certain range, or a
robotic arm that needs to be moved through space in certain
sequences. The plant is a combinatorial result of the control
commands and the laws of physics.

The controller functions as the center of computation in
a CPS, and also generates the control commands. Histori-
cally, the controller has evolved from mechanical switches
and valves manually operated by human operators, to sim-
ple circuits that are hard-wired to follow a routine, and
finally digital hardware that are controlled by software,
such as a PLC, Remote Terminal Units (RTU), or other
microprocessor based embedded systems typically found
in a household environment. These controllers are capable
of performing network communication and thus may be
connected to a computer network for the ease of centralized
management. In particular, the PLC as shown in Figure 1
can take commands from a host device (e.g., supervisory
computers in a SCADA system) and translate the commands
embedded in the network packets into electrical signals that
drive the actuator. It can also act upon its local information,
such as data read by the sensors to maintain the control
objective of the plant.

The actuator implements the control commands sent
from the controller to the plant. For the software controlled
controller, the actuator bridges the gap between the con-
troller in the cyber domain and the plant in the physical
domain. There are various forms of actuators including
motor, valve, relay, pump, etc. Unlike the speed of in-
formation propagation in a computer network, which is
predominantly determined by the processing power of the
devices and the speed of light, actuators are physical devices
bounded by the laws of physics. Thus, there is usually a
delay in the control action carried out by the actuators,
given the command from the controller. Many actuators are
equipped with feedback mechanisms that report back their
real-time status to the controller.

The sensor is a one-way interface which converts the
physical quantities into electrical signals that can be read by
the controller.

2.2 Physics-based Defense Techniques in CPSs

There are two types of physics-based defense techniques in
CPSs: 1) one that uses models of the physics of the process

(system); and 2) one that uses models of the device physics.
In this paper, we seek to defeat the device-physics based
defense techniques.

System-Modeling. This type of CPS defense technique
attempt to model the behavior of the physical system in
a CPS, usually composed of multiple devices (sensors, ac-
tuators, etc.) and processes. Such models usually leverage
the knowledge about the system specifications and system
and control theory to seek the detection of potential haz-
ardous states [8], [20], [25]. For example, Cárdenas et al.
proposed to use linear system models to detect attacks on
networked control systems [9], [10]. They were able to detect
stealthy attacks on these systems with linear system models.
Urbina et al. studied if physics-based attack detection can
limit the impact of stealthy attacks in the ICS and showed
that the impact of such attacks can be mitigated by the
proper combination and configuration of detection schemes,
including a stateful model of the physical system [25]. More
recently, McParland et al. proposed a framework to monitor
physical constraint violations by leveraging specification-
based intrusion detection [20].

Device-Modeling. While system-modeling based tech-
niques focus on the system-level behavior on a CPS, device-
modeling techniques can become quite useful in charac-
terizing benign versus malicious operations inside CPSs
as well. Such techniques focus on the correct operation of
individual devices in a CPS. Similar to a physical system
composed of various actuators, controllers, sensors and
processes, each device in this system can also be modeled
using deterministic equations, per the laws of physics. For
example, Formby et al. proposed to tackle the false data
injection issued during control command requests to the
field devices [15]. The idea was to help ensure the authen-
ticity of the responses by analyzing the observed response
against the fingerprints developed by the operation time
associated with each device in an ICS, which is a large
division in CPS. They claimed to achieve an accuracy as high
as 99% using this fingerprinting technique to differentiate
authentic mechanical relays from spoofed ones. The authors
also showed that it would require a highly knowledgeable
and skilled adversary to perform a forgery attack on the
fingerprinting technique.

3 PROBLEM DESCRIPTION

We motivate our work with a realistic attack scenario as
depicted in Figure 2, where a centrifuge (the plant) and a
small part of the SCADA system are shown. The objective of
the system is to set the power of the centrifuge and monitor
its safe operation from the supervisory host. The control
command is sent from the supervisory host over the local
area network (e.g., Ethernet) using industrial standard com-
munication protocols (1©), such as Modbus or Ethernet/IP.
The PLC starts the motor (2©) which drives the centrifuge
(3©) upon receiving the command from the host (e.g., set the
centrifuge to run at 25% power). In the meantime, the motor
sends back its real-time speeds which are timestamped and
encapsulated by the PLC to the supervisory host (4©). The
PLC also receives various measurements (e.g., temperature,
vibration, etc.) from the sensors connected to the centrifuge
(5©(6©)) and adjusts the control output accordingly.

3

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

①
Set centrifuge to 25% power

Speed steadily rises to 75%

Set centrifuge

to 75% power

Response: Speed steadily

rises to 25%

S
ta

rt S
p
eed

③

Accelerate to 75%

S
en

se
Report

Accelerate to 25%

Response: Speed steadily

rises to 25%

Sensors

Centrifuge

(Model XYZ)

PLC

Supervisory

Host

Motor A

Motor A
Centrifuge

(Model XYZ)

Attacker

⑧
Infer devices based

on observations

Device Physics

Model

Analyze

Forge device’s

response under

original command

②
④

⑤

⑥

⑩

⑦

⑨

⑪

Fig. 2: Attack model used in this paper, where the attacker
injects a false command to the PLC and a forged response
to the supervisory host. The attacker needs to first observe
the legitimate traffic to infer the actual devices’ models and
configurations before spoofing the response.

To bound the problem, we focus on attacking the system
by spoofing the falsified commands to control the devices
(10©), while sending back responses to the original com-
mands that can deceive the device fingerprint detection
mechanism (11©). The attacker’s objectives are two-fold: a.
to obtain the models and configurations of the devices
(e.g., details related to the motors or centrifuges such as
their weight and capacity) (7©(8©)); b. to forge responses
based on such information (9©). It is worthy noting that
the information related to their physical properties is not
explicitly transmitted in the network. Thus, the attacker can
only learn such information through passive observation of
the network traffic in order to minimize disturbance to the
system before mounting the actual attack.

3.1 Attack Model

In this work, an attacker is assumed to have gained access
to the corporate network and can spoof the control com-
mand sent by the PLC to the actuators. He can modify the
network traffic between the PLC and the supervisory host
by intercepting and forging network packets, but does not
have access to the supervisory host. Such an assumption is
reasonable, as the communication between the PLC and the
supervisory host is usually unencrypted, while the supervi-
sory host is usually a relatively powerful computer system
that is equipped with modernized defense techniques. The
attacker is also assumed to have only network access but
no physical access to the target CPS, hence can only ob-
serve and modify the network traffic. Such network traffic
does not include direct information of the models (e.g.,
manufacturer’s name, model number) and configurations
(e.g., load percentage) of the sensors and actuators, as these
devices are controlled with electrical signals by the PLC,
and do not directly transmit data/packets on the network.
The attacker can carry out reconnaissance first to collect

data on the general system architecture, but does not have
information on the specific model and configuration of
each device. For example, an attacker who targets a critical
infrastructure such as a thermal power plant may be able
to get information on its commission date and capacity [3].
Finally, the attacker also has access to the specifications for
all models of the target device types, and can acquire specific
models of the devices to perform experiment and build a
catalog of their signatures.

The attacker’s objective is to sabotage the physical pro-
cess of the CPS by injecting a false command to the PLC.
However, the attacker is also required to deceive the IDS by
injecting the forged response corresponding to the original
command, as the IDS ensures the system is intact and
normally operating by checking the response from the PLC
against the expected response from the underlying physical
devices. Note that a naive replay attack may result in a
failure as mentioned in Section 1.1. Because of the imper-
fection in the timing of the replay attack, the threshold for
mounting a successful replay attack is high [15]. Hence he
must achieve enough precise timing control of the spoofed
packets, whether the spoofed packets were pre-recorded or
dynamically generated.

3.2 Formal Definition of the Device Response Mimicry
Attack Problem

The primary goal of our work is to infer the models and
configurations of the devices in CPSs. The assumptions we
use in this study include: 1) There exist N product models
Di (i ∈ [1,N]) for a given device type. Each Di has M
configurations Di,j (j ∈ [1,M]). 2) The attacker initially
does not have knowledge of the value for i and j. By
observing the legitimate responses Ri,j sent by a device D,
the attacker classifies D into ia ∈ [1,N] and ja ∈ [1,M]. 3)
The attacker injects false command Ca to alter the original
command C sent to the the device Di,j , while spoofing
the finite-time response Ria,ja of the device Dia,ja under
command C.

The problem can be formally defined as a two parts. The
first part is a classification task, where the product model ia
and configuration ja needs to be determined based on the
observation of Ri,j and C. The second part is an attack on
the binary classifier trained with Ri,j , where goal is for the
spoofed response Ria,ja to be classified as legitimate.

4 METHODOLOGY

As stated in Section 3, our method focuses on inferring the
information of a device in a CPS in two aspects: which
specific product model a certain device corresponds to,
and what run-time configuration it runs in. For example:
a motor in the schematic of a CPS (e.g., a conveyor system
in a factory controlled with SCADA) can be implemented
with the product selected from various brands and model
numbers. The specific product model number used during
the construction of the system can be chosen from a variety
of available products, as long as it satisfies the required
constraints. The parameters of each model may also vary
within a reasonable range, e.g., power rating at 500W versus
600W . The run-time configuration refers to the configurable

4

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

TABLE 1: List of CPS devices and their physical properties

Device Type Load Dependent Input Type Output Type Motion Type

Relay No Binary Binary N/A
Valve Slightly Binary/Analog Binary/Analog Linear
Pump Yes Binary Analog N/A

Stepper Motor Yes Analog Analog Rotary
Solenoid No Binary Binary Linear

Electric Motor Yes Analog Analog Rotary
Hydraulic Cylinder Yes Analog Analog Linear

states with which the device directly interfaces in the CPS,
e.g., the speed setting of the motor, and the load attached to
the motor’s output shaft.

4.1 Device Physics Modeling
To have an understanding of how the DMC inference tech-
nique can be applied among different devices, we first need
to build the physical models of various devices. In this sec-
tion, we build the model of one device, namely the electric
motor. Table 1 lists the comparison of seven common de-
vices in a CPS and their physical properties. Load Dependent
refers to whether the output behavior of the device depends
on its load. Input/Output Type means whether the device
takes/generates binary (e.g., on/off, closed/open) or analog
(e.g., continuously variable speed) signal/states. Note that
some devices such as valves can have both binary and
analog types of input/output, depending on its model and
application. Without loss of generality, we leverage three
types of devices which cover the most variations in each
property dimension to demonstrate our method, namely
electric motor, relay, and valve. We take the electric motor
as a running example and begin with the mathematical
modeling of its device physics. The processes for building
three other types of devices can be found in the appendix.

A physical model connecting the electrical domain to
the mechanical domain is illustrated in Figure 3. A circuit
loop is formed between the positive and negative leads
(i.e., brushes) connected by the rotor coils, where Es is
the source DC voltage, iemf is the armature current, R
is the armature resistance, and Eo is the induced counter-
electromotive force (CEMF), as its polarity always acts against
Es. Eo is generated on the abstract component EMF, which
produces a torque τ on the shaft connected to the load
through a bearing and can be expressed as

Eo = ZnF/60, (1)

where Z is the winding coefficient, n is the rotor’s rotation
speed, and F is the flux per pole. Using Ohm’s Law and
Newton’s second law for rotation, the equation which governs
the dynamics of the motor is thus

τ =
ZF (Es − ZnF/60)

2πR
. (2)

Consider the case where the load is initially at reset and
accelerated by applying a constant voltage Es to the motor.
The angular velocity ω over time t satisfies the equation

ω(t) =

∫
αdt =

∫
ZF (Es − ZnF/60)

2πRIload
dt−

∫
τ̂

Iload
dt, (3)

under the boundary condition ω(0) = 0. Solving the dif-
ferential Equation 3 and substituting n = 30

π ω, we get an
exponential decay function

ω(t) = −Ae−t/B +A, (4)

where A = (ZF2πREs − τ̂)
4π2R
Z2F 2 and B = 4π2R

Z2F 2 Iload. Recall
that Z, F , R are constants determined by the specific con-
struction of a motor, hence are product model related. τ̂ is
independent of ω and can be assumed to be constant too.
Therefore, A is linearly correlated to the source voltage Es
and B is proportional to Iload. A is product model related
parameter, while B is a configuration related parameter
given a fixed product model.

Recall that in Figure 1, the controller sends a command
to the actuator and receives response when the actuator ex-
ecutes the command. In this case, the command can be start
motor, and the response is the timestamped rotation speed
of the motor. As network packets containing the timestamps
and speed values are sent back from the controller to the
other host(s), a time series can be extracted from the packets
that correspond to Equation 4. Such time series satisfy the
equation when the proper device physics parameters are
plugged in.

Fig. 3: Physics model of permanent magnet DC motor.

4.2 Characterization
The output type of each device in Table 1 is classified as
either binary or analog. Combining this with the physics
models of each device, we find that each device has a deter-
ministic response which can be observed and measured. We
define two types of response from a CPS device.

Operation Curve. For those that have an analog output,
e.g., speed of a motor, position of a modulating valve, a
time series data can be obtained by continuously sampling
the output value with a timestamp. We refer to this type of
data as the operation curve.

Operation Time. Devices with binary output, such as
the open/closed states of a relay or a two-position valve
can be characterized based on the time difference between
the applied signal and the desired state change. This time
difference is called the operation time

The operation curve is a direct result of the signal given
to the device, as well as the specific physical construction
of the device itself. Similar to the principle behind the
operation curve, the operation time is also dependent on
the physics process inside the device. Therefore, both the
operation curve and the operation time are a function of the
device physics, defined by its governing equations and the
parameters. Whether the reverse is also true is the key to
infer the device physics from its observable output, and will
be discussed in the following sections.

4.3 Device Model and Configuration Inference
We now identify the DMC from its response by going back-
wards in time, i.e., find the product model and configuration

5

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

related parameters in the mathematical model of the device,
that will generate the response of the legitimate device. We
use the non-linear least squares method. It is a form of least
squares analysis used to fit a set of m observations with a
model that is non-linear in n unknown parameters (m > n).

Consider device’s response to be a set of m data points,
(t1,V1), (t2,V2), ..., (tm,Vm). Without loss of generality,
Vi is a vector of all the values in the response at time ti,
where i ∈ [1,m]. Assume that the function mapping all the
product model and run-time configuration related param-
eters P to V is V = f(t,P), where P = (P1, P2, ..., Pn)
(m > n). The goal is to find the vector P such that the
curve best fits the given data in the sense of the least sum of
squares, i.e.,

S =
m∑
i=1

ri · ri (5)

is minimized, where the residuals Ri are given by

ri = V − f(t,P). (6)

The Gauss-Newton algorithm can be used to solve this
optimization problem. Given an initial value of P0, an
iterative search updates the parameters by

Pk+1 = Pk − (Jr
ᵀJr)

−1Jr
ᵀrPk, (7)

where k is the iteration number, and the Jacobian is defined
as

(Jr)ij =
∂riPk
∂Pj

. (8)

The best-fitting P is found when the algorithm converges.
The final step is to map the values in P to the device’s

product model and run-time configuration. While the latter
can be interpreted numerically, the former one can be found
using the specification sheets of a set of candidate devices
commonly found in CPSs.

4.4 Device Response Packets Synthesis
The last step is to synthesize the device response pack-
ets containing the timestamped measurements. The most
straightforward method is to plug the parameter values
found in Section 4.3 back into the device physics modeling
equations in Section 4.1 using the values corresponding
to the device models and configurations. However, the
parameter values obtained using the non-linear least square
method can vary across different observations of the de-
vice’s responses, even when the DMC is constant. This may
arise either due to the measurement errors or slight change
in these device parameters themselves (e.g., the resistance
varies when the temperature changes). Therefore, a sam-
pling process is added to randomly choose an observed
value for each parameter before plugging in.

5 EXPERIMENTS

It comes with extreme difficulty to obtain real data in
CPS due to the cost associated with interfering the normal
operation of a potentially valuable system. To address it, we
set up two testbeds using real industrial standard devices
that simulate corresponding systems that have realistic ob-
jectives, such as balancing the liquid level in a container or

Fig. 4: Block diagram of Testbed 1 setup. The valve and relay
are of specific interest in this study.

Fig. 5: Block diagram of Testbed 2 setup. The motor and
relay are of specific interest in this study.

stirring materials during a chemical reaction in a chemical
factory. Each of the testbeds could be a potentially valuable
target for the attacker.

Among the devices used to build the testbeds, we focus
on three types to infer the DMC of each of the devices,
namely electric motor, relay, and valve. Leveraging the three
types of devices, two physical testbeds were constructed
that appropriately mirror a real-world CPS environment, as
shown in Figure 4 and 5. In this section, we explain how
each type of chosen device operates in the testbed, as well
as the experiment procedures and parameter settings.

In general, we collected the responses of each type of
device, and extracted the operation curves or operation
times of each device labeled with the actual model i ∈ [1,N]
and configuration settings j ∈ [1,M]. These operation
curves and operation times are then used as the input to
the classifiers to generate the predicted model ia ∈ [1,N]
and configuration ja ∈ [1,M].

In this section, we first state the common setup across
each testbed. Then we discuss the methodology used to
attack each of the three types of devices used in the testbeds,
namely electric motors, relays and valves, followed by
explaining the technique used to craft precisely timed re-
sponse packets. Finally, we present and interpret the results
of attacking the three types of devices.

5.1 Timestamps and Protocols

As can be seen in Figure 6a, a supervisory host sends
high-level command to the controller, and the controller
processes the command in the form of network packets
and directly controls the field device (motor in this case)
to perform the action. This setup corresponds to the Level 0
to 2 in a SCADA architecture. To closely mimic an industrial
environment, we chose a PLC for the controller among other
available options (e.g., a PC or embedded platform). In

6

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

(a) Network packet timing diagram of the experiment
setup.

(b) Motor device showing sensor positions
and load adjustment.

Fig. 6: Electric motor testbed setup. (a) also applies to other
types of devices.

addition to adding authenticity to the testbed, the PLC also
comes with an important feature that may be absent from
other controllers, i.e., a high precision clock that is used
to timestamp the events. The PLC we used was an Allen-
Bradley Micrologix 1400 series. It has a 32-bit high speed
clock which provides a timing resolution of 9.92063492µs.
Due to the simple program flow and predictable program
scan cycles of a PLC, the timing for an event at the PLC
can almost always occur immediately after it. In compar-
ison, neither a PC nor an embedded controller such as a
Raspberry Pi is able to achieve a constant timing resolution
like a PLC, because of their non-real time operating system
or much slower clock frequency. The timestamps can either
be embedded natively in the packet if supported by the
protocol (e.g., distributed network protocol (DNP3)), or
taken by the program running on a PLC, if the protocol
does not have native support for timestamps (e.g., Modbus).
Without loss of generality, we chose the latter method in all
experiments. Note that the timestamps are transmitted to
the supervisory host as network packets.

For the command and response sent between the su-
pervisory host and the PLC, we used Modbus as the com-
munication protocol, as it has become a de facto standard
communication protocol and is now a commonly available
means of connecting industrial devices [11]. The supervisory
host ran a Python script leveraging the modbus-tk library and
acted as an HMI running on the engineering workstation.
It was responsible for initiating the communication and
sending command to the PLC acting as a Modbus slave,
as well as constantly checking for new responses. Each
response contained an event, such as a new speed reading
in the case of the motor testbed. The event was always
accompanied with a timestamp taken by the high speed

clock on the PLC.

5.2 Electric Motor
The testbed setup of the electric motor can be seen in Figure
5. Note that although the command sent from the host
contained both the power setting and a start command,
we only applied the power setting at the motor controller
as different power output, which was set prior to the start
of the motor. This is because we intended to emulate the
scenario where the motor is of a certain model that operates
under the given power ratings. Thus, the power setting
would be obscured from an attacker who can only observe
the network traffic. The shaft of the motor was connected
to a load with variable MOI as shown in Figure 6b. Two
hall sensors were placed to enable the PLC to calculate
the angular speed of the load. A timestamp relative to the
command received from the host was taken and read by the
host together with the angular speed of the motor, which
formed an operation curve.

Both the product model and the run-time configuration
related parameters were variable in this testbed. For each
start command sent from the host, we collected the re-
sponses from the motor while varying its product model
and run-time configurations. In summary, 100 trials were
performed for each of the 80 experiment settings, and all
8, 000 sets of data were collected. Each trial took 30 seconds
to ensure the speed of the motor stabilizes, resulting in
roughly 67 hours of data collection.

TABLE 2: Key Parameters of the Relays Taken from Their
Specifications

Model Close Time Open Time

Schneider 785XBXCD-24D 20ms 20ms
Omron G2RV-SR500 DC24 20ms 20ms

TE K10P-11D15-24 10ms 13ms
TE KUEP-11D15-24 10ms 15ms
TE KUIP-14D15-24 15ms 20ms
TE KUL-11D15D-24 25ms 25ms
TE KUP-14D15-24 15ms 20ms

Omron MKS3PI DC24 20ms 30ms
TE MT221024 10ms 15ms

Schneider RSLZVA1 5ms 12ms

5.3 Relay
The relay testbed setup shared a similar structure as that
of the electric motor, except that the we focus on different
models of the relay and hence swap different models of
relay used in the testbed. Because the operation of the
relay is hardly affected by the load it controls (i.e., run-time
configuration), we therefore did not connect any load as we
did in the electric motor testbed.

In reality, the selection of the specific relay model at
a single point in a system depends on the application
requirements, e.g., the control circuit voltage, socket type,
rated operating voltage and current, etc. To set up a realistic
experiment, we selected the set of relays using common
industrial settings, i.e., 24V DC control voltage and DIN rail
mounted relays. A total of 10 different relays were found as

7

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

TABLE 3: Key Parameters of the Valves Taken from Their
Specifications

Model Type Open/Close Time

Dwyer WE01-CTD01-A Two-Position 4s
Dwyer WE01-CMD01-A Modulating 10s
Dwyer WE01-GTD02-A Two-Position 20s

listed in Table 2. The supervisory host sent either a close or
open command to the PLC depending on the last status of
the relay. The PLC recorded the time when the command
was received, and either energized or de-energized the
coil of the relay accordingly. It then polled its input pin
connected one contact of the relay output, while the other
contact was connected to a logic high voltage. When the
PLC first detected a signal level change, it again recorded
the command completion time. The difference of the two
timestamps were calculated and stored with a flag, which
can be read by the host as the operation time. For each relay,
we conducted the close/open cycle for 1, 000 operations.
Each operation was allocated 5 seconds, therefore the entire
data collection process took around 14 hours.

5.4 Valve

Similar to the relay testbed, we kept the components from
the supervisory host to the PLC, while replacing the field
device with three different valve models listed in Table 3.

This setup studies the correlation between the operation
of each valve and its specification sheet. In each experiment,
we connected only a single valve to the PLC, and swapped
different models. Without loss of generality, we used two
types of valves in our experiment, namely the two-position
valve and the modulating valve. The two-position valve op-
erates in a binary manner, i.e., the PLC outputs a binary sig-
nal to fully close or open input to the valve. When the valve
finished executing the action, a limit switch in the valve
would be triggered, and thus the event could be detected
by the PLC. A time difference was calculated between the
reception of the command and detection of the completion,
and was read by the host as an operation time. The modulat-
ing valve operates in an analog manner, i.e., the PLC outputs
a 4− 20mA current loop to the valve that linearly translates
to a valve position. The valve compares the current loop
input with its current position, and executes accordingly to
adjust for the difference. Meanwhile, its physical position
is continuously translated to another 4 − 20mA current
loop, which can be read by the PLC. The PLC kept polling
the readings and stores in its memory with timestamps,
which in turn would be read by the host as an operation
curve. To compare this operation curve of the valve with
its open/close time listed in Table 3, we converted the
operation curve to an operation time by defining a cutoff
position that the valve reaches at the end of each actuation,
and computed the difference between the command time
and the time of the cutoff position. Another reason which
called for the conversion was that the modulating valves
were changing their positions at a constant speed, unlike the
electric motor. Hence converting their operation curve to the
operation time resulted in negligible loss of information.

0 5000 10000 15000 20000

time (ms)

600

500

400

300

200

100

0

s
p

e
e

d
 (

R
P

M
)

20

40

60

80

100

d
a
ta

 d
e
n
s
it
y

(a) 5 Different Power Ratings.

0 2500 5000 7500 10000

time (ms)

700

600

500

400

300

200

100

0

s
p

e
e

d
 (

R
P

M
)

20

40

60

80

100

d
a
ta

 d
e
n
s
it
y

(b) 16 Different Load MOI.

Fig. 7: Heat map plot of the electric motor’s operation
curves from different models and under various run-time
configurations. Each curve is aggregated over 100 runs.

In total, 1, 000 opening closing operations were per-
formed on each model, taking around 19 hours for data
collection.

5.5 Implementing Timestamped Forged Response
Packets

As mentioned in 1.1, an attacker with the forged response
packets faces the challenge of sending them with accurate
timing. In [15], the authors mentioned that an attacker who
has a device with limited capability can be detected due
to low clock precision and clock drifting. To overcome this
issue, we leverage the PLC’s real-time program execution
feature. During our experiment, the timestamps and mea-
surement values in the generated responses are stored in
the PLC’s memory table and loaded by the ladder logic
diagram sequentially. Specifically, starting from the first
stored timestamp/measurement value pair in the table, the
time t since a command has been received is taken using
the high-speed clock’s value in the PLC. A pointer index
p is initialized to 0 following each command. The elapsed
time is compared with the timestamp tp stored in the table
ti. If t ≥ ti, the pth measurement value (if the device has
an operation curve) or the flag value (if the device has an
operation time) is copied to the Modbus memory for the
supervisory host to read, and p is incremented by 1. The
spoofing process ends when all responses are sent.

5.6 Results

This section shows the results of inferring each device’s
product model and configurations, as well as the attacker’s
forged responses. The performance of the inferring tech-
nique is measured with three standard metrics in classi-
fication tasks, namely accuracy, precision and recall. Let
TP , TN , FP and FN be true positive, true negative, false
positive and false negative, respectively. Accuracy is defined
as TP+TN

TP+TN+FP+FN . Precision is defined as TP
TP+FP . Recall

is defined as TP
TP+FN . We also introduce another metric

named estimation error tolerance when evaluating the
performance of device model and configuration inference.
The estimation error tolerance is defined as the number of
values between the estimated and the correct values, when
all possible values for the given parameter are sorted.

Electric motor. The authentic responses from the electric
motor were gathered by varying both its models and run-
time configurations, namely the power ratings and the MOI
of the load. For better visibility, the aggregated operation

8

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

(a) Accuracy, Precision and Re-
call of Power Rating Inference.

(b) Accuracy, Precision and Re-
call of Load MOI Inference.

Fig. 8: Performance of the run-time configuration inference
of the electric motor. The estimation error tolerance is the
allowed distance between the estimated value and the at-
tacker’s assumed value.

0 5 10 15 20 25 30
Time (s)

10

20

30

40

50

60

An
gu

la
r S

pe
ed

 (r
ad

/s
)

Authentic responses
Attacker's responses

Fig. 9: Comparison of the authentic and spoofed responses
from an electric motor.

curves are shown as heat maps in Figure 7. Each heat map
was generated by plotting the density of the 100 operation
curves for every model or configuration setting. It can be
seen that the operation curves are clearly distinguishable
and are highly correlated with the parameter values. In the
experiment, we used 5 different power ratings (to emulate
five different models of electric motors, corresponding to the
product model related parameter A from Section 4.1) and 16
different load settings (corresponding to the configuration
related parameter B from Section 4.1). Thus there are 80
different combinations and 8, 000 operation curves in total.
Each operation curve was taken as a response from this
device and its model and configuration were inferred. The
result is shown in Figure 8, which shows that our method
was able to correctly infer 98.6% of the power ratings
(device model) within a tolerance of 1 value, and 99.9% of
the load values (device configuration) within 3 values. The
non-zero error tolerance values exist because the operation
of physical devices could not be perfectly modeled with the
equations. For example, there was always energy loss in the
form of heat or vibration, which caused the inferred power
ratings to be lower than the actual power consumed. We
also note that under the same estimation error tolerance, an
increase in the number of possible values for a parameter
may adversely affect the performance of the inference re-
sults. This is expected from the method we used, as a larger
number of possible values for a parameter typically means
these values are more densely distributed over a range.
Nevertheless, we found the differences between the inferred
values and the actual ones corresponding to the DMC to be
systematic errors, which can trivially be calculated either by
knowing at least one actual values or a prior experiment

conducted by the attacker using testbeds. Moreover, when
we used these DMC parameter values to generate the forged
responses, the difference with the authentic responses was
negligible, as shown in Figure 9. The DMC inference method
was applied to the forged responses and found all of the
responses correspond to the actual DMC. Hence, the device
physics fingerprinting method in [15] cannot detect our
forgery attack.

0 100 200 300 400 500 600 700 800 900 1000

Sample size

74

76

78

80

82

84

86

88

A
c
c
u
ra

c
y
 (

%
)

0.65

0.7

0.75

0.8

0.85

0.9

P
re

c
is

io
n
/R

e
c
a
ll

accuracy

precision

recall

Fig. 10: Classification performance using relays’ operation
time.

Relay. Similarly, the authentic responses of relays were
collected first. Each relay model exhibited a densely dis-
tributed closing/opening time around a mean value, with
some overlap among several models. Because the operation
time of each relay has been explicitly noted in its specifi-
cations (which is an important factor in choosing the right
relay for any time-critical application for safety), the logical
next step was to test the correlation between the relays’
specified operation time values with their experimental
values. However, we found only 0.54 and 0.58 correlation
coefficients for closing and opening time, respectively, using
product-moment correlation coefficient (PPMCC). Thus, we
focused on each model and ranked each model according
to the distance between its experimental operation time
and the specification values of all 10 models. Since the
operation time is a 2-dimensional vector, we used a number
of distancing metrics including Euclidean, Chebychev and
Manhattan, and found that the Euclidean metric performed
the best among all. In summary, when using the Euclidean
distance metric, six relays were ranked top 3, which means
that when inferring the model of the relays, the attacker
is guaranteed to find the correct model within three trials
(which can be compared with the estimation error tolerance
in the electric motor’s results). However, if the reference
operation time of each candidate relay model can be exper-
imentally measured (the attacker may acquire every model
of a device) instead of being taken from their specifications,
the classification performance can be greatly improved as
shown in Figure 10. Because the cost of data collection
increases with the number of times the measurements are
taken, we vary the sample size from 10 to 1, 000 to show the
relationship between the classification performance and the
resourcefulness of the attackers. The classification was car-
ried out by training a Nearest Neighbor classifier in 10-Fold
under each sample size. Because the forged responses were
crafted based on the inferred model of relay, the accuracy
of classifying them into the DMC (a correct classification
means a successful attack) is not shown as it followed a

9

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

similar curve as the accuracy curve in Figure 10.

(a) Closing Operation Time. (b) Opening Operation Time.

Fig. 11: Histogram of the valves’ operation time. Dashed
lines indicates the specification values.

Valve. In contrary to the relays, the valves’ actual opera-
tion time values were very close to their specification values,
and thus can all be correctly inferred without separate
measurements. As shown in Figure 11, the distribution of
the closing and opening time of each valve was adjacent
to the corresponding values listed in Table 3. The only
misalignment is the modulating valve, with model number
WE01-CMD01-A, which has a slightly larger operation time
than expected. Since it did not have a binary output as the
other two valves did, it was not obvious to define an exact
position of the valve as fully closed or open. As explained
in Section 5.4, heuristic values were used to derive the
operation time from the its operation curves, which lead
to the minor offset. Nevertheless, this did not influence the
performance of our inference method, as all three valves’
operation time was clearly distinguishable. For all three
valves used in our experiment, the accuracy of inference
is 100% and both precision and recall remain 1.0. All of the
forged responses were also identified as the intended model
of valve by the device physics fingerprinting method in [15].

Impact from time-variant factors. The physical nature
of the devices means that they may suffer from wearing and
aging effects in the long term, especially in an industrial
environment where the devices are used frequently. In such
case, the parameters of the device physics model could devi-
ate from its ideal values. For example, the operation time of
a mechanical relay depends partially on the electromagnetic
force generated and the force in its spring. As the number
of operations increases, the spring may suffer from fatigue,
which causes the deviation of the relay’s operation time.
Similarly, an operation time of a valve may deviate as it
keeps operating throughout its lifetime. To have a prelim-
inary understanding of how this affects our technique, we
performed extended tests with both testbeds used in the ex-
periments, and observed different changes in their operation
curves or operation time. Only the valve shows a deviation
in its operation time. For example, Figure 12a shows the
operation time recorded over 50, 000 times of open/close
operation of a relay (Omron MKS3PI DC24), which is rated
to be operated at 18, 000ops./hour and with a mechanical
endurance of 5 × 106 operations. As it is challenging to
perform measurements over its entire lifetime, we have used
its maximum operating frequency to accelerate the wearing
and aging effects. We use moving average as the metric,
with the window size set to 50. However, we did not find
evidence that the operation time changes during this test.
On the other hand, the valve used in the wearing and aging

(a) Relay’s operation time over
50, 000 operations.

(b) Valve’s operation time over
50, 000 operations.

Fig. 12: Wearing and aging test of relay and valve.

test (Dwyer WE01-CTD01-A) does exhibit a gradual increase
in its operation times as shown in Figure 12b. Namely, the
moving average of its closing time increases from 3883ms
to 3943ms, and that of its opening time increase from
3814ms to 3860ms. The increase over the 50, 000 operations
is 1.5% and 1.2%, respectively. At this rate, it would take
approximately 3 × 106 operations before its operation time
becomes indistinguishable from the other models used in
our experiments. Apparently, the performance of our DMC
inference technique is insignificantly affected throughout
the extended tests. However, it is worth noting that the
number of cycles performed in our test is still far away from
rated life of the devices. Therefore, the conclusion drawn
from this test is only preliminary. We plan to perform more
extensive experiments to find out the long-term impact, as
well as other factors such as temperature and humidity on
the performance of our technique in future works.

6 DISCUSSION

6.1 Applicability to Other Field Protocols

In our experiment, we have employed Modbus as the
communication protocol used between the PLC and the
host. In reality, other protocols may be used depending on
the specific application, such as DNP3, Common Industrial
Protocol (CIP), BACNet, or ProfiNET. Most of the protocols
were designed without security features and transmit ap-
plication layer data (e.g., the timestamped values sent by
the actuators) in clear text. However, some protocols have
now been modified or designed with security in mind (albeit
rarely used in practice), and use encryption to protect data
privacy and data integrity, such as secure DNP3. In such
cases, the system still may not be exempt from an attacker
who has access to the PLC’s firmware or program. As have
been discussed in Section 5.6, the application layer data is
decrypted in the PLC if 1) the protocol natively supports
timestamping or 2) timestamping function is added to the
PLC program. In the last case where timestamps can only
be obtained at the tapping point, an extra step need to
be employed to correlate the timestamp information at the
tapping point with the value-only data decrypted at the
PLC, in order to produce the accurate time series values
generate by the actuators. The attack’s performance can be
affected if the attacker’s source of time is different from the
one used at the tapping point.

10

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

6.2 Applicability to Other Device Types
Although we only demonstrated the methodology using
three types of CPS devices, we believe it can be generalized
to many other devices that share similar properties. Because
the majority of actuators in CPSs are made of mechani-
cal or electro-mechanical components that obey the laws
of physics, and rarely include programmable components,
their operations can be very stable in every actuation.
Additionally, given a specific command of actuation, these
actuators’ response signals in the temporal domain are
tightly correlated with their models and configurations. The
motion of most actuators (such as electric motor, relay, valve,
solenoid, and stepper motor, etc.) can be described with
first- or second-order differential equations, which enables
the mathematical model inversion that leads to the inference
of the DMC. The method can be applied as long as these
devices can be modeled with equations, which are fitted
with the operation curves or operation time of the devices.
Depending on the type of device, our method may be able
to infer either its model, configuration or both. The cost
associated with the method comes mostly from modeling
the devices. However, some device types may take more
effort to model, such as the turbine in a thermal power plant,
due to the complicated computations involved with thermal
and fluid dynamics.

6.3 Defending Against CPS Mimicry Attacks
Most of the existing defenses against mimicry attacks [26]
focus on the IT domain. For example, some researchers
proposed to use system call trace to enforce the correct
program execution [14], [22]. Another paper used control-
flow integrity (CFI) checks to prevent attacks from arbi-
trarily controlling program behavior [5]. However, such
solutions can hardly be applied in the CPS environment,
due to the difficulty of instrumenting code execution in
the PLC. Moreover, our attack can be implemented on the
PLC program level, which doesn’t change the control flow
of the firmware. A related work [6] attempted to design
a PLC-compatible CFI mechanism. However, the authors
mentioned that their framework could not be implemented
on a real PLC and used an open source software instead.
Therefore, we propose a new defense technique.

It is worth noting that although Modbus - a commu-
nication protocol with no encryption - has been used in
this experiment, however, even when using a protocol
which supports encryption, our mimicry attack will still
be successful. This is because the encryption only exists
between the PLC and the supervisory host, and the data
has to be plain text in PLC’s memory. An attacker who
compromises the PLC’s firmware or program can access
the PLC’s memory regardless of the encryption used in the
communication protocol.

An intuitive countermeasure is to inject noise into the op-
eration curve or operation time when sending the response
packets from the PLC, or at the sensor which is measuring
the physical signal. While this may prevent an attacker
from obtaining an accurate DMC and hence generate the
correct response, there are two drawbacks of this approach.
First, the control algorithm of certain types of devices may
leverage these sensory signal inputs, then adjust the output

Fig. 13: Challenge-response framework to defend against
device physics mimicry attacks.

signal to the actuator to achieve optimal operation of the
device. Noise in the sensory input may interfere with such
control algorithm and degrade the safe and smooth opera-
tion of the CPS. Second, the noise-injected responses may
interfere with the device fingerprint based defense system,
and inadvertently increase the false positive rate. Therefore,
adding noise is not a feasible option.

Based on our observation in this study, we find that in
order for the responses to be generated and spoofed in time
when a command is received, the attacker needs to pre-
compute the timestamps and measurements of a device and
store the data in PLC’s memory for fast access. Storing such
data over another network device may not meet the real-
time performance requirement of sending the responses.
Also, unlike a computer program which uses the stack and
heap which are dynamic in memory, a PLC program ac-
cesses its memory via assigned blocks arranged in table files,
which almost always uses a known amount of memory in
fixed locations. Therefore, we propose a challenge-response
defense framework as shown in Figure 13. The steps are
described as follows:

1) In the initial setup, the (potentially large) unused
memory in a PLC is filled with pseudo-random data known
to the supervisory host. Essentially, the supervisory host
keeps a copy of all unused memory of every PLC in its
network. Typically, the user memory in PLC is less than
100MB (e.g., [1], [12], which leaves even less space after the
control program has been loaded.

2) During normal operation, the supervisory host peri-
odically sends a request to the PLC to apply a function F
over the data in a randomly chosen region of its unused
memory [start addr, end addr]. Such function can be XOR,
hash, etc.

3) The PLC computes and sends the result V =
F (start addr, end addr) back to the supervisory host. If
there is a mismatch or a certain time threshold is exceeded,
an alarm can be raised.

The attacker may choose to minimize memory usage and
dynamically generate the responses from a few parameters
instead of storing a large amount of pre-computed data in
the PLC’s memory. However, this will add a substantial
amount of delay to the response packets.

11

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

6.4 Limitations
Modeling Accuracy. Because the accuracy of our DMC
inference technique is highly dependent on the estimation
of the parameters in the physics model of the device, such
estimation can be less accurate when there is a mismatch
between the speculated model and the real device. Thus, a
comprehensive analysis may be required to understand the
anatomy of the device. The model (and parameters) may
also deviate from its original values due to wearing and
aging of the physical components in the long term, although
the extent to which this may affect the performance of our
technique varies among different types of devices. In such
case, the operation time/curve may be re-collected and ma-
chine learning models need to be re-trained. The equations
used in this work may not be 100% accurate in modeling the
underlying physics of the devices operations. For example,
the aging of the devices and external variables such as tem-
perature, humidity may play a role in the mechanical and
physical properties of the materials in the devices, which
ultimately affect the response from the device. Despite the
possible omission of these modeling errors, our methods
worked well as demonstrated by the experimental results in
this work, which proved the equations used to be accurate
enough.

Signal Availability. Our method assumes that the device
must be able to send either corresponding responses upon
certain events (e.g., completion of a command), or contain
observable state variables to recover the state of the device.
Such assumption may often be valid because a closed con-
trol is often used in an industrial environment to ensure
stability.

System level information. In this paper, we have fo-
cused on inferring the information of the devices in CPSs.
An advanced attacker may step up and attempt to infer the
system level information of CPSs. We intend to leave this
problem and the corresponding defense technique study as
a future work.

7 RELATED WORK

Many existing work in securing CPSs focus on the informa-
tion technology (IT) domain, such as examining the network
traffic in order to look for abnormal packets similar to what
a traditional IDS does [21]. For this category of solutions, it is
possible to provide a level of security of the control system’s
network, by treating it as an instance of IT networks and
applying mature secure access technologies (e.g., Virtual
Private Network (VPN), Firewall, etc.). Neilson proposed to
secure the control system from cyber attacks with traditional
IT solutions such as VPN [21]. Although the author listed
pros and cons of each solution, none of them took the
physical system being controlled into account. He et al.
designed a novel access control and authentication scheme
for the home IoT devices, which focuses on device capa-
bilities instead of a per-device granularity [18]. According
to the authors, such scheme may provide finer control over
the authorization of the IoT devices. Similarly, Schuster et
al. applied the situational access control approach used in
smartphone frameworks to the IoT domain, and claimed
to reduce over-privileging issue which may be used in an
attack [23]. However, these solutions which only focus on

the IT domain may fail to defend against attacks in a CPS,
where an attack originated from inside the network (e.g., an
insider, malicious device firmware) can hardly be detected.

Fortunately, many researchers realized that there is also
a significant component in CPS which falls into the opera-
tion technology (OT) domain. Earlier work in this category
focused on modeling the system behavior and comparing
the values output from the model’s sensors with those
from the real-world sensors. Such approach leverages the
knowledge about the system specifications, thus seeking to
detect potential hazardous states [8], [20], [25]. Solutions in
this category (e.g., modeling of the system physics) attempt
to incorporate knowledge specific to the CPSs. Some re-
searchers propose to leverage physics of the system in order
to solve this issue. Cárdenas et al. identified several chal-
lenges for the CPS security research community including
new vulnerabilities, threats and consequences of potential
attacks on networked control systems, and proposed to
use linear system models to detect such attacks [9], [10].
The authors showed that they were able to detect stealthy
attacks that change the physical behavior of the targeted
control system by incorporating the knowledge of the phys-
ical system. Urbina et al. studied if physics-based attack
detection can limit the impact of stealthy attacks in ICS and
showed that the impact of such attacks can be mitigated
by the proper combination and configuration of detection
schemes, including a stateful model of the physical system
[25]. More recently, Formby et al. focused on individual
devices rather than the entire system behavior of CPS, and
found that CPS devices can be fingerprinted due to their
unique physical compositions [15]. Later, Gu et al. studied
the feasibility of inferring the device models in CPSs [17].
They claimed that such fingerprint can be overlooked by
an average attacker, and can be difficult to mimic due to
the limited timing accuracy of embedded devices. However,
their assumption of attackers using an embedded Linux
development platform and PC to generate device finger-
print is not realistic in a typical ICS environment. A PLC
may be a vulnerable target in this case, as demonstrated
by Garcia et al. [16], who demonstrated a physics-aware
attack against PLC’s firmware. Their work also showed that
an attacker who is aware of the physics of the CPSs can
deceive the system model-based detection at the PLC level,
as the disjoint is created between the control system and the
physical devices.

8 CONCLUSION

In this paper, we studied the problem of launching a device
response spoofing attack in Cyber-Physical Systems. We
proposed a novel technique which bridges the gap between
the physics of the CPS devices and the responses from the
devices. We also built several testbeds and benchmarked our
methodology with real devices used in CPSs, and achieved
high accuracy in inferring the device model and configura-
tion information, as well as forging responses that are indis-
tinguishable from the authentic devices’ responses in most
cases. We then discussed the impact on the performance of
our method stemmed from various factors, including the
amount of available data and chronological wearing of the
CPS devices. Finally, we also proposed to use a challenge-
response method to defend against such attacks.

12

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

REFERENCES

[1] ControlLogix 5570 Controllers.
[2] Crash Override Malware Took Down Ukraine’s Power Grid Last

December — WIRED, 2018.
[3] Hacking Critical Infrastructure — OSINT Soup, 2018.
[4] Ukraine’s power outage was a cyber attack: Ukrenergo, 2018.
[5] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti.

Control-Flow Integrity Principles, Implementations, and Appli-
cations. In 12th ACM Conference on Computer and Communication
Security, 2005.

[6] Ali Abbasi, Thorsten Holz, Sandro Etalle, and Emmanuele Zam-
bon. ECFI: Asynchronous Control Flow Integrity for Pro-
grammable Logic Con-trollers. 12, 2017.

[7] David Albright and Frank Pabian. It Fits! Qom Site Layout.
Technical report, 2018.

[8] Alvaro A. Cárdenas, Saurabh Amin, Zong-Syun Lin, Yu-Lun
Huang, Chi-Yen Huang, and Shankar Sastry. Attacks against pro-
cess control systems: Risk Assessment, Detection, and Response.
In ASIACCS, page 355, New York, New York, USA, 2011. ACM
Press.

[9] Alvaro A. Cárdenas, Saurabh Amin, and Shankar Sastry. Research
challenges for the security of control systems. In HOTSEC, page 6,
San Jose, CA, 2008. USENIX Association.

[10] Alvaro A. Cardenas, Saurabh Amin, and Shankar Sastry. Secure
Control: Towards Survivable Cyber-Physical Systems. In 2008
The 28th International Conference on Distributed Computing Systems
Workshops, pages 495–500. IEEE, 6 2008.

[11] Bill Drury. Interfaces, communications and PC tools. Institution of
Engineering and Technology, 2010.

[12] Schneider Electric. Modicon M241 Logic Controller - Hardware
Guide - 04/2014. Technical report, 2014.

[13] Nicolas Falliere, Liam O Murchu, and Eric Chien. W32.Stuxnet
Dossier. Symantec-Security Response, (February 2011):1–69, 2011.

[14] H.H. Feng, O.M. Kolesnikov, P. Fogla, W. Lee, and Weibo
Gong. Anomaly detection using call stack information. In
Proceedings 19th International Conference on Data Engineering (Cat.
No.03CH37405), pages 62–75. IEEE Comput. Soc.

[15] David Formby, Preethi Srinivasan, Andrew Leonard, Jonathan
Rogers, and Raheem Beyah. Who’s in Control of Your Control
System? Device Fingerprinting for Cyber-Physical Systems. In
NDSS, San Diego, CA, USA, 2016. Internet Society.

[16] Luis A. Garcia, Ferdinand Brasser, Mehmet H. Cintuglu, Ahmad-
Reza Sadeghi, Osama Mohammed, and Saman A. Zonouz. Hey,
My Malware Knows Physics! Attacking PLCs with Physical Model
Aware Rootkit. NDSS, (March 2017), 2017.

[17] Qinchen Gu, David Formby, Shouling Ji, Hasan Cam Cam, and Ra-
heem Beyah. Fingerprinting for Cyber Physical System Security:
Device Physics Matters Too. IEEE Security & Privacy, 2018.

[18] Weijia He, Maximilian Golla, Ruhr-university Bochum, Roshni
Padhi, Jordan Ofek, Markus Dürmuth, Weijia He, Maximilian
Golla, Roshni Padhi, Jordan Ofek, and D Markus. Rethinking
Access Control and Authentication for the Home Internet of
Things (IoT). Proceedings of the 27th USENIX Conference on Security
Symposium, pages 255–272, 2018.

[19] David Kushner. The real story of stuxnet. 50(3):4853, 2013.
[20] Chuck McParland, Sean Peisert, and Anna Scaglione. Monitoring

Security of Networked Control Systems: It’s the Physics. IEEE
Security & Privacy, 12(6):32–39, 11 2014.

[21] Carl Neilson. Securing a Control Systems Network. ASHRAE,
2013.

[22] Niels Provos. Improving host security with system call policies.
In Proceedings of the 12th Conference on USENIX Security Symposium
- Volume 12, SSYM’03, pages 18–18, Berkeley, CA, USA, 2003.
USENIX Association.

[23] Roei Schuster, Vitaly Shmatikov, and Eran Tromer. Situational
Access Control in the Internet of Things. Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security
- CCS ’18, pages 1056–1073, 2018.

[24] P Srinivasan. Fingerprinting Cyber Physical Systems: A Physics-
Based Approach. Master’s thesis, 2015.

[25] David I. Urbina, Jairo A. Giraldo, Alvaro A. Cardenas, Nils Ole
Tippenhauer, Junia Valente, Mustafa Faisal, Justin Ruths, Richard
Candell, and Henrik Sandberg. Limiting the Impact of Stealthy
Attacks on Industrial Control Systems. In CCS, pages 1092–1105,
New York, New York, USA, 2016. ACM Press.

[26] David Wagner and Paolo Soto. Mimicry Attacks on Host-Based
Intrusion Detection Systems *. Technical report, 2002.

Qinchen Gu received his BS, MS and Ph.D.
degrees in electrical and computer engineering
from Georgia Institute of Technology. His current
research interests include physical side-channel
attack and defense and PLC binary analysis in
Cyber Physical Systems.

David Formby received the M.S. and Ph.D.
degrees in electrical and computer engineering
from Georgia Institute of Technology (Georgia
Tech) in 2014 and 2017, respectively. He was a
Postdoctoral Researcher in the School of Electri-
cal and Computer Engineering at Georgia Tech,
and a member of the Communications Assur-
ance and Performance (CAP) group. He is now
CEO/CTO of Fortiphyd Logic, a startup focused
on cybersecurity for industrial control systems.

Shouling Ji is a ZJU 100-Young Professor in the
College of Computer Science and Technology
at Zhejiang University and a Research Faculty
in the School of Electrical and Computer Engi-
neering at Georgia Institute of Technology. He
received a Ph.D. in Electrical and Computer En-
gineering from Georgia Institute of Technology
and a Ph.D. in Computer Science from Georgia
State University. His current research interests
include AI Security, Data-driven Security and
Data Analytics. He is a member of IEEE and

ACM and was the Membership Chair of the IEEE Student Branch at
Georgia State (2012-2013).

Brendan Saltaformaggio is an Assistant Pro-
fessor in the School of Electrical and Computer
Engineering at Georgia Tech, with a courtesy
appointment in the School of Computer Science.
His research interests lie in computer systems
security, cyber forensics, and the vetting of un-
trusted software.

Anu Bourgeois is an Associate Professor and
Director of Undergraduate Studies in the De-
partment of Computer Science at Georgia State
University. Her research focuses on algorithm
design, architecture, fault tolerance, and energy
efficiency for wireless and optical networks. She
is currently working on issues for wireless sensor
networks.

13

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

1545-5971 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TDSC.2021.3089163, IEEE
Transactions on Dependable and Secure Computing

Raheem Beyah currently holds the Motorola
Foundation Professorship in the School of Elec-
trical and Computer Engineering and serves as
the Vice President for Interdisciplinary Research
at Georgia Tech. His work is at the intersection
of the networking and security fields.

14

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on April 12,2022 at 15:48:43 UTC from IEEE Xplore. Restrictions apply.

