
c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 3 7 – 7 4 4

Available online at www.sciencedirect.com

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / c o s e

G emini : Guest-transparent honey files via

hypervisor-level access redirection

Zhongshu Gu

a , ∗, Brendan Saltaformaggio

b , Xiangyu Zhang

c ,
Dongyan Xu

c

a IBM T.J. Watson Research Center, Yorktown Heights, NY, USA

b School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA

c Department of Computer Science and CERIAS, Purdue University, West Lafayette, IN, USA

a r t i c l e i n f o

Article history:

Received 18 August 2017

Revised 27 November 2017

Accepted 19 February 2018

Available online 5 March 2018

Keywords:

Data security

System security

Virtualization

Access control

Moving target defense

a b s t r a c t

Data safety has become a critical problem in the face of various cyber-attacks aiming at

stealing or divulging sensitive information. In the event that adversaries have gained ac-

cess to a system storing classified data, such crucial systems should actively protect the

integrity of this data. To purposely deceive an attacker, we propose that accesses to sen-

sitive data can be dynamically partitioned to prevent malicious tampering. In this paper, we

present G emini , a virtualization-based system to transparently redirect accesses to classi-

fied files based on the context of the access (e.g., process, user, time-of-day, etc.). If an access

violates preconfigured data-use policies then it will be rerouted to a honey version of the file,

specifically crafted to be manipulated by the adversary. Thus, G emini transforms static, sen-

sitive files into moving targets and provides strong transparency and tamper-resistance as

it is located at the hypervisor level. Our evaluation shows that G emini effectively neutralizes

several real-world attacks on various sensitive files and can be integrated seamlessly into

current cloud environments.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Data theft and leakage have become a crucial threat to cyber-
security (Messmer, 2014a, 2014b; Whittaker, 2012). Despite ma-
jor advances in access control mechanism, adversaries still
exploit the vulnerabilities in a system to implant software-
backdoors, launch remote zero-day attacks, and access clas-
sified data. Unauthorized users with access to a high pro-
file system are capable of exfiltrating sensitive digital infor-
mation which may leak to the public in the future. State-of-
the-art defense mechanisms try to address this problem from
the perspective of eliminating system vulnerabilities, restrict-
∗ Corresponding author.
E-mail addresses: zgu@us.ibm.com (Z. Gu), brendan@ece.gatech

dxu@cs.purdue.edu (D. Xu).

https://doi.org/10.1016/j.cose.2018.02.014
0167-4048/© 2018 Elsevier Ltd. All rights reserved.
ing users’ privileges, and detecting attacks through anomaly
analysis. Such approaches are typically effective for existing
known attacks, but face many challenges when encountering
new attacks. Furthermore, existing attacks may evolve to de-
viate from the detection mechanisms if they are well-studied
by the adversaries.

In contrast to focusing on neutralizing all attacks, we aim to
reinforce the protection on the victim, i.e., the sensitive data.
The static nature of stored data files makes them easy to be
studied and predicted by the adversaries. For example, a so-
cial engineering attack intending to steal a user’s login infor-
mation may create a phishing Facebook login page and redirect
access to www.facebook.com to their fake site’s IP address by
.edu (B. Saltaformaggio), xyzhang@cs.purdue.edu (X. Zhang),

https://doi.org/10.1016/j.cose.2018.02.014
http://www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2018.02.014&domain=pdf
mailto:zgu@us.ibm.com
mailto:brendan@ece.gatech.edu
mailto:xyzhang@cs.purdue.edu
mailto:dxu@cs.purdue.edu
http://www.facebook.com
https://doi.org/10.1016/j.cose.2018.02.014

738 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 3 7 – 7 4 4

r
l

s
l
t
c
h
c
v
s
i
a
s
t
a

e
u
d
t
t

t
t
p
c
c

s
(
t
p
r

t

i
r
t

2
3
s
v
a
t
w
S

2

2

T
c

s

w
p
i
a
p

t
f

a
G
t

c
t

fi

w
t
m
m
o
p
t
c

b
fi
d
e

fi

a

i

h
u
m

c
p
b
c
fi
b
a
b

a

w
d
t
f

m
t
i
t
o
t
c
w
w

2

W
(
fi

ewriting the /etc/hosts file (the standard DNS translation

ocal store) on the victim’s computer.
To address such attacks, we propose transforming the

tatic, sensitive data file into a moving target when facing ma-
icious tampering, i.e., we dynamically partition the accesses
o sensitive data at runtime. Rather than maintaining only one
opy of these valuable files, an administrator should prepare
oney duplicates – versions of the files in which all sensitive
ontent has been eliminated. Any future read or write of a
aluable file can then be rerouted to access the original ver-
ion or the honey version based on current context, e.g., user
d, process type, and time-of-day. Therefore, an attacker with

ccess to a system cannot retrieve the real data from the sen-
itive file, and malicious file modifications can be contained

o the honey version, thus keeping the original file intact and

voiding the compromise.
Furthermore, we also notice recent research efforts (Bowen

t al., 2009; Juels and Rivest, 2013; Park and Stolfo, 2012) on

sing decoy resources for detecting security breaches. Honey
ata (e.g., fake credit card number, decoy credential, etc.) con-
ained in the decoy files embed distinctive signatures. If the at-
ackers use the honey data retrieved from the decoy resources,
heir footprints will be accurately identified and traced by
he intrusion detection system. To integrate with their ap-
roaches, we can redirect illegal accesses (which fail security
hecks) to retrieve the honey data from the decoy files, which

an signal an alert when they are used.
We have developed G emini , a dynamic delegation system

upporting file access redirection within virtual machines
VM) to provide sensitive file protection. G emini allows sys-
em administrators to define fine-grained security policies
aired with specially crafted honey files to perform file access
edirection. G emini is implemented at the hypervisor level,
hus it is transparent to the guest execution environment,
.e., both the guest operating system and the applications
unning within it, and free from tampering of attacks within

he guest VM.
The rest of the paper is organized as follows. Section

 presents the key idea and assumptions of G emini . Section

 gives a detailed design of the whole system and presents
ome technical details of the implementation. Section 4 pro-
ides three case studies on the effectiveness of G emini
nd shows the performance evaluation. Section 5 discusses
he limitation of the current prototype and the future
ork. Section 6 describes related work and we conclude in

ection 7 .

. System overview

.1. Key idea: File access delegation

o achieve portability and backward compatibility of appli-
ations across similar operating system (OS) kernel versions,
ystem call interfaces are generally consistent. For example,
ith the availability of IEEE POSIX standards, most Linux ap-
lications can run on all Unix-like platforms without modify-

ng/recompiling their source code. Furthermore, for file oper-
tions in Unix-like systems, a series of file-IO system calls are
rovided and invocations of these functions which operate on
he same file are connected via a file descriptor (i.e., returned

rom the open system call).
Based on the observation that file-IO system call interfaces

re generally consistent, we develop the key technique behind

 emini : transparent delegation of file access from one system

o another. To be more specific, we are able to reroute file ac-
esses from the in-VM file system to a file system outside of
he VM, which we denote as the delegation target file system .

To apply the technique on sensitive file protection, if some
le we are monitoring is accessed by the file-IO system calls,
e intercept this access before it reaches the real content of

he file and check predefined security policies. If the access
eets the security policies defined for this file, we allow it to
anipulate the original file – in either the in-VM file system

r the out-of-VM delegation target file system . If it violates any
olicy then we dispatch this system call to a honey version of
his file and return the honey file’s results back to the system

all.
Security policies can be defined by system administrators

ased on their needs, especially to complement the default
le permissions provided by the guest OS. Currently, we have
efined three types of security policies and it is convenient to
xtend to more categories in the future.

A User Policy defines the users that are allowed to access a
le. We check the user id of any process that performs a file
ccess. If the process does not belong to some user id list that
s defined in this user policy, then we redirect the access to a
oney version of the file. This intends to provide finer-grained

ser privilege differentiation and retrofit existing in-VM per-
ission checking on the sensitive files.
A Process Policy defines which processes are allowed to ac-

ess the file. We can check the characteristics and integrity of
rocesses that execute the file access. If that process does not
elong to some list of processes that are defined in the pro-
ess policy, we redirect the access to the honey version of the
le. This policy constrains the spectrum of processes that can

e used to access a classified file. This will effectively filter file
ccesses from atypical processes in the system (likely created

y adversaries).
A Time Policy defines the time window in a single day that

ccess to a file is granted. If the current time is within this time
indow, access to the file is allowed. Otherwise, the access is
ispatched to the honey version. For example, the administra-
or can make time policy to allow accesses to the original file
rom 9AM to 5PM every day, but reroute them after work. In a

ore restricted case, a legitimate user can leverage this policy
o further minimize the attacker’s time window. The admin-
strator can enable the time policy (by setting the start time
o the current time) first. After the file usage has finished, he
r she can then disable the time policy by marking the en-
ire time window in this policy as “off-limits”. Thus the only
hance an adversary has to access the file is simultaneous
ith a legitimate user (within the same time window), which

e consider unlikely in practice.

.2. Assumptions

e assume that the semantics of file-IO system call interfaces
including the parameters and the return value) to manipulate
les within the guest VM and the delegation target file system

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 3 7 – 7 4 4 739

Fig. 1 – The design of G emini. (1) Implant watchpoints into virtual machine. (2) Handle watchpoint event. (3) Check security

policy. (4) Dispatch requests based on Step 3.

are the same. For example, we currently do not yet support a
scenario such as a Linux VM and a Windows delegation target
system because the system call interfaces are not compatible.
In practice, this assumption is quite reasonable because most
Unix-like systems have the same file-IO system call interfaces
for maintaining backward compatibility.

3. Design and implementation

The G emini system consists of three modules located in the
hypervisor: Watchpoint Implanting Module, File Access Inter-
mediation Module, and Policy Check Module. Fig. 1 illustrates
the interactions between these modules and the basic work-
flow of G emini . We give a detailed description of each module’s
functionality in this section.

3.1. Watchpoint implanting module

Applications access files through file-IO system calls. Before
booting the protected guest system, we implant watchpoints
at the entry addresses of file-IO system calls.1 Each of these
watchpoints will trigger a VM exit event to be intercepted by
the hypervisor.

Considering that the loading addresses for these system
calls should not be the same across different OS kernel ver-
sions, we cannot simply set watchpoints at fixed addresses.
Instead, we first inspect the virtual machine disk image us-
ing the Network Block Device (NBD) protocol, mount the
nbd node on the host file system, and retrieve the correspond-
ing system call addresses from its System.map (in the guest’s
/boot directory).

3.2. File access intermediation module

We then intercept any VM exits caused by the watchpoints
in the File Access Intermediation Module . Based on the program
counter of current VM exit, we execute an event handler corre-
sponding to the file-IO system call that the guest was execut-
ing. Each event handler first checks the requested file’s path to
verify whether this file that we are monitoring is a sensitive
file. It then checks the security policies assigned to that file to
1 sys_{open, close, read, write, creat, access, fstat64, lstat64,
llseek, mmap_pgoff, munmap, fcntl64, mprotect}
determine whether this file access meets the redirection con-
ditions. If the file access violates any policy’s requirements,
then G emini marks this file access for redirection to the honey
version. If the file access does not violate any policies on the
target file, then we simply allow the access to the original file.

To redirect the file accesses, we generate the same system
call on the corresponding file in the delegation target file system.2

After the system call on the delegation target system returns,
we set the instruction pointer in the guest VM to the return
address of the original system call (i.e., to skip the function
body of this system call) and set the return value to what the
delegation target system returned.

There are some technical challenges worth mentioning
during our implementation of G emini and we give detailed de-
scriptions of our solutions in the following.

3.2.1. Conflict of file descriptor
Before operating on any file, a process must first obtain a file
descriptor – an integer value returned from the open system
call. Subsequent file-IO system calls use this file descriptor to
perform operations on the file. File descriptors are bound to
the process context, and in order to avoid a conflict of file de-
scriptors, G emini cannot simply return a file descriptor from
the delegated open system call to the guest VM.

To address this problem, G emini creates a special system-
wide (in contrast to the process-wide integer space for each
process within VM) integer space for sensitive file descriptors,
which has no conflicts with the standard file descriptor in-
tegers. Upon returning from the open system call, G emini re-
turns a file descriptor within the bounds of this special integer
space, and internally notes the mapping between the special
file descriptor and the file being opened. When another sys-
tem call tries to manipulate the file using a file descriptor in
this integer space, we can distinguish it instantly from other
standard file descriptors.

3.2.2. Enforced mapping on unmapped buffer
In order to determine whether G emini needs to delegate a sys-
tem call, it needs to interpret the system call’s parameters
to check the conditions in the security policy. Integer param-
eters are available instantly when you intercept the system
2 System administrators can decide where to store the honey file,
either in delegation target file system or in VM file system. Please see
more discussion in Section 5.2 .

740 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 3 7 – 7 4 4

Fig. 2 – Enforced mapping on unmapped buffer. (1) Load filename’s memory address into $buffer. (2) Replace the first 7-byte
instructions of the function body with mov $buffer,%eax;mov (%eax),%eax. (3) Rewrite the original instructions back and

re-execute them.

c
l
t
p
c
m
o

B
p
u
b
c
a
t

m
i
m
0
w
o
s
b

n
a
s
f
o
t
3
i

b
a
t
t

3
I
w
s
o
m
a
o
t
b

s
t
m

d
q
t
v

c
o
a
d

3

P
c
a
t
2
s
t

e
t
t

d

3

W
(

T
(
1

w

4

I
a
t
p

w
w
d
f

all, but for parameters which are buffer pointers, due to lazy
oading in demand paging, the memory pages referenced by
his buffer pointer may not be readily mapped in the process’
age table (they will be finally mapped when the buffer is ac-
essed later, triggering a page fault in the VM). This situation

akes it impossible to retrieve the content of the buffer from

ur intercept point (i.e., the entry point of the system call).
ecause some pointers in the parameters are critical for our
olicy checking, e.g., filename in the sys_open , G emini sim-
lates the memory read/write instructions on the unmapped

uffer and force the virtual machine to fix the page faults. This
auses the VM to naturally load the referenced memory pages
nd upon the page fault handler’s return, G emini can access
he buffer contents it needs.

Fig. 2 shows a concrete example of simulating an in-VM

emory read to cause a page fault. First, G emini prepares two
nstructions (shown in AT&T style), mov $buffer,%eax;
ov (%eax),%eax , in which $buffer is preset as 00 00
0 00 . Their purpose is to read memory from $buffer –
hich is unmapped at this point. Step 1 reads the value
f the pointer filename and loads it into $buffer when

ys_open is intercepted. Then G emini rewrites the first 7
ytes (55 89 e5 83 ec 10 89 in this case) of the origi-
al sys_open function body with the prepared instructions
nd resumes the VM execution in Step 2. After these two in-
tructions are executed, the guest VM fixes the page fault on

ilename and G emini again intercepts the execution. The
riginal 7-byte instructions are written back and the instruc-
ion pointer is set to the first instruction in sys_open in Step

. At this time, filename ’s memory is mapped and its content
s available for retrieving.

The simulation of a memory write is similarly performed

y swapping the operands in the second instruction. For ex-
mple, we leverage a memory write to trigger a page fault on

he buf parameter of sys_read , which will be filled with con-
ents read from the file.

.2.3. Memory mapped files
n modern Unix-like systems, there are basically two
ays to read/write a file. The first way is to use
ys_read/sys_write to manipulate the file directly. The
ther way is to mmap the file into memory and read/write the
emory. For the former, because subsequent file operations

lso leverage system calls, we are able to intercept each

peration during the life-cycle of manipulating the file. For
he latter approach, the memory mapped region (returned

y mmap system call) for any file in the delegation target file
ystem will not be present in the process’ address space in

he virtual machine (as it belongs to the delegation target
achine).
In order to address this problem, G emini first allocates ad-

itional physical memory from the hypervisor, and the re-
uested file is mapped into these new memory pages. G emini
hen searches for empty memory holes in the application’s
irtual address space and when a large enough hole is found,
reates the virtual-to-physical address mapping for this mem-
ry region by adjusting the in-VM page table. This ensures that
ny subsequent memory reads/writes to this area are already
irected at the mapped file from the delegation target file system .

.3. Policy check module

olicy rules are defined by the system administrators and

an be extended to check virtually any combination of data
vailable via virtual machine introspection. Currently, we have
hree types of security policies as we mentioned in Section

 . Because the policy checking is performed at the hypervi-
or level, we leverage traditional virtual machine introspec-
ion techniques to extract any needed semantic information,
.g., user id, process type, etc., from the memory of the vir-
ual machine. Furthermore, the policies are tamper-resistant
o any attacks within the virtual machine and can be enabled,
isabled, or modified dynamically at runtime.

.4. Prototype implementation

e integrate our G emini prototype with the KVM hypervisor
 Kivity et al., 2007) (i.e., kvm-kmod-3.6 and qemu-kvm-1.2.0).
he host (delegation target) system is Linux Mint 13 x86_64

Linux Kernel version 3.5.0) and the guest VM runs Ubuntu

0.04 (Linux Kernel version 2.6.32) i386 LTS release. In total,
e add 1867 SLOC in C for the development of G emini .

. Evaluation

n this section we present the evaluation of our system in two
spects: security and performance. For the security evalua-
ion, we demonstrate the efficacy of our system for providing
rotection to sensitive files. For the performance evaluation,
e compare the performance results before enabling G emini
ith after enabling G emini to demonstrate the feasibility of
eployment. The hardware configuration of our testing plat-
orm is a Lenovo Ideapad U410 with Intel® Core TM i7 3.10 GHz

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 3 7 – 7 4 4 741

Fig. 3 – Normalized index by UnixBench Benchmark Group.

and 8 GB memory. We allocate 2 GB memory for the guest VM,
which runs Ubuntu 10.04 (Linux kernel version 2.6.32) i386 LTS
release.

4.1. Security evaluation

4.1.1. Case study 1: Gailly, 2002
John the Ripper is one of the most popular password cracker
tools as it can run on fifteen different platforms, including
both Unix-like systems and Windows. Further, it can be used
against many popular password formats, including several
crypt password hash types most commonly found in various
flavors of Unix. We leverage John the Ripper to uncover weak
passwords in /etc/shadow , which contains account infor-
mation, the encrypted passwords, and expiration values.

Without enabling G emini , weak passwords (e.g., those vul-
nerable to the dictionary attack) can be easily discovered by
the cracker tool. At a high level, John the Ripper works as fol-
lows: it first generates encrypted strings (in the same format
as the password being examined) from a dictionary or a list
of commonly used password. It then compares the encrypted
strings to the encrypted password stored in the system.

Thus, we aim to disarm this attack by presenting a honey
version of /etc/shadow to the cracker tool. After enabling
G emini , we redirect file accesses to /etc/shadow to a version
that contains no real user account and password. We enable
a process policy that only allows legitimate processes, e.g.,
passwd , to access /etc/shadow . This successfully prevented
John the Ripper from accessing the real /etc/shadow file be-
cause the cracker tool is not allowed to access the original file.
Therefore, John the Ripper produced no useful output be-
cause it cannot extract any real passwords.

Furthermore, we may fill the honey /etc/shadow with de-
coy login credentials. Any attacker that leverages the decoy
information to log in can be accurately pinpointed by the in-
trusion detection system.

4.1.2. Case study 2: Infelf (Z0MBiE/29A, 2002)
Infelf is an offline binary infection tool that injects a malicious
payload into an existing benign application binary to generate
a trojaned binary. Its basic functionality is to split trojan code
into multiple instruction blocks, insert them into free align-
ment areas between functions, and concatenate them with
jump instructions. Thus it incurs no increase in the binary’s
size.

We use Infelf to implant a hardware register printing func-
tion into the gvim binary and redirect its entry function to this
trojan code. Without enabling G emini , the attack can success-
fully transform the binary into a trojaned application. To pre-
vent this attack, we enable a process policy to redirect file ac-
cess to a honey gvim binary if the current process is not in
the whitelist for accessing gvim . In the presence of G emini , In-
felf can only infect the honey version of the gvim binary, and
thanks to G emini ’s redirection the original binary is left intact.

4.1.3. Case study 3: Separate login password for different time
window

With the availability of G emini , a system administrator can log
in the same user with different passwords for different time
windows. For example, during working-hours an employee
may use one set of login credentials which are only valid from
inside of the company’s headquarters. Later, to work from out-
side of the office, another set of credentials must be used. To
set up such protection, an administrator just needs to set the
/etc/passwd and /etc/shadow files as G emini monitored
files, design two copies (i.e., the working-hours version and
after-work version) for each file, and set up a time policy with
the access time windows for both files. Afterwards, G emini au-
tomatically handles the password switch dynamically accord-
ing to the time policy. Therefore, even if adversaries retrieve
the after-work password, they are not able to log in the sys-
tem at working hours. Plus, the time policy can only be reset
from the hypervisor level, and thus it is impossible for the ad-
versaries to read or modify the time window from within VM.

4.2. Performance evaluation

We use UnixBench to evaluate whole system performance af-
ter enabling G emini . By default, we install the user policy, pro-
cess policy, and time policy that were mentioned in Section
3 . However, compared to hypervisor-level interceptions of file-
IO system calls, policy checking and policy enforcement con-
tribute negligible addition to the whole system performance
overhead. In Fig. 3 , we normalize the performance index of
UnixBench (higher performance index indicates better perfor-
mance) and present a comparison for all sub-benchmarks. We
find that, compared with the baseline result, we can maintain
the same performance level for dhry2reg , whetstone , and spawn ,
which are indicative of computing-intensive tasks. We ob-
serve 60% performance overhead on shell / execl and 16 × over-
head on the sub-benchmarks involving intensive file-IO sys-
tem calls. This is due to G emini ’s interception on all file-IO sys-
tem calls. From our testing, enabling G emini does not affect
the user experience for typical applications. This is because

742 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 3 7 – 7 4 4

t
t
t
i
d
m
a

5

5

G
p
i

m
c
d
t
G

s
s
fi
t
t
i

5

I

t

t
t
m

T
t
V
V
s

t
l
t
s
t

6

G
i
r

t

T
o
f

c
i

m

L
w
t
(

(

r
t

m

o
i
o
t
t
t
t
g

i
i
t
m

a
a
t
i

2
l
c
L
t
t

2

f
t
s
a
t
a
a
t
t
a
a
a
s
c

2
i
t

p
c
l
t
s

hat, for a general application, file operations are less frequent
han in the UnixBench file-IO sub-benchmarks. Most computa-
ion on the file contents is conducted on the file buffers loaded

n the main memory before flushing back to the disk. G emini
oes not incur performance overhead for operations in the
ain memory. Any performance degradation on file-IO oper-

tions will be amortized over the lifetime of the application.

. Discussion

.1. Detection of G emini

 emini is located in the hypervisor and is designed to be trans-
arent to the guest VM, but it is still possible to detect its ex-

stence.
The first possible detection approach is a timing attack. By

easuring the system call execution time to access files and

ompare with another similar virtual machine with G emini
isabled, a program may be able to identify the difference. This
iming evidence may be used to reason about the existence of
 emini .

The other detection approach is to interpret the file de-
criptor integer returned from the open system call. As de-
cribed in Section 3 , in order to avoid conflicts with traditional
le descriptors, G emini returns an integer within a special in-
eger space. Assuming adversaries know the range of this in-
eger space in advance, they may consider any file descriptor
n that range as evidence of G emini .

.2. Bypassing G emini

f an attack does not use traditional system calls to access files,
hen it will not be tracked by G emini , i.e., the attack may be able
o read/write files within the VM file system using kernel func-
ion directly. But fortunately, it is impossible for adversaries to

anipulate files in the out-of-VM delegation target file system .
o address this, we recommend system administrator storing
he sensitive files in the delegation target file system outside of
M and put the honey files inside the VM. Thus even if the
M is compromised by the attacker, the sensitive files are still
afe.

In addition, for the current implementation of G emini , at-
ackers may bypass file path checking by creating symbolic
inks to sensitive files. This weakness can be addressed by fur-
her modeling system calls related to symbolic links, such as
ys_symlink and sys_symlinkat . We leave this as our fu-
ure work of G emini .

. Related work

 emini can be classified into the research of virtual machine
ntrospection(VMI) technology. In this section, we review some
epresentative works in VMI and compare them with G emini .

Various VMI techniques have been developed to retrofit
he security of the system running within a virtual machine.
hese are based on the concept that introspection tools run

ne layer lower than the virtual machine and thus it is hard

or adversaries to tamper with their integrity. We can basically
lassify existing VMI techniques into two categories: passive
ntrospection and active introspection.

In the former category, the main functionality of VMI is to
onitor the execution status and inspect the memory state.

ivewire (Garfinkel and Rosenblum, 2003) is the pioneering
ork proposing VMI methodology to detect malware infec-

ions. Following it, XenAccess (Payne et al., 2007), VMwatcher
 Jiang et al., 2007), VMscope (Jiang and Wang, 2007), Antfarm
 Jones et al., 2006), and Ether (Dinaburg et al., 2008) are some
epresentative “out-of-the-box” research efforts to monitor
he guest VM at the hypervisor level.

One of the most well-known challenges of VMI is the se-
antic gap (Chen and Noble, 2001). From the view of out-

f-VM introspection tools, the whole virtual machine’s state
s a black box. We need to reconstruct the semantic view

f the guest VM with only limited information exposed to
he hypervisor. In order to automatically bridge the seman-
ic gap, Virtuoso (Dolan-Gavitt et al., 2011) made some ini-
ial efforts to collect training traces from in-VM tools and au-
omatically translate them into out-of-VM introspection pro-
rams running at the hypervisor level. VMST (Fu and Lin, 2012)
s another research effort on bridging semantic gap. The key
dea of VMST is to reuse the introspection tool’s code in a
rusted VM and redirect data accesses to the VM that needs

onitoring.
Compared with passive monitoring, active introspection

pproaches are driven by events within the virtual machine
nd they perform interference on the runtime execution. In-
roVirt (Joshi et al., 2005) executes vulnerability-specific pred-
cates in a VM for intrusion reproduction. Lycosid (Jones et al.,
008) uses cross-view validation techniques to detect ma-
iciously hidden OS processes and patches the executable
ode to influence the process runtime. Manitou (Litty and

ie, 2006) detects corrupted instruction pages by comparing
heir hashes with memory-page hashes at runtime and marks
hem non-executable to eliminate attacks. Lares (Payne et al.,
008) and SIM (Sharif et al., 2009) propose active monitoring
rom outside the untrusted VM. Hooks are implanted inside
he guest VM to track the executing events and invoke the
ecurity tool responsively. Lares places the security tool in

nother trusted virtual machine and lets the hooked events
rigger a virtual machine switch. On the contrary, SIM cre-
tes a separate guest address space to gain an in-context view

nd native speed. Process Implanting (Gu et al., 2011) shows
hat it is also feasible to inject an introspection process from

he hypervisor into a guest VM (running under the cover of
n existing process context) to gain both the in-VM context
nd out-of-VM protection. FACE-CHANGE (Gu et al., 2014) is
 virtualization-based approach that controls dynamic kernel
witching to minimize attack surface for each individual pro-
ess. Hypershell (Fu et al., 2014) and ShadowContext (Wu et al.,
014) are two recent research efforts further investigating the
dea of system call redirection and process injection in a vir-
ual machine.

G emini can also be classified as an active introspection ap-
roach. It reacts directly to file-IO system call events and re-
onstructs the semantics for file operations in the hypervisor
evel. We share some concepts with previous active introspec-
ion approaches and push it further to a new security area for
ensitive file access delegation.

c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 3 7 – 7 4 4 743

7. Conclusion

In this paper, we present G emini , a virtualization-based dy-
namic delegation system supporting sensitive file access redi-
rection. By enabling G emini , system administrators can design
rules for redirecting file access on sensitive files to honey ver-
sions specifically crafted for adversaries. Thus G emini trans-
forms static sensitive files into moving targets for the attack-
ers. From our evaluation, we demonstrate the effectiveness of
G emini on neutralizing various cyber-attacks that manipulate
critical system files and its practicality of deploying this tech-
nique in the existing cloud environment.

R E F E R E N C E S

Bowen BM , Hershkop S , Keromytis AD , Stolfo SJ . Baiting inside
attackers using decoy documents. Springer; 2009 .

Chen P , Noble B . When virtual is better than real. in: HOTOS,
Published by the IEEE Computer Society; 2001. p. 0133 .

Dinaburg A , Royal P , Sharif M , Lee W . Ether: malware analysis via
hardware virtualization extensions. in: Proceedings of the
15th ACM conference on Computer and communications
security, ACM; 2008. p. 51–62 .

Dolan-Gavitt B , Leek T , Zhivich M , Giffin J , Lee W . Virtuoso:
narrowing the semantic gap in virtual machine introspection.
in: Security and Privacy (SP), 2011 IEEE Symposium on, IEEE;
2011. p. 297–312 .

Fu Y , Lin Z . Space traveling across VM: automatically bridging the
semantic gap in virtual machine introspection via online
kernel data redirection. in: Security and Privacy (SP), 2012 IEEE
Symposium on, IEEE; 2012. p. 586–600 .

Fu Y , Zeng J , Lin Z . HyperShell: a practical hypervisor layer guest
OS shell for automated in-VM management. in: Proceedings
of the 2014 USENIX Annual Technical Conference,
Philadephia, PA, 2014 .

Gailly J-L. John the Ripper password cracker; 2002
http://www.openwall.com/john/ [Accessed 10 March 2018] .

Garfinkel T , Rosenblum M . A virtual machine introspection based
architecture for intrusion detection. in: Proc. Network and

Distributed Systems Security Symposium, Vol. 1, Citeseer;
2003. p. 253–85 .

Gu Z , Deng Z , Xu D , Jiang X . Process implanting: a new active
introspection framework for virtualization. in: Reliable
Distributed Systems (SRDS), 2011 30th IEEE Symposium on,
IEEE; 2011. p. 147–56 .

Gu Z , Saltaformaggio B , Zhang X , Xu D . Face-change:
application-driven dynamic kernel view switching in a virtual
machine. in: Dependable Systems and Networks (DSN), 2014
44th Annual IEEE/IFIP International Conference on, IEEE; 2014.
p. 491–502 .

Jiang X , Wang X . Out-of-the-box monitoring of VM-based
high-interaction honeypots. in: Proceedings of the 10th

international conference on Recent advances in intrusion

detection, Springer-Verlag; 2007. p. 198–218 .
Jiang X , Wang X , Xu D . Stealthy malware detection through

VMM-based out-of-the-box semantic view reconstruction. in:
Proceedings of the 14th ACM conference on Computer and

communications security, ACM; 2007. p. 128–38 .
Jones S , Arpaci-Dusseau A , Arpaci-Dusseau R . Antfarm: Tracking

processes in a virtual machine environment. in: Proceedings
of the USENIX Annual Technical Conference; 2006. p. 1–14 .

Jones ST , Arpaci-Dusseau AC , Arpaci-Dusseau RH . VMM-based
hidden process detection and identification using Lycosid. in:
Proceedings of the fourth ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, ACM; 2008.
p. 91–100 .

Joshi A , King S , Dunlap G , Chen P . Detecting past and present
intrusions through vulnerability-specific predicates. in:
Proceedings of the twentieth ACM symposium on Operating
systems principles, ACM; 2005. p. 91–104 .

Juels A , Rivest RL . Honeywords: making password-cracking
detectable. in: Proceedings of the 2013 ACM SIGSAC

conference on Computer & communications security, ACM;
2013. p. 145–60 .

Kivity A , Kamay Y , Laor D , Lublin U , Liguori A . KVM: the Linux
virtual machine monitor. in: Proceedings of the Linux
Symposium, Vol. 1; 2007. p. 225–30 .

Litty L , Lie D . Manitou: a layer-below approach to fighting
malware. in: Proceedings of the 1st workshop on Architectural
and system support for improving software dependability,
ACM; 2006. p. 6–11 .

Messmer E. The worst data breach incidents of 2013 Jan; 2014a
Available from: http://www.networkworld.com/article/
2286787/4g/135100- The- worst- data- breach- incidents-
of-2013.html . [Accessed 10 March 2018] .

Messmer E. The worst data breaches of 2014 … so far (q1) April;
2014b Available from: http://www.networkworld.com/article/
2286300/malware- cybercrime/147526- The- worst- data-
breaches- of- 2014- so- far- Q1.html . [Accessed 10 March 2018] .

Park Y , Stolfo SJ . Software decoys for insider threat. in:
Proceedings of the 7th ACM Symposium on Information,
Computer and Communications Security, ACM; 2012. p. 93–4 .

Payne B , Carbone M , Lee W . Secure and flexible monitoring of
virtual machines. in: ACSAC, IEEE Computer Society; 2007.
p. 385–97 .

Payne B , Carbone M , Sharif M , Lee W . Lares: an architecture for
secure active monitoring using virtualization. in: Security and

Privacy, 2008, IEEE Symposium on, IEEE; 2008. p. 233–47 .
Sharif M , Lee W , Cui W , Lanzi A . Secure in-VM monitoring using

hardware virtualization. in: Proceedings of the 16th ACM

conference on Computer and communications security, ACM;
2009. p. 477–87 .

Whittaker Z. Looking back at the major hacks, leaks and data
breaches; 2012 Available from: http://www.zdnet.com/
2012- looking- back- at- the- major- hacks- leaks- and- data-
breaches-7000008854/ . [Accessed March 2018] .

Wu R , Chen P , Liu P , Mao B . System call redirection: a practical
approach to meeting real-world VMI needs. in: Proceedings of
the 44th IEEE/IFIP International Conference on Dependable
Systems and Networks(DSN 2014), Atlanta, PA, 2014 .

Z0MBiE/29A. Infelf http://z0mbie.daemonlab.org/infelf.html .
[Accessed 10 March 2018]

Zhongshu Gu is a Research Staff Member in the Security Research
Department of the IBM T.J. Watson Research Center. He received
his Ph.D. from Purdue University in 2015 and B.S. from Fudan Uni-
versity in 2007, both in Computer Science. His research interests
are in the areas of systems security, AI security, security analytics,
and cyber forensics.

Brendan Saltaformaggio is an assistant professor in the School of
Electrical and Computer Engineering at Georgia Tech. His research
interests lie in computer systems security, cyber forensics, and
the vetting of untrusted software. Originally from New Orleans,
Dr. Saltaformaggio earned his Bachelor of Science with Honors in
Computer Science from the University of New Orleans in 2012. He
received his M.S. and Ph.D. in Computer Science at Purdue Univer-
sity in 2014 and 2016, respectively, during which Dr. Saltaformag-
gio was honored with the 2017 ACM SIGSAC Doctoral Dissertation
Award.

http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0010
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0010
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0010
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0010
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0010
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0015
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0015
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0015
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0020
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0020
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0020
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0020
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0020
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0025
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0025
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0025
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0025
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0025
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0025
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0030
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0030
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0030
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0035
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0035
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0035
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0035
http://www.openwall.com/john/
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0040
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0040
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0040
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0045
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0045
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0045
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0045
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0045
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0050
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0050
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0050
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0050
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0050
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0060
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0060
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0060
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0065
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0065
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0065
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0065
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0075
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0075
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0075
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0075
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0080
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0080
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0080
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0080
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0080
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0085
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0085
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0085
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0085
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0085
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0090
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0090
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0090
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0095
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0095
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0095
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0095
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0095
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0095
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0100
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0100
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0100
http://www.networkworld.com/article/2286787/4g/135100-The-worst-data-breach-incidents-of-2013.html
http://www.networkworld.com/article/2286300/malware-cybercrime/147526-The-worst-data-breaches-of-2014-so-far-Q1.html
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0115
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0115
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0115
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0120
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0120
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0120
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0120
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0125
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0125
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0125
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0125
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0125
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0130
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0130
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0130
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0130
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0130
http://www.zdnet.com/2012-looking-back-at-the-major-hacks-leaks-and-data-breaches-7000008854/
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0140
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0140
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0140
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0140
http://refhub.elsevier.com/S0167-4048(18)30143-3/sr0140
http://z0mbie.daemonlab.org/infelf.html

744 c o m p u t e r s & s e c u r i t y 7 7 (2 0 1 8) 7 3 7 – 7 4 4

X
U
t
c
D
D
S
A

D
v
a
h

i
C
a
s
c
i

iangyu Zhang is a professor and University Scholar at Purdue
niversity. He works on dynamic and static program analysis and

heir applications in security, debugging, testing, and data pro-
essing. He has received the 2006 ACM SIGPLAN Distinguished

octoral Dissertation Award, NSF Career Award, ACM SIGSOFT

istinguished Paper Awards, Best Student Paper Award on USENIX

ecurity’14, Best Paper Award on CCS’15 and Distinguished Paper
wards on NDSS’16 and USENIX SECURITY’17.
ongyan Xu is a professor of Computer Science at Purdue Uni-
ersity. He is also the interim director of the Center for Education

nd Research in Information Assurance and Security (CERIAS). He
as been on Purdue faculty since 2001, when he received his Ph.D.

n Computer Science from the University of Illinois at Urbana-
hampaign. His research efforts span computer systems security
nd forensics, cloud computing, and virtualization, with projects
ponsored by both government agencies and industry. He is the
o-author of seven award-winning papers at major conferences
n security and cloud computing.

	Gemini: Guest-transparent honey files via hypervisor-level access redirection
	1 Introduction
	2 System overview
	2.1 Key idea: File access delegation
	2.2 Assumptions

	3 Design and implementation
	3.1 Watchpoint implanting module
	3.2 File access intermediation module
	3.2.1 Conflict of file descriptor
	3.2.2 Enforced mapping on unmapped buffer
	3.2.3 Memory mapped files

	3.3 Policy check module
	3.4 Prototype implementation

	4 Evaluation
	4.1 Security evaluation
	4.1.1 Case study 1: Gailly, 2002
	4.1.2 Case study 2: Infelf (Z0MBiE/29A, 2002)
	4.1.3 Case study 3: Separate login password for different time window

	4.2 Performance evaluation

	5 Discussion
	5.1 Detection of Gemini
	5.2 Bypassing Gemini

	6 Related work
	7 Conclusion

	Reference

