
THE BOT REVEALS ITS MASTER: EXPOSING AND INFILTRATING BOTNET
COMMAND AND CONTROL SERVERS VIA MALWARE LOGIC REUSE

A Dissertation
Presented to

The Academic Faculty

By

Jonathan D. Fuller

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Electrical and Computer Engineering

Department of Electrical and Computer Engineering

Georgia Institute of Technology

May 2022

© Jonathan D. Fuller 2022

THE BOT REVEALS ITS MASTER: EXPOSING AND INFILTRATING BOTNET
COMMAND AND CONTROL SERVERS VIA MALWARE LOGIC REUSE

Thesis committee:

Dr. Brendan Saltaformaggio, Advisor
School of Cybersecurity and Privacy and
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Frank Li
School of Cybersecurity and Privacy and
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Mustaque Ahamad
School of Cybersecurity and Privacy and
School of Computer Science
Georgia Institute of Technology

Dr. Jon Lindsay
School of Cybersecurity and Privacy and
Sam Nunn School of International Affairs
Georgia Institute of Technology

Dr. Stephen Hamilton
Army Cyber Institute and United States
Military Academy
United States Army

Date approved: April 25, 2022

For what will it profit a man if he gains the whole world and forfeits his soul? Or what

shall a man give in return for his soul?

Matthew 16:26

To my dearest Leigh,

I loved you then.

I love you now.

I will love you always.

ACKNOWLEDGMENTS

My Ph.D. pursuit was more challenging than I imagined. I often compare it to a

marathon at sprint pace. Thankfully, God has been gracious to me through the support

of my research lab, my friends, my family, and most importantly, his son, Jesus. God’s

mercy in my life is unmerited, and I am beholden to follow him all the days of my life.

I am grateful to my advisor, Dr. Brendan Saltaformaggio. He has been my mentor,

advocate and has provided invaluable encouragement. His patience and tact have inspired

me to pursue research with humility. His technical competence and willingness to share it

with others have been integral to my success. He is truly is a colleague like no other.

I would also like to thank my fellow lab mates in the Cyber Forensics Innovation Lab.

All my research is the culmination of many conversations, debates, and laughs that we

shared. I especially want to thank Mingxuan Yao and Ranjita Pai Sridhar. You both have

directly impacted every positive aspect of my research. Your willingness to be critical of my

work and propose new and exciting approaches to problem-solving has been instrumental

in my success. More importantly, I am thankful for your friendship and time spent with my

family and me outside of the lab.

I would also like to thank Karlin and Marion Fuller (my parents) and Todd and Sheree

Overby (my in-laws) for all their prayers and support. I appreciate the conversations, the

interest, the care, and love that you have shown. I am so blessed to have you in my life.

Lastly, I dedicate this dissertation to my Ladybug, my bride, Leigh. Words do not

provide adequate means of communicating my thankfulness for your partnership. Your

love, encouragement, and commitment to our precious daughters and me are priceless, and

I am forever thankful. I am blessed to be your husband, and I love you. To my sweet Gloria

and Esther, you have brought so much joy and perspective into my life. I am so thankful

for two wonderful and precious daughters. I love you both very much.

v

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . x

List of Figures . xii

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Thesis Statement . 2

1.3 Research Scope and Outline . 2

1.3.1 C3PO: Large-Scale Study of Covert Monitoring of Command &
Control Servers via Over-Permissioned Protocol Infiltration 2

1.3.2 R2D2: Is That Malware Reading Twitter? Towards Understanding
and Preventing Dead Drop Resolvers on Public Web Apps 3

Chapter 2: Related Work . 5

2.1 C&C Infiltration and Monitoring . 5

2.2 Communication Protocol Identification . 6

2.3 Backward Slicing . 7

2.4 Symbolic Execution . 8

2.5 Malware Capability Analysis . 9

vi

2.6 Web Application Abuse . 10

Chapter 3: C3PO: Large-Scale Study of Covert Monitoring of Command &
Control Servers via Over-Permissioned Protocol Infiltration 11

3.1 A Motivating Example . 13

3.2 Measurement Pipeline . 18

3.2.1 Dynamic Memory Image Extraction 19

3.2.2 Over-Permissioned Bot Identification 20

3.2.3 Infiltration Vector (IV) Identification 23

3.2.4 C&C Monitoring Capabilities . 24

3.3 Validating our Techniques . 27

3.3.1 Protocol Identification Evaluation 29

3.3.2 C&C Monitoring Capabilities Evaluation 32

3.4 Large-scale Deployment . 32

3.4.1 Post Deployment Dataset Highlights 33

3.4.2 Over-Permissioned Bot Landscape 34

3.4.3 C&C Monitoring Capabilities at Scale 37

3.4.4 Ranking Over-Permissioned Bot Families 40

3.4.5 Packed Malware . 40

3.5 C3PO Applied . 41

3.5.1 Ethical Considerations . 42

3.5.2 Case Study 1: Steam . 42

3.5.3 Case Study 2: Detplock . 43

3.6 Discussion and Limitations . 45

vii

3.6.1 Domain Generating Algorithms 45

3.6.2 Subverting Dynamic Memory Image Extraction 45

3.6.3 Custom Low-level Protocol Implementations 46

3.7 Conclusion . 46

Chapter 4: R2D2: Is That Malware Reading Twitter? Towards Understanding
and Preventing Dead Drop Resolvers on Public Web Apps 48

4.1 Overview . 50

4.1.1 Running Example - Razy . 50

4.2 Design . 54

4.2.1 Dead Drop Resolver Candidate Identification 54

4.2.2 Dead Drop Resolver Confirmation 58

4.2.3 Decoder Identification . 60

4.3 Validating Our Techniques . 65

4.3.1 Dead Drop Resolver Identification and Confirmation 67

4.3.2 Decoding Algorithm Comparison 68

4.3.3 Decoding Algorithm Identification 73

4.4 Dead Drop Resolver Findings . 74

4.4.1 Dead Drop Resolver-Based Malware Discoveries 75

4.4.2 Decoders Identified . 78

4.4.3 Towards Remediation . 79

4.4.4 Packed Dead Drop Resolver-Based Malware 81

4.5 Discussion . 82

4.5.1 Adversarial Response . 82

viii

4.5.2 Uncooperative Web App Providers 85

4.5.3 Domain Generation Algorithm Domain Origin Identification 85

4.5.4 A Subtler Case of Implicit Flows 85

4.6 Conclusion . 86

Chapter 5: Conclusion and Future Work . 87

5.1 Goals . 87

5.1.1 Scalable Malware Analysis . 88

5.1.2 Reusable Malware Logic . 88

5.1.3 Validating our Approach . 89

5.2 Challenges . 90

5.2.1 Scalable Malware Analysis . 90

5.2.2 Reusable Malware Logic . 90

5.2.3 Validating our Approach . 90

5.3 Solutions and Results . 91

5.3.1 C3PO . 91

5.3.2 R2D2 . 92

5.4 Future Work . 92

References . 93

ix

LIST OF TABLES

3.1 C3PO’s Analysis of the Sanny Malware. 15

3.2 Over-Permissioned Protocols . 21

3.3 C&C Monitoring Capabilities . 26

3.4 Validating Protocol Identification. GT represents the ground truth com-
pared with C3PO’s results to identify the TP, FP, and FN metrics. 28

3.5 Validating C&C Monitoring Capabilities Identification. GT and C3PO rep-
resent the number of manually verified and automated capability identifiers
per category, respectively. 31

3.6 Distribution of Over-Permissioned Bots Identified During the Large-Scale
Study. 35

3.7 C3PO Identification of C&C Monitoring Capabilities Mapped to Over-
Permissioned Protocols. 38

3.8 Evolution of the Top 10 Families of Over-Permissioned Bots Detected in
our Dataset. 39

3.9 Packers Encountered in our C3PO’s Dataset. 41

3.10 C3PO’s Steam Malware Analysis Results. 42

3.11 C3PO’s Detplock Malware Analysis Results. 44

4.1 Defensive Evasion APIs Considered in R2D2. 56

4.2 Common Malware Decoding Algorithms. 62

4.3 Validating Dead Drop Domain Candidate Identification and Confirmation. . 66

x

4.4 Baseline Comparison for Decoding Algorithm Similarity via Symbolic Ex-
pressions Matching. 69

4.5 Baseline Comparison for Decoding Algorithm C/C++ Source Code via Moss. 70

4.6 Baseline Comparison for Decoding Algorithm Similarity via Symbolic Ex-
pressions. 71

4.7 Validating Decoder Identification. 74

4.8 Distribution of Web App Domains used for DDR-based Malware Across
our Dataset. 76

4.9 The Number of Occurrences of Decoders in the DDR-based Malware. . . . 78

4.10 Packed Dead Drop Resolver-Based Malware. 81

4.11 Bitcoin Wallet IDs (1/3). 82

4.12 Bitcoin Wallet IDs (2/3). 83

4.13 Bitcoin Wallet IDs (3/3). 84

xi

LIST OF FIGURES

3.1 C3PO-enabled Covert Monitoring of Sanny. 15

3.2 C3PO Measurement Pipeline: Dynamic Memory Image Extraction: Ex-
ecutes the malware under instrumentation and captures memory images;
Bloated Bot Identification: Identifies protocol invocation points resulting
in call sites for all; Infiltration Vector Identification: Uses Iterative Selec-
tive Symbolic Execution to extract infiltration vectors used to spoof com-
munication; Flippable Capability Identification: Uses API-based capability
modeling to reveal the composition and contents of the C&C infrastructure;
Covert Monitoring: Post-infiltration analysis guided by flippable malware
capabilities. 17

3.3 C3PO’s Infiltration Vector Identification of Sanny. 25

3.4 Number of Over-Permissioned Protocols Per Bot From 2006-2020. 33

4.1 Twitter Message Retrieved by Razy. 52

4.2 R2D2 Measurement Pipeline: Taking a malware binary, C3PO uses DDR
Candidate Identification via concolic exploration to reveal connected web
apps. C3PO then uses concolic taint propagation toward DDR Confirma-
tion. After confirming DDR capability, C3PO conducts Decoder Identifi-
cation by concretely localizing decoders in the malware before confirming
via symbolic expression matching. 53

4.3 DDR Malware Trends Since 2017. 75

4.4 A Pastebin Account Removed. 79

4.5 Response From WordPress. 80

4.6 Response From Twitter. 81

xii

SUMMARY

Automated solutions for identifying Command and Control (C&C) domain resolution

techniques and leveraging them for botnet monitoring are not scalable and error prone.

Thus, malware proliferates, and botnets continue to damage victim systems globally. This

dissertation posits that authorities can leverage reusable malware binary logic to enable

automated and scalable opportunities for botnet counteraction. This dissertation presents

C3PO and R2D2 measurement pipelines that identify reusable malware logic and studies

the (1) evolution of over-permissioned protocols in 200k malware spanning 15 years and

(2) under-explored DDR technique in 100k malware spanning five years. C3PO identified

62,202 over-permissioned bots across 8,512 families identifying infiltration vectors that

allow C3PO to spoof bot-to-C&C communication. C3PO also identified 443,905 C&C

monitoring capabilities, which reveal the composition and contents of the C&C server to

guide monitoring post infiltration. We deployed C3PO on two bots with live C&C servers

validating its ability to identify over-permissioned protocols, infiltrate C&C servers, and

leverage C&C monitoring capabilities to achieve covert monitoring. C3PO also identified

over 2500 files containing victim information, additional malicious payloads, exploitation

scripts, and stolen credentials, providing legally admissible evidence to engender coun-

teraction attempts. Armed with C3PO, authorities can pursue disruptions and takedowns

of over-permissioned protocol-based botnets. Next, R2D2 targets the disruption and take-

down of DDR-based botnets. During its analysis of 100k malware, R2D2 revealed 10,170

DDR malware from 154 families. R2D2 also showed the type of encoding used, provid-

ing authorities with rapid means to decode C&C server domains, with String Parsing and

Base64 being the most common. I reported all our findings to web app providers, and they

confirmed them and took action against the 9,155 DDRs (90% of DDR malware discov-

ered).

xiii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Counteracting malicious cyber actors is a lop-sided battle since authorities, incident respon-

ders, or network defenders must always be accurate at thwarting attacks. At the same time,

the malicious actors only need to be right once to establish botnets successfully. Respond-

ing to this highly asymmetric situation is grounded in how much defenders know about

the malicious actor’s next steps and how quickly they can act on it. Thus, maximizing the

time advantage of this information has driven academic institutions, major corporations,

and government agencies to pursue and employ techniques to accurately monitor botnets

to glean enough information to support and enable a rapid and robust response.

Command and Control (C&C) server monitoring is a fundamental enabler of botnet dis-

ruption and takedown occurring before any action is taken and after to gauge the success of

counteraction attempts. The first step in monitoring C&C servers is to locate their domain,

which their bots resolve statically or dynamically. Unfortunately, automatic solutions for

identifying C&C domain resolution techniques and leveraging them for botnet monitor-

ing are not scalable and error prone. Thus, malware proliferates, and botnets continue to

damage victim systems globally.

Before the work in this dissertation, researchers and authorities alike were forced into

cross-domain investigations of numerous malware variants using static and dynamic analy-

sis, network trace analysis, and Internet-wide scans to profile botnet activity pre-counteraction,

then repeating similar steps to ensure the efficacy of their approach [1, 2, 3, 4, 5, 6, 7, 8, 9,

10]. However, these early approaches suffered from inaccuracy due to their coarse-grained

techniques [11, 12] or easy detection because of their nosiness [13, 14, 15, 16, 17, 2, 4, 5, 6,

1

7, 18], prompting defensive evasion by C&C orchestrators [12, 19, 20]. An ideal solution

should be accurate, stealthy, and submit to single domain analysis towards scalability.

1.2 Thesis Statement

This dissertation posits that authorities can leverage reusable malware binary logic to en-

able automated and scalable opportunities for botnet counteraction. To this end, we de-

veloped C3PO [21] and R2D2 [22] which enable botnet disruption and takedown through

C&C infiltration, monitoring, and in collaboration with website application service providers,

the removal of publicly accessible but hidden dynamically-resolved C&C server domain

names to dismantle botnets.

1.3 Research Scope and Outline

This dissertation is divided into two main research thrusts targeting two main malware cate-

gories. This first thrust, C3PO, targets malware that statically resolves their C&C server do-

main names or Internet Protocol (IP) addresses. More importantly, these malware also rely

on standardized communication protocols that adhere to predefined specifications (i.e., en-

tire communications protocols are baked into the malware). Conversely, the second thrust

presents R2D2, which targets malware that dynamically resolves the C&C server domain

names or IPs. However, our investigation found that authorities have heavily counteracted

the three state-of-the-art approaches in dynamic resolutions techniques, so C&C orches-

trators are adopting web applications in malware to more robustly resolve C&C server

addresses. We provide a more in-depth summary of each research thrust below.

1.3.1 C3PO: Large-Scale Study of Covert Monitoring of Command & Control Servers

via Over-Permissioned Protocol Infiltration

Current techniques to monitor botnets towards disruption or takedown are likely to result

in inaccurate data gathered about the botnet or be detected by C&C orchestrators. Seeking

2

a covert and scalable solution, we look to an evolving pattern in modern malware that in-

tegrates standardized over-permissioned protocols, meaning that they provide feature-rich

and unfettered access to the server beyond the subset of features implemented by a given

client. These over-persmissioned protocols expose privileged access to C&C servers. We

implement techniques to detect and exploit these protocols from over-permissioned bots

toward covert C&C server monitoring. Our empirical study of 200,000 malware captured

since 2006 revealed 62,202 over-permissioned bots (nearly 1 in 3) and 443,905 C&C Mon-

itoring Capabilities, with a steady increase of over-permissioned protocol use over the last

15 years. Due to their ubiquity, we conclude that even though over-permissioned proto-

cols allow for C&C server infiltration, the efficiency and ease of use continue to make

them prevalent in the malware operational landscape. Chapter 3 presents C3PO, a pipeline

that enables our study and empowers incident responders to automatically identify over-

permissioned protocols, infiltration vectors to spoof bot-to-C&C communication, and C&C

Monitoring Capabilities that guide covert monitoring post infiltration. Our findings suggest

the over-permissioned protocol weakness provides a scalable approach to covertly monitor

C&C servers, which is a fundamental enabler of botnet disruptions and takedowns.

1.3.2 R2D2: Is That Malware Reading Twitter? Towards Understanding and Preventing

Dead Drop Resolvers on Public Web Apps

Authorities are increasingly countering DGA botnets, prompting malware authors to shift

to Dead Drop Resolvers (DDRs) to hide C&C server domain names. Unlike DGAs, DDRs

allow malware to migrate to unpredictable C&C rendezvous points (domain names or IP

addresses) by simply posting on public web applications. Hiding in plain sight, malware

authors encode these publicly accessible C&C rendezvous points so authorities remain un-

aware of their true intent. Now, authorities must undergo extensive analysis to decode

the C&C domain before taking action. Chapter 4 aims to study this DDR adoption trend.

We developed R2D2, an automated DDR malware analysis pipeline, by analyzing 100k

3

malware. R2D2 identified 10,170 DDR malware from 154 families and revealed the DDR

encoding schemes used, providing authorities with a rapid means to decode C&C server do-

mains. I reported our findings to web app providers, who confirmed and took action against

9,155 DDRs (90% of DDR malware discovered). Of the remainder, web app providers pre-

viously took down the accounts for 774 malware, and we are awaiting a response for the

final 241 DDRs.

The rest of this dissertation is organized as follows. The related works are discussed

in Chapter 2. Chapter 3 presents C3PO, an automated malware analysis framework to

study the use of over-permissioned protocols in malware. Chapter 4 will discuss the design

and implementation of R2D2 to study Dead Drop Resolvers and how C&C orchestrators

use them to hide their C&C server rendezvous points for malware to resolve dynamically.

Lastly, we conclude this dissertation and discuss future work in Chapter 5.

4

CHAPTER 2

RELATED WORK

Previous work related to this research can be divided into six broad categories: C&C Infil-

tration and Monitoring (Section 2.1), Communication Protocol Identification (Section 2.2),

Backward Slicing (Section 2.3), Symbolic Execution (Section 2.4), Malware Capability

Analysis (Section 2.5), and Web Application Abuse (Section 2.6).

2.1 C&C Infiltration and Monitoring

C&C monitoring research has mainly focused on P2P botnets. Specifically, Andreisse et al.

[12] investigates the myriad of ways botnet monitoring occurs and potential defenses that

the next generation of botnets may employ. Echoing this finding, Böck et al. [23] noted that

monitoring countermeasures will continue to progress, making any attempts to successfully

monitor botnets infeasible. In fact, Karuppayah et al. [24] stated these challenges in mon-

itoring P2P botnets and developed two mechanisms to accurately detect botnet monitors

solidifying the claims of present difficulties in botnet monitoring. In response, Karuppayah

et al. [25] later introduces a less invasive monitoring technique to crawl P2P botnets, sig-

nificantly outperforming other crawling methods effectively.

Although the focus has primarily been directed towards P2P botnets, other works have

investigated individual malware of families towards infiltration. Dispatcher [26] analyzes

botnet protocols to enable infiltration. The authors rewrite the C&C messages for active

botnet infiltration to do this. Specifically, Dispatcher extracts the message format and se-

mantics for messages sent and received to extract protocol information. In conjunction with

”Google hacking” for information gathering, these techniques are applied to the MegaD

botnet. While successful, Dispatcher does not consider the plethora of commodity proto-

cols used in malware.

5

Lastly, domain seizure approaches provide another relevant avenue to monitoring by

taking over the botnet [2]. Stone-Gross et al. [18] took control of the Torpig botnet for

ten days after reverse-engineering the domain generating algorithm used in the malware.

Similar techniques have been proposed [5, 6, 7], with temporary successes against targeted

botnets. However, the infiltrations are short-lived and require detailed reverse engineering

efforts to understand domain generating algorithms to predict future candidate domains for

seizure. Motivated by the temporariness of these approaches, Nadji et al. [4] proposed a

takedown analysis and recommendation system to provide the means to analyze previous

botnet disruption and takedown attempts which influences the development of a takedown

recommendation engine. This engine automatically enumerate the botnet’s C&C infras-

tructure and suggest appropriate actions to make infiltration and disruption attempts more

feasible and practical.

2.2 Communication Protocol Identification

Several works infer protocol formats based on network traces [27, 28, 29]. Notably, Ma et

al. [27] classifies network flows according to the application-layer protocols they use. The

authors opt to use flow content instead of the traditional flow-external features (e.g., packet

sizes, header fields, etc.) because it provides distinguishable information about the specific

application-layer protocols being used, even when faced with tunneling or dynamic port

allocation. Similarly, Cui et al. [28] relies on network traces to enable protocol reverse

engineering. Yet, this approach uses the flow-external features to identify message formats

of an application by inferring idioms that are standard in many application-layer protocols.

Next, Dreger et al. [29] recognized the shortcomings of protocol identifications using port

numbers noting that much of today’s network traffic is not classifiable in this way. Thus,

the authors designed and implemented a network intrusion detection system extension that

dynamically analyzes application-layer protocols before deploying additional analyzers for

fine-grained analyses. While these approaches can be effective, sole reliance on network

6

traces can be problematic for protocol inference if captured network traces are incomplete

or non-existent.

Different from the above approaches, but with the common goal of protocol inference,

other works infer protocols based on their understanding of how the binary processes net-

work messages [30, 31, 26, 32]. For instance, Caballero et al. [30] extracts protocol in-

formation from the binary using shadowing. This technique monitors the execution of the

binary as it processes input which reveals the type(s) of protocol(s) being used. Similarly,

Lin et al. [31] monitors program execution. The authors developed AutoFormat to obtain

the execution context of a running program and use it to cluster protocol fields and their

relations. Lastly, Prospex [32] automatically infers stateful protocol specifications using

protocol state machines revealing the order of message delivery, providing insights into the

underlying protocol.

2.3 Backward Slicing

Slicing is a widely used technique because it simplifies a program allowing for the analysis

of only relevant portions based on user criteria [33]. Slicing has been used for reverse

engineering [34], software maintenance [34, 35], software debugging and testing [36, 37],

and program comprehension [38, 39]. Of the various types of slices available, backward

slicing is uniquely tailored to reveal all dependencies of a specific operation in a program.

Backward slicing reveals all control and data dependencies for a specific operation in

the binary [40, 41]. Specifically, a backward slice is a backward traversal of a program de-

pendence graph composed of control dependence and data dependence graphs. However,

an inherent challenge with backward slicing is path-insensitivity, where irrelevant depen-

dencies are added to the slice. These irrelevant dependencies cause slices that are too big

creating intractability and diluting the overall accuracy. Therefore, several heuristics and

techniques have been developed to address these problems [42, 43, 44]. Of note, Jaffar et

al. [42] discovered a general occurrence of imprecise slices bigger than expected and not

7

very useful. As such, the authors recommend path-sensitive slicing driven by symbolic

execution. Since symbolic inputs are used to drive exploration, if any branch becomes un-

satisfiable, removing the path that follows prunes the slice, resulting in a more accurate and

path-sensitive slice. Similarly, Srinivasan and Reps [44] pursued more accurate slices but

chose an algorithmic approach. Their approach works at the microcode level, providing

more granularity and ultimately improving the precision of the program slices.

2.4 Symbolic Execution

Symbolic execution is used to find software bugs [45, 46, 47], generate test cases [48,

49, 50], and improve the execution of dynamic analysis [51, 52, 53]. Symbolic execution

has also been applied to side-channel research [54], firmware analysis [55], cryptographic

software validation [56], emulator testing [57], and binary patching [58]. Many of these

approaches implement the whole-binary approach seeking to expose all paths for traversal,

and are often enabled by simple heuristics. Specifically, MalMax [53], X-Force[51], and J-

Force [52] enable the analysis of dynamic code by exposing hidden behaviors using forced

execution. All three techniques explore branches, including those that are unsatisfiable.

While MalMax uses backtracking and reversing to enable path exploration, J-Force mu-

tates satisfiable branch predicates to explore unvisited paths. However, although X-Force

explores infeasible paths, it does not explore all because forcing all paths can induce path

explosion, a limitation of symbolic execution. Similarly, Smartgen[59] proposed Selective

Symbolic Execution to expose URLs of mobile applications. Smartgen first extracts paths

constraints of interests that are subsequently solved to selectively explore paths. The re-

sults are used as input values to UI elements, allowing for input-dependent selective path

exploration. Most recently, [60] reduces path explosion by using the degree of concreteness

technique to identify capability-driven paths and does not require an intact malware binary

or prior knowledge of a program’s input and environment, avoiding restrictive assumptions

for symbolic execution.

8

2.5 Malware Capability Analysis

Several works use behavior analysis [61, 62, 63], behavior modeling [64, 65, 66], and

network traffic observation [67, 68] to identify malware. Techniques such as behavior graph

generation [69] or network observation indicate suspicious activity with varying degrees of

confidence [67, 68] but may not identify specific capabilities. Those that detect malware

capabilities [63, 69, 65, 64] are either specific to the Android framework or use dynamic

analysis to identify just enough capabilities for malware detection.

Martignoni et al [63] break down high-level actions found in a binary into their re-

spective low-level actions. Actions such as ”keystroke logging” include various low-level

commands. Next, the work done by Kolbitsch et al [69] also uses dynamic analysis and

is used for malware detection. The approach used observed sequences of system calls

when dynamically executing to form behavior graphs for malware. These behavior graphs

represent the entire malware binary, but the individual capabilities of some malware func-

tionalities can still be observed in the graphs. Reanimator [64] acknowledges limitations

with dynamic analysis and instead uses a combination of that and statically searches the

binary to find hidden functionalities that an analyst is looking for. Reanimator attempts to

automatically create functionality-aware models, which can be used to find the capabilities

of the malicious program. Aafer et al. [65] analyze Android malware to find differences

between commonly used APIs in benign and malicious binaries.

Deng et. al. [67] reveal malware behavior through network traffic observation. They

observe scanning, propagating, and downloading capabilities. We also see similar work

with Anubis [68], which tracks specific Windows APIs and data flows when recording net-

work traffic. However, the identified capabilities in both of these systems are not granular

enough to pinpoint specific types of information being exfiltrated from the infected system.

9

2.6 Web Application Abuse

When web applications were introduced, malicious actors immediately began developing

techniques to attack web app users. This early exploitation prompted research into the se-

curity of web apps that were focused primarily on protecting legitimate users [70, 71, 72].

More recently, attackers have begun to abuse web apps to perpetrate cybercrimes prompt-

ing investigators to also focus on identifying instances of web app abuse and providing

solutions toward remediation.

Clark et al. [73] is one of the first to explore web apps used to orchestrate attacks. They

discuss the ability to launch attacks from within the web apps to external targets and use

two experiments to demonstrate the practicality of denial of service (DoS) attacks. They

also discuss the difficulty of using current botnet detection methods on the new web app-

based botnets noting the need for new techniques to combat this emerging threat. This

early work influenced research that investigated social network abuse. Speifically, Badis

et al. [74] specifically investigated the detection of botnets that use web apps for DoS

attacks based on system metrics captured. Next, Lingam et al. [75] identified malware

behavioral similarities and proposed a model to detect Twitter botnets. Finally, Pantic et

al. [76] demonstrated the use of steganography for secret communication through Twitter

for botnet command and control.

Instead of malware analysis, other works opted to analyze network traffic to identify

abused cloud repositories [77] or cloud app abuse to enable C&C botnets [78, 79, 80]. Most

recently, Netskope reported that up to 66% of malware downloads originated from cloud

apps [81]. As a result of these works, MITIRE ATT&CK [82] suggests traditional intrusion

detection systems for either blocking malicious traffic to benign websites, presupposing

that authorities can identify malware-specific traffic to benign web apps from all other

benign traffic, or restricting all access to web-based content used by malware.

10

CHAPTER 3

C3PO: LARGE-SCALE STUDY OF COVERT MONITORING OF COMMAND &

CONTROL SERVERS VIA OVER-PERMISSIONED PROTOCOL

INFILTRATION

Botnet disruptions and takedowns are driven by Command and Control (C&C) server mon-

itoring before any action is taken and after to gauge success. This means that disruption or

takedown attempts are not only provably necessary, but must be targeted and effective [2,

3, 4, 5, 6, 7, 8, 9, 10]. Modern approaches can be categorized as passive or active moni-

toring. Passive monitoring (e.g., sensor node injection) is coarse-grained and may not give

accurate insights into the botnet [11, 12], i.e., the number and location of the victims and

the extent of damages incurred. It also requires a full reverse engineering effort to maintain

sensor nodes making this approach not widely used [12]. Therefore, active monitoring is

the preferred approach [11, 2], generally providing better insights into botnet operations.

However, active monitoring techniques, including remote penetration testing [13, 14, 15,

16, 17] and domain seizure [2, 4, 5, 6, 7, 18], are noisy making them easily detectable.

Seeking a better solution, this research proposes that standard protocols, which are increas-

ingly used by botnets, can be leveraged for general and covert C&C server monitoring.

In previous botnet disruption and takedown attempts, authorities first monitored the

C&C server to prove malware as the catalyst for incurred damages before legal permission

was granted for counteraction [83]. Yet, accurate monitoring goes beyond determining the

legality of counteraction. For example, to protect the 2020 election, Microsoft took down

120 of 128 Trickbot C&C servers [84]. Accurately identifying C&C servers pre-takedown

(profiling), then tracking successes post takedown (validation), required an in-depth un-

derstanding of the peers in the botnet, C&C server locations, and weaknesses to leverage

for botnet disruption. Therefore, successful monitoring must result in accurate, legally-

11

admissible information gathered during profiling and remain covert to avoid discovery by

C&C orchestrators, prompting defensive evasion or hardening [12, 19, 20]. An ideal solu-

tion should provide authorities with a means to access the C&C server under the guise of

normal bot operation.

As the end-host agents of a C&C orchestrator, bots are entrusted with C&C server ac-

cess. In fact, attackers are entirely dependent on the information exfiltrated by bots to gain

situational awareness in a victim’s network. To enable command and control, bots use stan-

dard protocols for file transfer, data storage, and message-based communication. However,

many standard protocols are over-permissioned, meaning that they provide feature-rich and

unfettered access to the server beyond the subset of features implemented by a given client.

A similar trend has been observed in benign software where over-permissioned client-side

protocols lead to unauthorized server access [85, 86, 87, 88]. This prompted our key in-

sight: over-permissioned protocols combined with the trust C&C servers place in their

bots expose a scalable opportunity for covert monitoring of C&C servers through protocol

infiltration.

To explore this insight, a systematic study is needed to identify the evolution of over-

permissioned protocol use in malware. Moreover, to conduct such a study, the analysis

must be scalable, reproducible, and provide the requisite information to covertly monitor

C&C servers through over-permissioned protocol infiltration. The study must expose over-

permissioned protocols, how they are being used, and the associated levels of access and

recoverable data on the C&C server. Finally, an automated pipeline must be made available

to enable the authorities to take action on these common malware weaknesses in future

botnet outbreaks.

We turned our attention to how the authorities could recover C&C server access privi-

leges from over-permissioned bots (bots using over-permissioned protocols) allowing them

to spoof bot-to-C&C communication. To this end, we designed and implemented C3PO1,

1C3PO: Covert Monitoring of C&C Servers via Protocol InfiltratiOn

12

an automated memory-image-based symbolic analysis measurement pipeline. C3PO an-

alyzes a malware memory image to identify (1) over-permissioned protocols, (2) infiltra-

tion vectors (i.e., authentication information to spoof bot-to-C&C communication), and

(3) C&C monitoring capabilities (i.e., capabilities in the end-host bot that reveal the C&C

server’s composition and content to guide covert monitoring post infiltration).

Through our collaboration with Netskope, the leading Secure Access Service Edge

(SASE) provider, which provides cloud security and networking to more than 30% of the

Fortune 100, we used C3PO to study the evolution of over-permissioned protocol use in

200k malware spanning back 15 years. C3PO uncovered 62,202 over-permissioned bots

(≈1 in 3). Our empirical measurement revealed several interesting findings: FTP is the

most prevalent over-permissioned protocol found in over 79% of all over-permissioned

bots. C3PO also identified 443,905 C&C monitoring capabilities (an average of 7 per bot),

enabling victim profiling, evidence collection from spyware, and even client-side code re-

flection. This trend has only increased since 2006, with over 8,000 over-permissioned bots

appearing per year in 2018 and 2019. Furthermore, recent bots (since 2015) implemented

as many as 3 over-permissioned protocols.

Finally, we present two case studies to demonstrate covert C&C server monitoring

through protocol infiltration. We were careful to follow ethical guidelines and adhere to

applicable laws when conducting this study. Covert monitoring succeeded and revealed the

number of files, their contents, and validation of information inferred by the C&C moni-

toring capabilities, which will support future botnet disruption and takedown attempts. We

are working with Netskope towards the disclosure and remediation of the identified C&C

servers.

3.1 A Motivating Example

Botnet disruptions and takedowns rely on accurate C&C server monitoring to profile the

botnet beforehand and validate successes after. Consider Sanny, an APT that targets gov-

13

ernment agencies through spearfishing. After infection, Sanny hijacks Windows service

components to enable persistence, deletes dropped files to cover their tracks, and conducts

sensitive data exfiltration. The Sanny botnet survived takedown attempts in 2013 [89] and

persists today. After botnet monitoring began to fail, an extensive investigation was con-

ducted in 2018, revealing Sanny’s C&C server update [90], but this required a tedious

manual analysis.

The authorities reverse engineered dropped malicious files to investigate the new Sanny

variant. At the time, authorities found never-before-seen FTP APIs and authentication

credentials throughout the malware binary and configuration files on the infected system,

revealing the update to the Sanny C&C server. However, since no further action was taken,

they likely did not realize the leverage this provided for covert C&C server infiltration. If

they did, the authorities could have also identified the malware capabilities that rely on FTP

for interaction with the C&C server. This would have allowed them to reinstate monitoring

of the botnet’s spread by extracting victim profiles and new bot command updates, all under

the covert guise of a trusted FTP connect.

Armed with our key insight, C3PO monitors the C&C server by first identifying over-

permissioned protocols, FTP in this case, through their invocation points in the malware.

Figure 3.1 illustrates the sequence of events toward covert C&C server monitoring. During

malware analysis 1 , C3PO identified FTP APIs (e.g., FTPPutFile) in Sanny which

confirmed the updated Sanny C&C server (Table 3.1, Row 1). C3PO then used Iterative

Selective Symbolic Execution (iSSE) to extract infiltration vectors (IVs) from FTP APIs 2

, allowing C3PO to spoof bot-to-C&C communication for infiltration while masquerading

as a trusted bot (Table 3.1, Row 2).

Had authorities realized the leverage FTP provided for botnet infiltration, they could

have monitored victim profiles and new bot command updates. C3PO automatically pro-

vides this by identifying C&C monitoring capabilities 3 revealing the C&C’s composition

and content that authorities can expect post infiltration. C3PO only targets those capa-

14

Figure 3.1: C3PO-enabled Covert Monitoring of Sanny.

bilities that are exploitable, i.e., they interact with the C&C server in a way that can be

observed by C3PO when it connects to the C&C server using the same protocol. For ex-

ample, Sanny performs victim profiling by exfiltrating victim locale information, files, and

passwords (from Firefox and Microsoft Outlook) via FTP and used code reflection to ex-

ecute arbitrary commands on the victim system from a file on the C&C server (Table 3.1,

Row 3). C3PO maps these capabilities to specific files and directories to monitor on the

C&C server via FTP protocol infiltration.

After C3PO extracts the IVs 2 and capabilities 3 , it actively monitors the C&C

server. C3PO can use the IVs (Table 3.1, Row 2) to infiltrate 4 the Sanny C&C server,

via the trusted bot-to-C&C channel, and directly locate data from victims 5 in the form

of files containing infected system information and passwords resulting in peer disclosure

(Table 3.1, Row 4) which serves as evidence of computer fraud and abuse. Furthermore,

C3PO identified code reflection where the bot orchestrators issue the chip command to the

Table 3.1: C3PO’s Analysis of the Sanny Malware.

Protocol FTP

Infiltration
Vectors

Username: cnix 21072852
Password: vlasimir2017
Server: ftp.capnix.com

C&C Monitoring
Capabilities

Victim Profiling, File Exfiltration,
Password Stealing, and Code Reflection

Covert
Monitoring

Outputs

(1)Peer disclosure as victim information is listed as
"<Victim ID> (#report) | UserName | TimeStamp"

(2) Code Reflection to update the C&C host name

15

bot to trigger the FTP hostname to update. The ability to monitor this transaction ensures

that we maintain persistent covert monitoring irrespective of migrating servers.

In contrast to previous works, C3PO gives the ability to identify, assess, and pursue

counteraction via scalable covert monitoring. Notably, C3PO does not attempt to find

exploitable vulnerabilities in protocol implementations but instead, leverages the inherent

capabilities of the protocol.

16

Figure 3.2: C3PO Measurement Pipeline: Dynamic Memory Image Extraction: Executes the malware under instrumentation and cap-
tures memory images; Bloated Bot Identification: Identifies protocol invocation points resulting in call sites for all; Infiltration Vector
Identification: Uses Iterative Selective Symbolic Execution to extract infiltration vectors used to spoof communication; Flippable Ca-
pability Identification: Uses API-based capability modeling to reveal the composition and contents of the C&C infrastructure; Covert
Monitoring: Post-infiltration analysis guided by flippable malware capabilities.

17

3.2 Measurement Pipeline

In collaboration with Netskope, we designed C3PO to study the adoption of over-permissioned

protocols in bots and how their use has evolved from April 2006 to June 2020. Our dataset

included 200k malware with collection dates spanning back 15 years. This allows us to

retroactively deploy C3PO by analyzing each malware sample and give C3PO the vantage

point to observe existing trends in the progression of malware development. C3PO identi-

fied 62,202 of these as over-permissioned bots totaling 65,739 over-permissioned protocol

uses detected across 8,512 malware families. Furthermore, C3PO identified that each bot

contains on average 7 C&C monitoring capabilities, totaling 443,905 capabilities identified

across our dataset. We hope C3PO provides an automated measurement pipeline to study

the over-permissioned bot landscape in the wild and this opportunity for covert botnet mon-

itoring.

Figure 3.2 shows the four phases of C3PO’s automated measurement pipeline that em-

ploys a memory-image-based symbolic analysis. Taking a malware binary as input, C3PO

conducts Dynamic Memory Image Extraction (subsection 3.2.1) by executing the malware

under instrumentation and capturing memory images during this execution for analysis.

This provides the best vantage point to bypass malware packing and obfuscation. C3PO

transitions to static analysis for Over-Permissioned Bot Identification (subsection 3.2.2) by

identifying invocation points for protocol APIs and protocol keywords/commands (tokens).

Next, C3PO uses Iterative Selective Symbolic Execution (iSSE) for Infiltration Vector Iden-

tification to allow the authorities to spoof bot-to-C&C communication for infiltration (sub-

section 3.2.3). C3PO then conducts C&C Monitoring Capabilities Identification to reveal

the composition and content that authorities can expect from the C&C server during infil-

tration (subsection 3.2.4). Finally, infiltration vectors can be used for Covert Monitoring of

the C&C servers to pinpoint data inferred by C&C monitoring capabilities enabling botnet

monitoring.

18

3.2.1 Dynamic Memory Image Extraction

Malware often employs sophisticated packing and obfuscation techniques that constrain

analysis and also inhibit large-scale measurements [91, 92]. Although there are numerous

unpacking tools available, modern packing techniques employ robust anti-analysis methods

rendering existing solutions mute [91]. While sandboxes or software emulation are viable

approaches, they require careful configuration per malware sample/family which is likely to

prevent scaling to analyze a large dataset and may accidentally result in introduced errors

through incomplete configurations. As a pipeline designed for large-scale measurement,

C3PO aims to provide a scalable means of malware analysis through dynamic unpacking

and memory image extraction, i.e., taking a snapshot of the malware during normal exe-

cution. Ideally, creating a memory image during dynamic execution allows the malware

to unpack and deobfuscate itself, leaving C3PO with unpacked and deobfuscated code and

execution data to analyze.

Inspired by prior works [91, 60], C3PO extracts multiple memory images during the

malware execution by hooking Internet and Network (I/N) APIs2. This technique is based

on two observations: (1) Irrespective of the packing scheme, after unpacking, the malware

must invoke I/N APIs to interact with its C&C server. (2) Since recent research has shown

that most modern packers have at least two layers of packing [91], if malware memory

image extraction is untimely, or at the wrong layer, it will still be packed. Therefore, C3PO

extracts multiple memory images by hooking all I/N APIs, as their DLLs are loaded, using

a trampoline to replace instructions in the hooked API with a call to our custom code that

writes the memory image to a file and returns to the trampoline. Each memory image

contains the execution context (i.e., register values, stack, program counter, etc., at the

time of memory image extraction) which ensures that malware analysis begins from a valid

execution point in the malware.

After extracting malware memory images, C3PO proceeds to the memory-image-based

2I/N APIs allow the malware to interact with FTP and HTTP protocols to access Internet resources.

19

analysis to measure the prevalence of over-permissioned protocol use and the leverage they

provide to covertly monitor C&C servers.

3.2.2 Over-Permissioned Bot Identification

Over-Permissioned bots use over-permissioned protocols that authorities can leverage to

covertly monitor C&C servers. We construct a protocol database that C3PO can reference

as it confirms the invocation of protocol identifiers (APIs and protocol keywords or com-

mands, i.e., tokens) validating protocol use. If the bot is over-permissioned, C3PO outputs

the protocol APIs, tokens, and call sites for later analysis.

Protocol Implementations

Protocols are implemented using low-level functions or high-level, built-in library func-

tions to achieve the same overall functionality. We, therefore, categorize protocol imple-

mentations as low-level (LL) or high-level (HL) for our measurement study.

HL Implementations. Protocol-specific APIs are used for HL protocol implementations

(e.g., SQLConnect), which reduce flexibility in modifying or adding to the protocol but

make communications easy and efficient given the built-in APIs.

LL Implementations. Malware authors often hide the use of well-known protocols and

prevent an investigator’s immediate understanding of the C&C communication routines.

LL implementations use raw-socket (non protocol specific) APIs (e.g., send) in conjunc-

tion with official protocol tokens (e.g., NICK for the IRC protocol).

Notably, all protocols have LL implementations, but only some also have a HL imple-

mentation. Although custom protocol implementations are feasible, their uniqueness sup-

ports signature development making them easier to filter with firewall rules. Thus, C3PO

identifies HL and LL implementations, and could be easily extended to other protocols

when deemed necessary for an investigation.

20

Table 3.2: Over-Permissioned Protocols

Category Over-Permissioned Protocol Implementation(s)

File Transfer
File Transfer Protocol (FTP/TFTP) LL, HL

Web Distributed Authoring & Versioning (WebDAV) LL, HL

BitTorrent/Micro Transport Protocol (µTP) LL, HL

Data Storage

Mongo Database LL, HL

MySQL LL, HL

PostgreSQL LL, HL

Object DB Connectivity (ODBC) LL, HL

Message-based
Communication

Internet Relay Chat (IRC) LL

Message Queuing Telemetry Transport (MQTT) LL HL

Protocol Database

Standard protocols are often used for: (1) file transfer, (2) data storage, and (3) message-

based communication. However, their ubiquitous integration into benign software has

prompted research into inherent vulnerabilities which has led to unauthorized server ac-

cess [85, 86, 87, 88]. Noticing a similar trend in malware, we select common over-

permissioned protocols discovered in preliminary research, reports from industry experts [93,

82], and related work [94] for our study, as shown in Table 3.2.

Based on the protocols, we constructed a database of all protocol identifiers for C3PO to

reference during protocol identification (subsubsection 3.2.2). To construct this database,

we developed a web-crawler and targeted it to the respective protocol documentation [95,

96, 97, 98, 99] or manually extracted protocol details to populate the database. However,

as other over-permissioned protocols become widely adopted by malware, they can be

easily integrated by adding their identifiers to the protocol database. Based on the protocol

implementations and the database as a reference, C3PO conducts protocol identification to

pinpoint protocol use.

21

Protocol Identification

To establish the execution context for malware analysis, C3PO parses the memory images

and extracts code pages enabling import address and export directory tables (IAT and EDT)

reconstruction. For each memory image, C3PO identifies the code regions to construct a

CFG starting at the point the memory image was taken to all reachable code. This results

in one CFG per memory image, rooted at the instruction pointer from the memory im-

age. C3PO then creates a Combined CFG (C2FG) by matching overlapping blocks in all

CFGs, ensuring no duplication. It then traverses this C2FG to identify all function call sites

and compares it against the reconstructed IAT and EDT for a matching API. Although a

common challenge in static analysis is resolving indirect function calls, the initial dynamic

execution to generate memory images populates concrete function pointers in memory be-

fore image extraction, which aids in indirect call resolution. A data dependence graph, built

from the C2FG, also resolves additional indirect calls.

HL Identification. To identify HL implementations, C3PO traverses the C2FG and re-

solves call targets. If it encounters an API that is in the protocol database, C3PO stores the

call site and the called API. From our example in section 3.1, C3PO detected FTPPutFile

in Sanny, classifying it as a over-permissioned bot because it uses FTP.

LL Identification. LL implementations use raw-socket APIs with a protocol token. When

C3PO traverses the C2FG and encounters a call to a raw-socket API, it extracts API argu-

ments to deduce tokens (as described in subsection 3.2.3). If the token is in the protocol

database, C3PO stores the call site and the called API/token combination.

C3PO identified 62,202 over-permissioned bots (≈30%) in 200k malware. After proto-

col identification, C3PO continues the analysis to identify information that can be used to

spoof bot-to-C&C communication toward infiltration.

22

3.2.3 Infiltration Vector (IV) Identification

Infiltration vectors (IVs) are the credentials used by the bot to connect to the C&C server.

To spoof bot-to-C&C communication, C3PO identifies IVs using a combination of back-

ward slicing and iterative selective symbolic execution.

Backward Slicing

C3PO uses the previously identified APIs, call sites, and tokens to first locate the au-

thentication APIs (e.g., SQLConnect for HL or send and a protocol token for LL).

C3PO performs backward slicing (of the C2FG) from these API arguments to identify

a path to them through the malware. A challenge faced during backward slicing is that

API arguments only point to the first byte of the data buffer (e.g., lpszPassword for

InternetConnect) resulting in an incomplete slice. To address this, C3PO generates

target instructions by identifying all instructions that were last to write to all bytes of the

data buffer.

Iterative Selective Symbolic Execution (iSSE)

C3PO symbolically executes along each of the backward slices to the authentication API.

Since C3PO is constrained by the slice, symbolic execution is selective precluding path ex-

plosion while maintaining accuracy. When iSSE reaches the authentication API, it halts to

extract API arguments by dereferencing data buffer pointers. If the arguments are concrete,

they are decoded to strings and iSSE analysis ends, as the IVs have been found. If they

are symbolic, it means the API arguments were passed as parameters from the preceding

(calling) function. C3PO, guided by the path, incrementally expands the exploration region

by starting in the preceding function before re-initiating iSSE. This iterative process con-

tinues until the IVs are found. We discuss instances where concretization is not possible

in section 3.6. Although execution can begin at the entry point, C3PO is more likely to

encounter symbolic loops which can cause resource exhaustion if specific functions in the

23

malware are computationally complex. Therefore, C3PO starts small (within the function),

then incrementally expands to increase the likelihood of argument extraction. Loop han-

dling is still necessary and C3PO employs a loop limiter to exit symbolic loops. However,

loop avoidance is still preferred.

Figure 3.3 illustrates C3PO’s IV Identification steps for the Sanny malware. C3PO per-

forms backward slicing from the authentication API InternetConnect. For each of

the authentication API arguments (e.g., lpszServerName, nServerPort,

lpszUserName, lpszPassword, etc.), C3PO calculates the memory addresses for all

bytes of the data buffer using a shadow memory that was populated during data depen-

dency graph generation, a prerequisite for backward slicing. C3PO finds each instruction

that was the last to write to each byte of the data buffer (Target Identification in Figure 3.3).

Using these target instructions, C3PO conducts a backward slice to identify all influencing

operations of the data buffer (the blue line through four of Sanny’s functions in Figure 3.3).

C3PO now traverses each slice using iSSE (iSSE in Figure 3.3) to extract IVs for all ar-

guments. For Sanny, C3PO extracted the server hostname, username, and password (e.g.,

Table 3.1, Row 2) after covering only 3 of the 4 functions in the backward slice (the red

iSSE line in Figure 3.3). Thus, C3PO can spoof bot-to-C&C communication and masquer-

ade as a trusted bot.

3.2.4 C&C Monitoring Capabilities

Bots execute capabilities on the infected systems, some of which can be leveraged to pro-

vide covert monitoring. These C&C monitoring capabilities either (1) exfiltrate victim data

or (2) allow bot orchestrators to execute arbitrary commands. These capabilities are valu-

able because the former alerts the authorities about the types and format of data stored on

the C&C server, and the latter triggers commands on peer systems for botnet disruption

upon infiltration.

To identify these capabilities, C3PO constructs a backward slice from all data exfiltra-

24

Target Identification Backward Slicing iSSE

…
b u f[0] b u f[1] b u f[2] b u f[3] b u f[n -1]

push ebp

mov ebp, esp
push ecx

cmp hfile, 0
push esi

jnz 0x40bd43

xor esi, esi
jmp 0x40bd71

...
mov esi, [ebp+20h]
lea ecx, [ebp+20h]
push 0
push eax

call 0x4030e7
push eax

push esi
push hfile

call HttpSendRequest

mov ecx, [ebp+20h]

call 0x4049ba
mov eas, esi

pop esi
leave

retn 4

Backward Slice Target Instructions Infiltration Vectors in the Slice

Figure 3.3: C3PO’s Infiltration Vector Identification of Sanny.

tion and code reflection targets in the malware. It then performs API-to-capability mapping

to derive the C&C monitoring capabilities.

Backward Slicing

C3PO uses the previously identified APIs and call sites to locate data exfiltration (e.g.,

HttpSendRequest) and code reflection (e.g., ShellExecute) APIs. With each of

these APIs as data sinks, C3PO performs backward slicing. For data exfiltration APIs,

it backward slices from the API argument corresponding to the data exfiltration buffer

(e.g., lpOptional for HttpSendRequest). For code reflection APIs, it backward

slices from the operation arguments that reveal the C&C command triggers (e.g., lpOPeration

for ShellExecute).

API-to-Capability Mapping

C3PO locates all API calls along each of the backward slices, similar to the technique

used in subsubsection 3.2.2. This gives C3PO API sequences that influence the contents

of the data exfiltration buffer or operation argument. These sequences of APIs are then

compared against the capability models to identify the C&C monitoring capabilities. The

25

Table 3.3: C&C Monitoring Capabilities

Category C&C Monitoring Capabilities

Browser
Password Stealing

(1)
Mozilla Stealer
Chrome Stealer
Internet Explorer Stealer

Service
Password Stealing

(2)
WiFi Stealer
Kerberos Stealer
Windows System Stealer

Victim
Profiling

(3)

Registry-stored System Details
Live System Operating State
System OS Details
Victim Locale Information

Spying, Live
Monitoring

(4)
Keylogger
Screen Capture
Audio Capture

File
Exfiltration

(5)
High-level Protocols
Raw Socket Transfer

Code
Reflection

(6) Code Reflection

capability models are derived by manually reverse engineering known malware and by

using the insights from industry reports [82, 100]. In our study, we considered 6 categories

of 16 C&C monitoring capabilities, as shown in Table 3.3.

To illustrate, C3PO identifies the victim profiling capability in the Sanny malware (sec-

tion 3.1). C3PO performs backward slicing from the data sink HttpSendRequest. It

calculates the memory addresses for all bytes of the sink buffer by referencing the shadow

memory that was populated during data dependency graph generation (subsection 3.2.3).

C3PO then finds each instruction that was the last to write to each byte of the buffer. Using

these target instructions, C3PO conducts a backward slice to identify all influencing oper-

ations of the sink buffer. It identifies GetUserDefaultLCID and GetLocaleInfoW

APIs leading up to HttpSendRequest API. This API sequence conforms with the ca-

pability model for Victim Locale Information, and hence the Sanny malware is classified

as having a Victim Profiling Capability.

26

Note that this capability can be used for covert monitoring because it describes the

type of data and format stored on the C&C server which results in immediate victim iden-

tification. It also reveals the scope of infection and potential damages incurred (victim

credentials provide access to sensitive accounts) providing legally admissible evidence to

confirm computer fraud and abuse.

To identify code reflection, the same process holds. However, instead of identifying all

APIs along the backward slice, C3PO locates the closest API to the sink that reads incoming

information (e.g., recv). Once found, C3PO extracts the argument from the buffer to

reveal the C&C command that triggered code reflection. This allows the authorities with

C&C access to issue the commands to peers in the botnet to trigger arbitrary code execution.

This capability goes beyond C&C server monitoring, and instead supports botnet disruption

and takedown.

3.3 Validating our Techniques

C3PO is implemented in C++ and Python, totaling 11k lines of code leveraging Detours [101]

for memory image extraction and angr [102] to support binary analysis with specific ap-

plications to protocol identification, backward slicing, and iSSE. We also used the recently

released AVClass2 [103], the current state-of-the-art in malware labeling tools, whose pre-

decessor, AVClass [104], has long been relied upon in top-tier research [105, 106, 107,

108].

Before deploying C3PO on the full data set, we validate its accuracy in identifying

protocols and leverageable malware capabilities which enable covert and targeted C&C

server monitoring. We leave the efficacy of infiltration vector analysis for our case studies

(section 3.5) which demonstrate our ability to covertly infiltrate C&C servers. We evaluated

C3PO using a ground truth dataset of 35 manually reverse engineered Windows malware

from 13 different families, covering all protocols in Table 3.2.

27

Table 3.4: Validating Protocol Identification. GT represents the ground truth compared
with C3PO’s results to identify the TP, FP, and FN metrics.

Malware
(by protocols) #Variants Low-level Identifiers High-level Identifiers

GT C3PO TP FP FN GT C3PO TP FP FN

FTP/TFTP
Softcnapp 5 0 0 0 0 0 15 15 15 0 0
Ragebot 2 2 2 2 0 0 0 0 0 0 0
Blackhole 3 3 3 3 0 0 0 0 0 0 0
Rbot 2 2 2 2 0 0 0 0 0 0 0
Subtotal 12 7 7 7 0 0 15 15 15 0 0

WebDAV
Equationdrug 2 54 42 42 0 12 0 0 0 0 0
Subtotal 3 54 42 42 0 12 0 0 0 0 0

BitTorrent/µTP
Sathurbot 2 18 24 18 6 0 0 0 0 0 0
Icloader 1 0 0 0 0 0 21 21 21 0 0
Subtotal 3 18 24 18 6 0 21 21 21 0 0

MySQL
Delf 4 0 0 0 0 0 24 24 24 0 0
Subtotal 4 0 0 0 0 0 24 24 24 0 0

MongoDB
Cstealer 1 2 4 2 2 0 5 5 5 0 0
Subtotal 1 2 4 2 2 0 5 5 5 0 0

ODBC
Zbot 4 0 0 0 0 0 60 60 60 0 0
Subtotal 4 0 0 0 0 0 60 60 60 0 0
PostgreSQL
Alma 2 0 0 0 0 0 5 5 5 0 0
Subtotal 2 0 0 0 0 0 5 5 5 0 0

IRC
Softcnapp 5 15 15 15 0 0 0 0 0 0 0
Ragebot 1 6 8 6 2 0 0 0 0 0 0
Rbot 2 9 7 7 0 2 0 0 0 0 0
Slackbot 4 12 12 12 0 0 0 0 0 0 0
Delf 4 12 15 12 3 0 0 0 0 0 0
Subtotal 16 54 57 52 5 2 0 0 0 0 0

MQTT
Expiro 3 0 0 0 0 0 39 39 39 0 0
Subtotal 3 0 0 0 0 0 39 39 39 0 0

Total 35 135 134 121 13 14 169 169 169 0 0

28

3.3.1 Protocol Identification Evaluation

Table 3.4 presents C3PO’s protocol identification evaluation. Columns 1-2 list the mal-

ware families (categorized by protocols found in each) and the number of malware variants

(V ar). Columns Low-level and High-level Identifiers present the ground truth (GT) find-

ings, C3PO’s analysis results of protocol identifiers found, and the true positive (TP), false

positive (FP), and false negative (FN) metrics for each, respectively. C3PO correctly (TP)

identified 290 (121 LL +169 HL) protocol identifiers. Our GT analysis confirmed 304 (135

LL + 169 HL) of them, revealing 13 FPs, 14 FNs, and an overall accuracy of over 94%.

We then dug into the detection of protocols among all variants. As an example, we

identified 4 of the 13 malware families use FTP employing both LL and HL identifiers.

C3PO’s analysis of the Softcnapp, Ragebot, Blackhole, and Rbot malware reported no FTP

FPs and FNs.

Upon close inspection, we found that FPs occur when C3PO incorrectly identifies the

use of a token (protocol command or keyword). C3PO reported 2 extra IRC tokens in

Ragebot due to custom C&C commands which also used the PASS keyword (also an IRC

command). Similarly, C3PO reported FPs in LL implementations of MongoDB (2 false

tokens), IRC (5 false tokens), and BitTorrent/uTP (6 false tokens) due to tokens appearing

as substrings in other C&C communication. Although adding missed tokens to the protocol

database reduces FNs, this is a case-by-case basis. Also, there is a tradeoff between FPs

and FNs - allowing and ignoring substrings would increase FPs and FNs, respectively (e.g.,

some IRC bots use multiple tokens in one message, while in general, FTP bots do not).

Of the 135 manually-verified LL identifiers, C3PO produced 14 FNs because of undoc-

umented tokens resulting in 121 of 135 TPs. The only FNs occurred during the IRC and

WebDAV protocols identification via their LL implementation in the Rbot and Equation-

drug samples, respectively. Whenever we encountered undocumented tokens, we subse-

quently added them to the protocol database. However, we retained our accuracy metrics

results pre-modification as it represents a more accurate depiction of C3PO’s protocol iden-

29

tification capability given the possibility of future undocumented tokens. Overall, C3PO

was 94% accurate in identifying protocols making it robust enough to be applied to the

large-scale study.

30

Table 3.5: Validating C&C Monitoring Capabilities Identification. GT and C3PO represent the number of manually verified and auto-
mated capability identifiers per category, respectively.

Malware #Variants

Browser
Password

Stealer

Service
Password

Stealer

Victim
Profiling

File
Exfiltration

Spying,
Live

Monitoring

Code
Reflection

Accuracy
Metrics

GT C3PO GT C3PO GT C3PO GT C3PO GT C3PO GT C3PO TP FP FN

Softcnapp 5 5 5 0 0 5 5 5 5 5 5 0 0 20 0 0
Cstealer 1 1 1 0 0 1 0 0 0 0 0 0 0 1 0 1
Ragebot 2 0 0 0 0 2 2 2 2 0 2 2 2 6 2 0

Expiro 3 0 0 0 0 3 3 3 3 3 3 0 0 9 0 0
Sathurbot 2 2 0 0 0 2 2 2 2 2 2 0 0 6 0 2

Icloader 1 0 0 0 0 1 1 1 1 1 1 0 0 3 0 0
Alma 2 0 0 0 0 2 2 2 2 2 2 0 0 6 0 0
Zbot 4 0 0 0 0 0 1 0 0 4 4 0 0 4 1 0
Rbot 2 1 1 0 0 2 2 2 2 2 2 2 2 9 0 0

Slackbot 4 0 0 0 0 4 4 4 4 0 0 0 0 8 0 0
Delf 4 0 0 0 0 4 4 0 4 4 4 0 0 8 4 0

Blackhole 3 2 1 2 2 3 3 3 3 3 3 0 0 12 0 1
Equationdrug 2 0 0 0 0 2 2 2 2 2 2 2 2 8 0 0

Total 35 11 8 2 2 31 31 26 30 28 30 6 6 100 7 4

31

3.3.2 C&C Monitoring Capabilities Evaluation

Table 3.5 presents our evaluation of C3PO’s ability to identify C&C monitoring capabil-

ities. Columns 3-8 present the capabilities we consider in our study, but C3PO can be

extended to support other capabilities. Their sub-columns are divided into two categories:

GT and C3PO represents the number of ground truth capabilities identified and automat-

ically identified, respectively. We found that C3PO correctly identified 100 (TP) C&C

monitoring capabilities. Our GT analysis confirmed 104 capabilities, revealing 7 FPs, 4

FNs, and an overall accuracy of over 94%.

Table 3.5 shows that Victim Profiling ranks highest among the capabilities, accounting

for 29% (31 of the 104) of the capabilities. Next are Live Monitoring and File Exfiltra-

tion, with 28 (27%) and 26 (25%) capabilities, respectively. Toward covert monitoring,

this shows that the authorities can expect to locate victim information on the C&C server

including system information, personal files, and legally admissible evidence of spying.

Among 35 variants, 3 of them (Ragebot, Zbot, and Delf) had 7 FPs from the Victim

Profiling, File Exfiltration, and Live Monitoring identification. Next, 3 of the FNs occurred

in the Browser Password Stealer while 1 occurred in the Victim Profiling distributed among

Cstealer, Sathurbot, and Blackhole. Further investigation revealed that both the FPs and the

FNs are attributed to issues experienced using angr either due to unresolved symbolic con-

straints during CFG generation or temporary variable reuse causing spurious dependencies

in the backward slice. However, our investigation confirmed these are rare occurrences.

Given the low number of FPs and FNs, and over 94% accuracy, C3PO provides the means

to effectively identify C&C monitoring capabilities.

3.4 Large-scale Deployment

We deployed C3PO to measure over-permissioned protocols and C&C monitoring capabil-

ities. We demonstrate that our automated measurement pipeline provides a scalable means

32

for over-permissioned bot analysis.

3.4.1 Post Deployment Dataset Highlights

Deploying C3PO on our dataset exposed a growing trend of over-permissioned protocol

use in malware. C3PO revealed that 62,202 (over 30%) of malware use one or more over-

permissioned protocols. Figure 3.4 illustrates the adoption of over-permissioned protocols

per bot from April 2006 to June 2020. We found that over-permissioned protocol use

peaked in years 2015-2019, which also accounted for 80% of all over-permissioned pro-

tocols C3PO identified in our study. Interestingly, Figure 3.4 shows that not only has the

use of over-permissioned protocols increased, but also the number of protocols used per

malware. While a single bot using multiple over-permissioned protocols was uncommon,

this practice is more prevalent now than ever before with over 4,000 bots using multiple

protocols. In fact, since 2019 alone, C3PO found over 1,500 malware that used more than

one over-permissioned protocol.

C3PO found the remainder of the malware (i.e., 70%) in our dataset used only HTTP-

based communication for command and control. The prevalence of HTTP-based communi-

cation in our dataset is inline with observations by Peredisci et. al. [109], who reported that

75% of malware exhibit network activity via HTTP-based communication. This preva-

1

20

400

8000

160000

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Year Seen

One Two Three Four Five Six

Bots

Protocols

Figure 3.4: Number of Over-Permissioned Protocols Per Bot From 2006-2020.

33

lence led many prior works [110, 111, 112] to target HTTP-based malware exclusively.

HTTP-based malware send and receive data in HTTP packets using non-standard message

protocols. Unlike the protocols considered in this chapter, these HTTP-based messages

do not readily provide authorities access to the C&C server. As such, these HTTP-only

malware do not function as over-permissioned bots.

3.4.2 Over-Permissioned Bot Landscape

Table 3.6 presents interesting insights into over-permissioned protocol use. Columns 1

shows the protocols we studied; Column 2, the number of protocol uses; and Columns 3-4,

the total number of HL and LL identifiers found. Columns 5-6 show their distribution with

temporal protocol changes of each sample displayed in Column 8. The total number of

malware families observed using specific protocols, as well as the first and last time the

malware was seen in 2006-2020 are presented in the remaining columns.

C3PO detected 65,739 uses of over-permissioned protocols. Confirming our hypothe-

sis that protocol efficiency supports continued prevalence, FTP is predominant among all

protocols occurring 53,687 accounting for 81% of protocols identified (Column 2, Row 1).

Besides, FTP has been consistently used across 88% of the 8,512 malware families over 15

years. This confirms our suspicion that malware authors either do not realize the inherent

vulnerabilities from using over-permissioned protocols or simply do not expect them to be

used as IVs. We expect the latter to be the case given the known FTP insecurities. Thus, bot

orchestrators are unknowingly leaving the front door wide open, a trend our study sheds

light on.

34

Table 3.6: Distribution of Over-Permissioned Bots Identified During the Large-Scale Study.

Over-Permissioned
Protocol

#Used
#Protocol ID Identifiers/Protocol Temporal Changes

2006 - 2020
#Families

First
Seen

Last
SeenHL LL Min Avg Max

FTP/TFTP 55,494 32,531 22,963 2 4 9 8,163 2007-07 2020-06
BitTorrent/µTP 953 892 61 1 7 21 56 2011-04 2020-06
WebDAV 2,963 2846 117 8 16 21 135 2012-07 2020-06
MongoDB 1 0 5 5 5 5 1 2019-11 2019-11
ODBC 670 670 0 1 3 12 126 2010-08 2020-05
MySQL 262 262 53 1 5 11 53 2008-12 2020-05
PostgreSQL 117 117 25 2 4 7 25 2009-06 2019-10
MQTT 24 23 18 1 2 3 1 2014-04 2015-12
IRC 10,458 0 10,458 1 3 6 400 2006-10 2020-06

Total 65,7391 34,495 33,607 2 3 7 8,512 1 2006-10 2020-06

1: This is not the sum of this column, but the total number of protocols uses or malware families (see column 9) detected.

35

From Table 3.6, Column 8 illustrates the number of protocol identifiers used in mal-

ware since 2006. The number of identifiers per sample has generally fluctuated, except for

the MQTT and IRC protocols. Similar to the findings in section 3.3, IRC implementations

generally use 3 tokens to communicate with the C&C server as illustrated in the average

identifiers per use (Column 6). The total distribution of protocol identifiers found (min=2,

avg=3, max=7) indicates that many protocols use multiple APIs or tokens giving author-

ities multiple monitoring vantage points. Notably, the MongoDB protocol was used in

the Cstealer malware then spontaneously disappeared from use resulting in a single spike

in Column 8. This is likely due to its rapid discovery and public reporting [113], which

immediately revealed a weakness resulting from the use of the over-permissioned Mon-

goDB protocol. We expect to see a resurgence of the MongoDB protocol as some malware

authors continue to prefer efficiency and ease of use over security. Furthermore, the tem-

poral changes in levels of protocol implementations (i.e., identifiers used) gives us insights

into the type of protocol capabilities enabled; e.g., if C3PO identifies FTPGetFile or

FTPPutFile in the malware, the C&C supports at least FTP read/write. However, as

our study shows, it is safe to assume full protocol implementation since malware operators

adopt over-permissioned protocols for ease of use and scalability.

Table 3.6, Row 8 (MQTT) shows a similar trend as the MongoDB protocol. However,

the use of the MQTT protocol is observed over a longer period. The Expiro malware is the

only malware family detected using the MQTT protocol and disappeared from detection

in 2015. Interestingly, industry experts observed and reported on a resurgence of Expiro

in 2017 [114] adding clarity to our observation, given that we did not detect it between

2015 and 2020. Industry experts also reported improvements in Expiro, which we believe

correlates with its lack of presence in recent years, likely stemming from its exclusion of

the MQTT protocol.

From Table 3.6, we also observe that LL identifiers are the majority with 33,636 de-

tected versus 33,486 HL identifiers, although, only by a slight margin. However, the ma-

36

jority of LL implementations resulted from FTP and IRC protocols. As discussed, the IRC

protocol has no HL implementation. Although many IRC bots are no longer active because

of the centralized architecture, which has proven limitations, new IRC malware have been

detected in 2020. We now turn our attention to the 8,512 malware families identified. This

is important as it illustrates the wide-scale applicability of C3PO across multiple malware

families and variants.

3.4.3 C&C Monitoring Capabilities at Scale

C&C monitoring capabilities guide covert monitoring after C&C server infiltration. As

shown in Table 3.7, C3PO identified 443,905 C&C monitoring capabilities in 62,202 over-

permissioned bots revealing an average of 7 capabilities per bot. Notably, Victim Profiling

and Live Monitoring account for the majority of capabilities, at 56% and 27% with 249,051

and 120,290 identifications, respectively. It follows that the majority of over-permissioned

bots use techniques that can be applied more broadly to information stealing, which Victim

Profiling and Live Monitoring provide. File Exfiltration is the next commonly used (i.e.,

69,041 capabilities), 15% of all capabilities identified.

Of all 16 capabilities, 375,946 or 88% and 43,222 or 10% of them occur in FTP and IRC

protocols, respectively. C3PO’s ability to extract IVs for these protocols alone allows the

authorities to covertly monitor over 85% of over-permissioned bots in our dataset, which

we believe is representative of the larger malware landscape. Another observation is that

although password stealers capture sensitive victim information, their tactics are tailored for

a limited number of applications or services, reducing the scale of their impact explaining

the low numbers in the password stealing categories at 5,095 or 0.01%. Overall, C3PO

reveals the composition and content of C&C servers through C&C monitoring capabilities

identification allowing it to provide targeted monitoring post infiltration.

37

Table 3.7: C3PO Identification of C&C Monitoring Capabilities Mapped to Over-
Permissioned Protocols.

C&C Monitoring
Capabilities

FT
P/

T
FT

P

B
itT

or
re

nt
/µ

T
P

W
eb

D
AV

M
yS

Q
L

M
on

go
D

B

O
D

B
C

P o
st

gr
eS

Q
L

IR
C

M
Q

T
T

Total

Service Password Stealing
WiFi Stealer 1 0 0 0 0 0 0 0 0 1
Kerberos Stealer 3 0 0 0 0 0 0 1 0 4
Windows Sys. Stealer 7 0 0 0 0 1 0 1 0 9
Subtotal 11 0 0 0 0 1 0 2 0 14

Code Reflection
Code Reflection 202 0 140 1 0 6 2 77 0 428
Subtotal 202 0 140 1 0 6 2 77 0 428

Browser Password Stealing
Internet Exp. Stealer 1,611 0 6 0 0 1 0 11 0 1,629
Chrome Stealer 812 0 0 1 1 5 0 5 0 824
Mozilla Stealer 2,103 0 496 3 0 2 0 24 0 2,628
Subtotal 4,526 0 502 4 1 8 0 40 0 5,081

File Exfiltration
High-level Protocols 6,891 6 1188 0 0 65 2 60 0 8,212
Raw Socket Transfer 52,223 110 1168 210 0 510 110 6,374 24 60,729
Subtotal 59,214 116 2,356 210 0 575 112 6,434 24 69,041

Spying/Live Monitoring
Audio Capture 10,788 1 62 30 0 15 0 86 0 10,982
Keylogger 39,551 84 2,296 185 0 348 113 4,256 24 46,857
Screen Capture 52,458 109 2,524 220 0 537 110 6,469 24 62,451
Subtotal 102,797 194 4,882 435 0 900 223 10,811 48 120,290

Victim Profiling
Victim Locale Info. 51,924 99 2,462 217 0 512 98 6,441 24 61,777
System OS Details 52,354 110 2,518 222 1 530 110 6,469 24 62,338
Registry-stored Info. 52,354 110 2,512 225 1 528 98 6,471 24 62,323
Live OS State 52,564 110 2,510 226 1 534 117 6,477 24 62,563
Subtotal 209,196 420 10,002 890 3 2,104 423 25,858 92 249,051

Total 375,946 730 17,882 1,540 4 3594 760 43,222 164 443,905

38

Table 3.8: Evolution of the Top 10 Families of Over-Permissioned Bots Detected in our Dataset.

Malware
Family

#Over-Permissioned
Bots

Over-Permissioned
Protocols

Protocol Use
Evolution of
Protocol Use
2006 - 2020

C&C Monitoring
Capabilities1

C&C Monitoring
Capabilities

Evolution of C&C
Monitoring Capabilities

2006 - 2020Min Avg Max Min Avg Max

Dinwod 9,713 FTP 1 1 1 BPS, VP, FE, LM 3 3 4

Autoit 5,763 FTP, IRC 1 1 2 BPS, VP, FE, LM 3 3 4

Softcnapp 4,382 FTP, IRC, ODBC 1 1 2 BPS, VP, FE, LM 3 3 4

Delf 4,331 FTP, IRC, MySQL, TFTP, ODBC 1 1 3 BPS, VP, FE, LM, CE 3 3 5

Wabot 2,388 IRC 1 1 1 VP, FE, LM 3 3 3

Fareit 1,479 FTP, IRC, ODBC 1 1 2 BPS, VP, FE, LM 2 3 4

Sivis 1,167 FTP, IRC, ODBC, MySQL, Bittorrent 1 1 3 BPS, VP, FE, LM, CE 3 3 5

Lamer 1,019 FTP, IRC, ODBC 1 1 2 BPS, VP, FE, LM 3 3 4

Virut 998 FTP, IRC, ODBC, MySQL 1 1 3 BPS, VP, FE, LM 3 3 4

Snojan 897 FTP, IRC 1 1 2 BPS, VP, FE, LM 3 3 4

1: BPS = Browser Pwd Stealing, VP = Victim ID, FE = File Exfiltration, LM = Live Monitoring, CE = Code Execution (see Table 3.7)

39

3.4.4 Ranking Over-Permissioned Bot Families

Table 3.8 presents the protocols and the C&C monitoring capabilities identified in the top

10 malware families of our study. The Dinwod malware family ranks the highest with

9,713 over-permissioned bots. Dinwod only uses FTP and has remained consistent, even

in the analysis of capabilities that include Browser Password Stealing (BPS), Victim Pro-

filing (VP), File Exfiltration (FE), and Live Monitoring (LM), averaging 3 capabilities per

sample.

Another observation from Table 3.8: FTP is used in 9 of the top 10 malware fami-

lies as expected since it is the most prominent over-permissioned protocol in our dataset.

About half of the families in Table 3.8 maintain a generally consistent number of protocols

used, with the exception of Delf, Sivis, and Virut, with 3 maximum protocols used each,

attributing to the spikes in Column Evolution of Protocol Use.

Lastly, the top capabilities — File Exfiltration, Live Monitoring, and Victim Profiling

— appear in all 10 families. However, we did not expect Browser Password Stealing in

9 families since it accounts for 1.26% of all C&C monitoring capabilities (ref. Table 3.7).

From this study, we can infer that while the majority of over-permissioned bots can be

considered Information Stealers, many of the top malware families are Password Stealers.

3.4.5 Packed Malware

C3PO uses a hybrid approach to analyze packed malware (subsection 3.2.1). We present

the most common packers encountered in our study in Table 3.9 and use the packer tax-

onomy proposed by Ugarte-Pedrero et al. [92]. Column 1 lists these packer types, and

Column 3 shows the number of packed malware that use the packers presented in Column

2. The packer types range from Type-I to Type-VI, which also represent their order of

complexity [92].

For clarity, Type-I packers are the easiest to unpack only using a single unpacking

routine before transferring control to the malware payload. Type-II packers use multiple

40

layers of packing, only transferring control after the last layer is complete. Like Type-II

packers, Type-III is multi-layered but does not unpack in a top-down manner and instead

uses complex layer organization. While Type-IV packing can use single or multi-layers,

the unpacking routine is interwoven with the malware payload switching control back and

forth. Type-V and Type-VI are quite similar to Type-IV, except more and more malware

payload code is interwoven increasing the complexity of the unpacking routine.

From Table 3.9, we see that C3PO can unpack and analyze samples packed with Ar-

madillo (Row 3), i.e., it can handle the most complex category of packers. Of the 62,202

over-permissioned bots, C3PO unpacked 10,237 malware. The remainder of the samples

were not packed. In our dataset, C3PO did not encounter any malware packed with Type-II,

Type-IV, and Type V packers. But given its ability to handle Type-VI packers, we believe

that C3PO is robust enough to enable a large-scale study of modern malware.

3.5 C3PO Applied

We present two over-permissioned bot case studies to illustrate the efficacy of our tech-

niques. We focus on the cases that use the most prevalent FTP over-permissioned protocol.

We redact the C&C server information because the servers are still active as of this writing,

but present the monitoring outputs we extracted adhering to ethical practices, which we

describe next.

Table 3.9: Packers Encountered in our C3PO’s Dataset.

Packer Type [92] Packer [115] #Malware

Type-I
UPX 9,372
BobSoft Mini Delphi 86

Type-III
ASPack 48
ASProtect 22

Type-VI Armadillo 709

Total 10,237

41

3.5.1 Ethical Considerations

We follow the precedence established in previous works [116, 17, 117, 88] while exposing

the weaknesses that make C&C servers vulnerable to infiltration. Besides, Burnstein [118]

provides legal and ethical conduct for cybersecurity research, arguing that injecting traf-

fic into C&C servers can be considered consent when using the communication channel

the bot orchestrators provided to the enslaved systems. Similarly, we use the bot-to-C&C

channel and the authentication details provided to us through the malware. Moreover, af-

ter verifying access permissions we (1) only retrieve the metadata (e.g. file quantity, table

schema, etc.) of the service being investigated (FTP, MongoDB, etc.) and (2) perform

no write operations. We emphasize that we do not exploit, disrupt, or attempt takedown

of C&C servers, avoiding any claim of tortious interference as described in Mouton vs.

VC3 [119].

3.5.2 Case Study 1: Steam

The Steam malware is a Remote Access Trojan (RAT) [120] first discovered in 2016 and

persists today. C3PO identified FTP in Steam and extracted IVs and C&C monitoring

capabilities (Table 3.10, Rows 1-3). Leveraging the IVs, C3PO covertly monitored the

Steam C&C server resulting in the identification of approximately 50 MB of data (522 files

Table 3.10: C3PO’s Steam Malware Analysis Results.

Protocol FTP

Infiltration
Vectors

Username: j91{***}
Password: Dom{***}
Server: {***}.beget.tech
Port: 21

C&C Monitoring
Capabilities

Victim Profiling and
File Exfiltration

Covert
Monitoring

Outputs

(1) Country of origin, (2) Steam Authentication Files
(3) XSS injection script

42

in 5 directories). Of the files, 27% of them have “game”-related names like matchroom and

tournament confirming that our sample is indeed tailored for the Steam platform.

C3PO identified Victim Profiling and File Exfiltration, so we expected to find a large

number of files on the C&C server containing stolen victim information. Since this malware

is relatively new, it is not surprising that we only found less than 20% of these files, but we

expect it to grow as the malware spreads. However, C3PO identified two data files whose

filenames began with ssfn. The authorization files for the Steam online gaming platform

also begin with ssfn. These files are likely encrypted since their entropy values are 7.90 and

7.92 (on a scale of 0.0 - 8.0), respectively. These authorization files could either be stolen

files for authentication to the Steam platform (as suggested by C3PO’s File Exfiltration

C&C monitoring capabilities), or they belong to the bot orchestrator. For the latter case, an

incident responder can use these files to pursue attribution since it provides access to the

bot orchestrator’s account.

C3PO also revealed filenames that piqued our interest. Specifically, several files are

named in the Russian language, the C&C server’s likely country of origin. Furthermore,

C3PO discovered a JavaScript file containing code that looked for cross-site scripting (XSS)

vulnerabilities. This suggests further malicious intent to perpetrate additional cybercrimes.

Our findings are further confirmed by a Steam analysis report [120] validating C3PO’s

effectiveness in covert monitoring and extracting valuable insights.

3.5.3 Case Study 2: Detplock

The Detplock malware is another RAT first seen in 2016 and is still active today. This mal-

ware allows the bot orchestrator to execute commands on the infected machines. Table 3.11

summarizes C3PO’s covert monitoring results by analyzing the DeptLock malware. C3PO

extracted IVs such as the username, password, server address, and port, as shown in Ta-

ble 3.11, Row 1. Based on the sever address suffix .ko.cr, the C&C server is likely

located in South Korea. This C&C server responds to FTP queries, which we used to only

43

catalog file metadata, enumerating directories, keeping count of the number of directories

and files as well as file extensions and file sizes. Overall, we identified approximately

640MB of data including over 2,500 files across 47 directories. Of the 31 file extensions

found, the most common extensions were PNG (44%), HTML (34%), TXT (8%), and EXE

(6%).

C3PO also identified Victim Profiling, Live Monitoring, and File Exfiltration capabil-

ities (Table 3.11, Row 2). From covert monitoring, C3PO discovered many PNG files,

which was expected since its analysis showed that Detplock performed Live Monitoring by

taking PNG screenshots. This confirms the effectiveness of C3PO’s C&C monitoring ca-

pabilities towards covert monitoring. C3PO also located the userData directory which is

used to store victim information, corresponding to the Victim Profiling malware capability

(Table 3.11, Row 3). While this directory was empty upon infiltration, convert monitor-

ing allows us to regularly monitor for added infected systems to understand the scope of

infection and enable peer disclosure.

Lastly, C3PO found malicious files on the C&C server’s download directory, con-

firming that Detplock spreads other payloads. Specifically, 7 of the 158 Windows EXE and

2 BIN files contained suspicious metadata. Their signatures revealed ASPack v2.12 pack-

ing and their hash search on VirusTotal [121] confirmed maliciousness. Although the C&C

Table 3.11: C3PO’s Detplock Malware Analysis Results.

Protocol FTP

Infiltration
Vectors

Username: eg{***}
Password: vrg{***}
Server: {***}.co.kr
Port: 21

C&C Monitoring
Capabilities

Victim Profiling, Live Monitoring,
and File Exfiltration

Covert
Monitoring

Outputs

(1) PNG files confirming the live monitoring capability
(2) 9 malicious executables and binaries

44

monitoring capabilities did not infer additional payloads on the C&C server, our ability to

covertly infiltrate and leverage over-permissioned FTP functionality to quickly query the

server revealed at least additional 9 malicious files.

3.6 Discussion and Limitations

3.6.1 Domain Generating Algorithms

DGA-based malware allows bot orchestrators to move from centralized architectures to

more robust architectures using automatically generated pseudo-random C&C domain names

[122]. This technique allows over-permissioned bot orchestrators to subvert persistent in-

filtrations through C3PO since the C&C domain names are dynamically generated. Other

malware adopts a similar approach, using cloud-based services to retrieve C&C domain

names [123]. These categories of malware pose significant challenges for C3PO. However,

they are not insurmountable, as C3PO can be used to complement existing techniques to

identify DGA future candidate domains, as demonstrated by Le et al. [7].

3.6.2 Subverting Dynamic Memory Image Extraction

C3PO’s primary technique for memory image extraction is API hooking. As an automated

pipeline, C3PO is limited in its ability to spoof specific environments for malware but could

be combined with techniques such as forced execution to overcome this [51, 52]. However,

sandboxes can also be used to augment C3PO in-lieu of memory image extraction. For

example, S2E [46] enables symbolic execution within a sandbox to explore thousands of

system paths. Toward unpacking, there are three evasion types to thwart API hooking:

stolen code, child process, and process hollowing, often seen in the Themida, PEP, and

Pespin packers [91]. Although C3PO can handle Type-I, II, III, and IV packers, it cannot

analyze malware that uses virtualization packed techniques. These packers convert pro-

grams into bytecode increasing complexity and eludes C3PO memory image extraction.

However, virtualization packers account for less than 2% of packed malware, while Type-I

45

packers (e.g., UPX) account for over 55% [92].

3.6.3 Custom Low-level Protocol Implementations

Some malware prefer custom protocol implementations to make their analysis more dif-

ficult, but the uniqueness of custom protocols supports signature development increasing

their chances of IDS detection. So, C3PO focuses on protocol implementations that adhere

to official protocol specifications. However, since C3PO relies on official APIs and tokens,

custom tokens evade C3PO’s identification. Even if we consider well-known (but not of-

ficial) tokens, since C3PO analyzes the client-side binary alone, it cannot match a custom

keyword to a protocol without knowing how the server parses it. While malware authors

can use official protocol commands to trick analysts in misidentifying the protocol used, we

have not observed this practice during our large-scale study. In order to support the identifi-

cation of over-permissioned custom protocols, the integration of tools such as Prospex [32]

can be used to automatically reverse engineer custom protocols revealing identifiers that

can be exploited for covert C&C server monitoring. Although extracting relevant informa-

tion from the protocol, then adding them to C3PO’s protocol database requires some effort

upfront, maintenance is all that is required after allowing seamless integration into C3PO.

3.7 Conclusion

This chapter presented C3PO, a measurement pipeline that studied the evolution of over-

permissioned protocols in 200k malware spanning back 15 years and how they can be lever-

aged to provide covert C&C server monitoring. C3PO identified 62,202 over-permissioned

bots across 8,512 families identifying infiltration vectors that allow C3PO to spoof bot-to-

C&C communication. C3PO also identified 443,905 C&C monitoring capabilities which

reveal the composition and contents of the C&C server to guide monitoring post infiltra-

tion. We deployed C3PO on two bots with live C&C servers validating its ability to identify

over-permissioned protocols, infiltrate C&C servers, and leverage C&C monitoring capa-

46

bilities to achieve covert monitoring. Furthermore, C3PO identified over 2500 files, some

of which contain victim information, additional malicious payloads, exploitation scripts,

and stolen credentials providing legally admissible evidence to engender attempts of botnet

disruptions and takedowns.

47

CHAPTER 4

R2D2: IS THAT MALWARE READING TWITTER? TOWARDS

UNDERSTANDING AND PREVENTING DEAD DROP RESOLVERS ON PUBLIC

WEB APPS

Modern malware dynamically resolve their C&C server addresses to be more resistant to

disruption or takedown attempts. Prominent examples of these dynamic resolution tech-

niques include fast-flux networks [124, 125, 126], domain name service (DNS) calcula-

tion [127, 128], and domain generation algorithms (DGA) [129, 122, 130]. However, fast-

flux networks and DNS calculation make C&C servers susceptible to blacklisting [125,

128]. Thus, DGAs preferred mainly as they allow malware to generate C&C server do-

mains dynamically. However, researchers have counteracted DGA-based malware by gen-

erating future candidate domains to sinkhole the botnet [7, 4, 5, 18]. As successes in dis-

rupting and taking down DGA botnets increases, malware authors are adopting an under-

explored technique: using dead drops to hide C&C server rendezvous points (i.e., dead

drop resolvers).

Dead Drop Resolvers (DDRs) are posts on public website applications (web apps) that

hide C&C server rendezvous points (i.e., domain names, IPs, etc.). Abused web apps in-

clude everything from social media networks (e.g., Twitter) to data hosting platforms (e.g.,

Dropbox) to Bitcoin transactions on the blockchain. These platforms allow anonymous

access to user-created content and network traffic to these web apps seems benign, making

firewall filtering almost impossible [131, 132]. Unlike DGA-based malware, DDRs protect

C&C servers from discovery during malware binary analysis and allow malware authors to

migrate their C&C server to truly unpredictable domains with a single post. Worse still,

the adoption of DDR techniques leads many malware authors to encode C&C rendezvous

points before posting on web apps, so viewers and authorities will be unaware of the true

48

intent. Thus, even when they are identified, authorities must undergo extensive analysis

to understand encoding types to decode the C&C domain before any action can be taken.

Noting these benefits, more malware authors are transitioning to DDR.

DDR-based malware has created a lop-sided effort between attackers (bot orchestrators)

and defenders (authorities). C&C orchestrators need access to a single web app account

to hide their C&C rendezvous point. However, defenders (1) need to be able to identify

malicious traffic to and from web apps, (2) identify malware data encoding types to help

security analysts deduce malicious intents and design defensive solutions, and (3) use the

information gathered in hopes of requesting cooperation from service providers before the

C&C orchestrator migrates their server to a new domain. With thousands of web apps to

choose from, attackers need minimal effort to integrate DDRs into their malware, forcing

defenders into additional and often impeding coordination efforts toward botnet disruption

or takedown attempts.

To understand the complexities in identifying DDR-based malware, the scope of web

app abuse by DDRs, and commonalities among DDR designs, a comprehensive study is

needed. Through our collaboration with Netskope, a network edge security provider serv-

ing over 25% of the Fortune 100, we studied 100k malware samples captured between 2017

and 2022. Our analysis is based on an automated framework, named R2D21, which uses

concolic execution to identify DDR capabilities and their decoding algorithms in malware

binaries.

Based on our study, we uncovered 10,170 DDR-based malware from 154 families. Our

empirical measurement revealed Pastebin to be the most popular abused web app. To pro-

tect their C&C URLs, we found that String Parsing Base64 is the most common encoding

in 75% of DDR-based malware. To compound their protection, some malware use mul-

tiple encoding techniques to thwart manual decoding, which R2D2 identified in 78% of

DDR-based malware. R2D2 includes a novel and generic methodology for recovering the

1R2D2: Revealing Rendezvous Points from Dead Drops

49

DDR decoding recipe from malware to enable authorities to decode new C&C rendezvous

points when discovered quickly. We reported all of our findings to the appropriate web

app providers. Based on our reporting, web app providers confirmed our findings and took

action against 9,155 DDRs (90% of our total findings). Of the remainder, the accounts for

774 malware were already taken down at the time of our study. We are awaiting a response

from other web app providers hosting the other 241 DDRs.

4.1 Overview

Web apps that allow users (malware authors) to post public data under the guise of normal

operations are uniquely suited for DDRs. These web apps are not attacker-owned, and

some do not verify authentic user identity. A list of DDR web apps found in this study is

shown in Table 4.8. This list does not include web servers that have been exploited and

host malicious content [133, 134].

Over the last few years, industry experts have sounded the alarm on malware abusing

web apps [132, 81, 135, 136]. Yet, mitigating these threats has been ineffective. In fact,

MITRE suggests traditional intrusion detection systems for either (1) blocking malicious

traffic to benign websites, presupposing that authorities can identify malware-specific traf-

fic to benign web apps from all other benign traffic or (2) restricting all access (benign or

not) to web-based content used by malware [137]. Given the analysis of the few discovered

cases of DDR-based malware [138, 139, 140, 136], these are plausible approaches but only

apply to the malware under analysis. Furthermore, as web apps are becoming popular tools

for organizations globally [81], blanket restrictions are problematic.

4.1.1 Running Example - Razy

Razy is a Remote Access Trojan that spawns two threads to repetitively flood VirusTotal

with submissions and connect to Twitter to retrieve a message. A previous analysis of

razy [141] used API call monitoring and network trace analysis to identify what domains

50

were being contacted. However, the investigators could not confirm how the malware used

the message from Twitter, so they instead focused on its VirusTotal-related actions, which

only served to distract analysts.

Conversely, R2D2 provides insights into razy shedding light on how it uses Twitter to

resolve its C&C rendezvous point. R2D2 dynamically executes razy and hooks all network-

related functions to reroute them to our functions models. R2D2 extracts the web app do-

main (i.e., http://www[.]twitter[.]com/pidoras62) from network connection APIs then back-

tracks to identify its origin (subsection 4.2.1). This is essential when considering hybrid

DDR+DGA techniques in malware. Specifically, many malware hard-code domains or

store them in dropped files on the victim system [21], but some DDR-based malware use

DGAs to dynamically generate web app account URLs [138]. However, in this case, R2D2

found razy’s Twitter domain hard-coded into the binary.

Next, R2D2 continues exploration to confirm DDR (subsection 4.2.2). R2D2 taints the

memory region corresponding to the API argument stated to receive data from the web app.

When R2D2 arrives at a subsequent network connection, if the domain name parameter is

tainted, R2D2 has confirmed DDR integration in razy.

Although the previous razy investigation could not prove how the malware used the

Twitter message, they navigated to the account page and selected the suspicious-looking

message3 (Figure 4.1). An experienced analyst can infer a customized form of Base64 en-

coding. As R2D2 revealed, razy selectively removes preceding characters to find the exact

encoded string. After decoding, the tweet resolved to a hacking forum that can be used to

send C&C commands to razy bots. However, investigators have no way to automatically

identify encoding types, and when faced with multi-encoding, even experienced analysts

will find decoding a complex task.

In contrast, by symbolizing the data received from Twitter, R2D2 continues to prop-

2Twitter now only allows https requests meaning that older versions of razy cannot access the tweet.
R2D2’s API models allow analysis irrespective of endpoint liveness.

3There are only 4 messages posted to date.

51

http://www[.]twitter[.]com/pidoras6

Figure 4.1: Twitter Message Retrieved by Razy.

agate the DDR tag through the decoding function. During propagation, the symbolic ex-

pression grows according to decoder algorithm computations. R2D2 then uses symbolic

expression matching to identify decoders in malware. In razy, R2D2 identified that it de-

codes the Twitter message using String Parsing and Base64. Investigators are now armed

with a decoding recipe to reveal the current and future razy rendezvous points.

The run time for R2D2 to analyze razy was 148 seconds. At this rate, R2D2 would

provide investigators with rapid results allowing them to quickly distinguish razy web app

traffic from benign traffic. R2D2 also provides proof that razy is abusing Twitter to host

C&C rendezvous points. Using this, authorities can request collaboration with web app

providers toward counteraction. Web app providers are best equipped to secure their plat-

forms, and they can enable authorities to monitor DDR botnets based on the information

R2D2 provides. Furthermore, web app providers can support sinkholing requests, allowing

authorities to replace the malware’s Twitter messages with their own, encoded in the cor-

rect format, resulting in similar disruption and takedown to DGA botnets. R2D2’s ability

to rapidly analyze and report DDR behavior cancels the lopsided effort between attacker

and defender.

52

Figure 4.2: R2D2 Measurement Pipeline: Taking a malware binary, C3PO uses DDR Candidate Identification via concolic exploration
to reveal connected web apps. C3PO then uses concolic taint propagation toward DDR Confirmation. After confirming DDR capability,
C3PO conducts Decoder Identification by concretely localizing decoders in the malware before confirming via symbolic expression
matching.

53

4.2 Design

Figure 4.2 shows an overview of R2D2’s pipeline. Taking a malware binary as input, R2D2

identifies dead drop domain candidates by exploring the malware and tracking its execu-

tion as it establishes a network connection (subsection 4.2.1). Next, R2D2 induces selective

exploration through symbolic data injection to mutate branch predicates allowing the ex-

ploration of additional paths. This enables R2D2’s concolic taint propagation to confirm

that data received from the web app is used to establish a subsequent outbound connection,

i.e., retrieving a hidden C&C server rendezvous point (subsection 4.2.2). Lastly, given that

DDR malware use decoders for deobfuscation, R2D2 identifies the type of decoders in

malware which provides authorities with the decoding recipe to quickly analyze retrieved

data (subsection 4.2.3). In total, R2D2 provides the requisite data to glean insights into the

emerging DDR-based malware enabling rapid counteraction by authorities.

4.2.1 Dead Drop Resolver Candidate Identification

DDR-based malware can retrieve web app domains from the malware itself, a file on the

victim system, or dynamically generate them. So, we (1) explore the malware to evaluate

connection targets for dead drop candidacy, i.e., web app connection, and then (2) identify

its origin.

Malware Exploration

Malware often employs packing and obfuscation techniques as well as evasive behaviors

that inhibit malware exploration [92]. We also expect some malware network endpoints

to be unavailable if they have been disabled. We opt for dynamic analysis paired with

symbolic execution (concolic execution) to address these challeges. Inspired by prior

works [91, 60, 21, 46], this approach allows the malware to unpack and deobfuscate itself

enabling R2D2’s exploration. R2D2 also uses API hooking for symbolic data injection to

54

simulate network connection and bypass malware evasive techniques. However, although

injecting symbolic information exposes more exploration paths, we risk path explosion.

We address these challenges below.

Simulating Victim Systems. To simulate a victim Windows system, R2D2 executes the

malware in QEMU [142] and injects a custom DLL into the malware process, allowing

API hooking, which redirects malware API calls to API models. All network-related APIs

(Winsock [143], WinInNet [144], and WinHTTP [145]) are modeled and hooked to simu-

late network connectivity. We also model file operation APIs (e.g., WriteFile) to trick

the malware in the absence of these files. There are several other APIs that malware often

uses for anti-analysis or defensive evasion, e.g., GetLocaleInfo, which retrieve the lo-

cation of the victim system before proceeding with the system exploitation. Hooking these

API allows us to inject symbolic data into the malware enabling R2D2 to explore all possi-

ble paths that follow. The complete list of defensive evasion APIs considered in designing

R2D2 is listed in Table 4.1. These APIs are based on our manual malware analysis, reports

from industry experts [82, 100], and prior research that investigates victim system emula-

tion and malware evasion techniques [146, 147, 148]. However, R2D2 can be extended to

support other operating systems.

Path Explosion. Although path explosion is a common problem, R2D2’s exploration

is limited to the initial network connections where DDR integration occurs. We expect

symbolic loops during R2D2’s execution, especially when decoding functions are called.

However, loops often do not lead to increased code coverage [149], so R2D2 limits the

number of new states by prioritizing those that lead to unexplored code. To do this, R2D2

maps explored regions and references this map when selecting a new state. Furthermore,

based on previous work which discovered that most malware samples run for less than

2 minutes or more than 10, and 98% of the basic blocks are executed within the first 2

minutes [146], we set an upper bound run time to 15 minutes which we find more than

sufficient for our study. In fact, for R2D2’s evaluation, we calculated an average run time

55

Table 4.1: Defensive Evasion APIs Considered in R2D2.

Anti-Analysis and Defensive Evasion APIs

CheckRemoteDebuggerPresent CreateProcessInternal
CreateProcessWithLogon CreateProcessWithToken
EnumDeviceDrivers EnumDisplayMonitors
EnumServicesStatus FindClose
FindWindow GetCursorPos
GetDC GetDeviceCaps
GetDiskFreeSpacev GetEnvironmentStrings
GetFileAttributes GetFileSize
GetFileTime GetKeyboardLayout
GetKeyboardType GetLastInputInfo
GetLocaleInfo GetLocalTime
GetOEMCP GetServiceKeyName
GetSysColor GetSystemInfo
GetSystemMetrics GetSystemTimeAsFileTime
GetSystemTimes GetThreadLocale
GetTickCount GetTickCount64
GetUserDefaultUILanguage IsDebuggerPresent
IsDebuggerPresentPEB IsProcessorFeaturePresent
NtCreateFile NtGetContextThread
NtGetTickCount NtEnumerateKey
NtEnumerateValueKey NtOpenFile
NtOpenKey NtQueryAttributesFile
NtQueryPerformanceCounter NtQuerySystemTime
QueryPerformanceCounter QueryInterruptTime
NtQueryValueKey RegCloseKey
RegGetValue RegOpenKey
RegQueryValue RtlTimeToSecondsSince1970
SetTimer Sleep
SleepEx timeGetSystemTime
timeGetTime timeSetEvent

of 375 seconds to identify DDR-based malware.

Dead Drop Resolver Domain Candidates. Deducing domain origin requires backtrack-

ing to identify where it was constructed, retrieved, or generated without prior knowledge.

When the malware invokes a network connection API (e.g., connect), R2D2 evaluates

56

the domain name. If it is an IP address, R2D2 translates IP addresses to domain names

via 14.3 billion domain records provided by WhoisXML API. The domain name is then

compared against a pre-defined white list of DDR (web app) candidates. This list is based

on Tranco [150]4, which allows us to identify only benign websites. However, other web

apps can be easily included in R2D2 by updating the list.

Dead Drop Resolver Domain Origin

The 3 categories of origins are: domains that are hard-coded in the malware, (2) retrieved

from files located on the victim system, or (3) dynamically generated web app accounts,

like DGA-based malware. While (1) and (2) are expected, given that C&C domains are

often stored using these methods [21], (3) sheds light on this hybrid DDR+DGA practice

which provides authorities insights into counteraction methods against DDR botnets, simi-

lar to those employed against DGA botnets. To identify domain origin, R2D2 maintains a

shadow memory stack to search for domain indicators.

Finding Domain Indicators. When the malware invokes a network connection API,

R2D2 extracts the memory location where the domain is stored before searching for in-

dicators in the stack. To identify category (1), R2D2 traces back through the stack to find

which instruction last defined the domain memory location. This process recursively occurs

until no more definers are found. In this case, R2D2 ends at a concrete value representing

the original location of the domain in the malware. While category (2) is solved in the

following section (subsection 4.2.2), since it regards symbolic tags that propagate to a net-

work connection API, R2D2 does not explore the path that follows as no actual domain

can be retrieved since the file does not exist. However, R2D2 continues its exploration to

identify any potential hard-coded backup domains.

Category (3) is similar to (1) in that a portion of the requested URL is hard-coded in

the malware, while the account is dynamically generated (e.g., www.twitter.com and

4Available at https://tranco-list.eu/list/J49Y.

57

1b0xsrs). To dynamically generate the web app account name, DGAs use a seed to ini-

tialize creation. This seed is often based on a system-available value (e.g., GetTickCout),

as seen in the popular Conficker DGA malware [151]. Since R2D2 hooks these system

query APIs and injects symbolic data to avoid defensive evasion, the portion of the URL

corresponding to the account name will be symbolic, while the domain name will be con-

crete. When R2D2 identifies this symbolic/concrete data, it originates from a DGA.

Notably, current techniques to counteract DGA-based malware are effective [122, 7].

However, they do not provide what is needed for DGA domain origin analysis. Our ap-

proach will not improve the effectiveness of DGA counteraction methods but could help

simplify their approach in identifying DGAs in malware. In fact, the location of the last

API used to generate the DGA seed pinpoints the location of the DGA in the malware.

4.2.2 Dead Drop Resolver Confirmation

After identifying dead drop candidates, R2D2 must identify if data received from the web

app is used to establish a subsequent outbound connection. We could inject concrete data

into the buffer slated to receive information from the web app, but since DDR-based mal-

ware often retrieves encoded data, if the concrete data injected is not formatted as the

malware expects, execution can fail and prevent R2D2 from continuing its analysis. To en-

able DDR confirmation, we use concolic taint propagation to monitor how data propagates

throughout malware execution, then trigger an alarm when the taint is used in a network

connection API. A common challenge faced with this approach is under-tainting, where

control dependence breaks taint propagation (i.e., tainted input only propagates via data

dependence or explicit flows). To address this challenge, we stabilize our concolic taint

propagation approach to identify the cause, implicit flows, then propagate the tag through

control dependence.

58

Concolic Taint Propagation

To enable concolic taint propagation, we identify a set of APIs to hook so R2D2 can inject

symbolic data. These APIs read data from a network resource (e.g., recv, etc.). When

these APIs are invoked, R2D2 symbolizes the buffer slated to receive data from the web

app and attaches a tag (taint) corresponding to the name of the API (e.g., recv1). As

exploration continues, this tag is propagated with symbolic data. When R2D2 reaches

a network connection API, R2D2 checks the argument containing the server name (e.g.,

pswzServerName for WinHttpConnect). If the argument is tainted, R2D2 has iden-

tified a DDR-based malware. However, if there are implicit flows, R2D2 loses track of the

tag. We use a heuristic to identify implicit flows and propagate the tag.

Implicit Flow Propagation. When implicit flows cause taint propagation to halt, the

malware still executes to its pending network connection. However, R2D2 will be unable

to confirm DDR integration since the tag has not propagated. When the malware invokes

the network connection API, the server name parameter will likely contain garbage data

(since it was based on unconstrained symbolic data). Since R2D2 has already identified the

DDR domain candidate, we assume a second connection is based on data received from the

web app. To confirm, we must first identify implicit flow blocks then propagate the tag.

An implicit flow block contains source operands that are tainted, but after execution

of that block, its succeeding block’s source operands are not tainted. For an illustrative

example, refer to Algorithm 1. The input a to Foo is tainted (line 1). When line 3 is exe-

cuted, R2D2 recognizes this as a conditional branch, and since it uses symbolic execution,

it knows to fork 2 states corresponding to the branch predicates (lies 4 and 6). R2D2 cre-

ates a pair of the branch condition (line 3) and the taint, i.e., < 3, ta >, and stores it in a

stack. When line 4 is executed, since the stack is not empty, R2D2 peeks the stack value to

retrieve ta and associates it with x (line 4). When line 8 is executed, it is not dependent on

the conditional branch, so R2D2 pops the stack. Since ta has been associated with x, when

59

Algorithm 1 Implicit Flow Propagation
1: function FOO(int a)
2: int x, y
3: if a > 10 then
4: x = 1
5: else
6: x = 2
7: end if
8: y = 5
9: print(x)

10: print(y)
11: end function

line 9 is executed, x is correctly tainted. R2D2 uses this approach to identify implicit flow

blocks and propagate tags to confirm DDR integration in malware.

4.2.3 Decoder Identification

To identify the decoder type, R2D2 takes the tainted symbolic data (symbolic expression)

(subsubsection 4.2.2) and compares it with another symbolic expression representing a

known decoding algorithm. However, two questions arise: (1) How do we compare two

decoder symbolic expressions? (2) How do we locate the segment of the malware ex-

pression that pertains to decoding for an accurate comparison? We answer both of these

questions below.

Symbolic Expression Matching

R2D2 uses Algorithm 2 which takes 2 symbolic expressions E1λ and E2λ as input and

returns a ratio of matches versus nonmatches. To generate those expressions, we use R2D2

to symbolically explore each pair of algorithms serially. For example, E1 is explored with

the symbolic data λ as input resulting in E1λ. Then, λ is again used as input to E2 resulting

in E2λ. However, after E1 is executed, λ assumes the constraints from E1’s execution

before being used as input to E2. Now, when E2 is symbolically explored, concretized

values assumed during forking correspond to the previous constraints imposed by E1.

60

Algorithm 2 has two conditional constructs: (1) check if the overall expressions match,

if not (2) solve for and compare the concretized output. Toward clarity, we use a sym-

bolic expressions with starting λ values (Read byte 1, v0 xor 0). This expression

is used as input to 2 versions of an XOR by 0x23 algorithm and the As the expression is

transformed via decoding, it grows with additional operations corresponding to algorith-

mic computations. For example, 1 byte of E1λ and E2λ is partially transformed into the

following:

E1λ = (Or (ZExt (Read byte 1, v0 xor 0)) 0x23)

E2λ = (Xor 0x23 (ZExt (Read byte 1, v0 xor 0)))

Then, E1λ and E2λ are compared. This first comparison (lines 4-9) considers node

placement, edges, and the size of the expressions. This check is static and less computa-

tionally expensive. Thus, it is preferred.

If the first check fails, R2D2 invokes the symbolic solver (lines 10-19) to compare the

concretized output of both expressions. When each expression’s child expression results

in the same concretized output (line 20), then the expressions are equivalent. These values

are based on the symbolic constraints from E1 that are then imposed during the execution

of E2. This ensures that if the expressions are the same, they are evaluated based on the

same constraints resulting in the same concrete output which confirms their equivalence. A

detailed evaluation of this approach is provided in subsection 4.3.2 and Table 4.6.

Using Algorithm 2, R2D2 can match a decoding algorithm symbolic expression to a de-

coder in malware. However, R2D2 must first identify the portion of the malware expression

that corresponds to decoding, which we discuss next.

Localizing Malware Decoders

We integrate 10 standard decoding algorithms used in malware [82, 100] into R2D2 and

list them in Table 4.2. Authorities can add new decoder algorithms by adding their source

61

Algorithm 2 Symbolic Expression Matching
Input: E1λ, E2λ

Output: match ÷ (nomatch+match)
1: nomatch = 0
2: match = 0

▷ Evaluate matching based on symbolic expressions of each algorithm
3: function SYMBOLICMATCHING(E1λ, E2λ)

▷ 1st static comparison: one-for-one match
4: if E1λ ≡ E2λ then
5: match + = 1
6: return
7: else
8: nomatch + = 1
9: end if

▷ 2nd comparison if the previous fails. This comparison invokes the solver to compared the
concretized output values.

10: for each child1 ∈ E1λ do
11: e1c = child1
12: for each child2 ∈ E2λ do
13: e2c = child2
14: if ¬ compConcretizedResults(e1c, e2c) then
15: nomatch + = 1
16: return
17: end if
18: end for
19: end for
20: match + = 1
21: return
22: end function

Table 4.2: Common Malware Decoding Algorithms.

Decoder Classes

Exclusive OR (XOR) [152, 153, 154, 155]
String to Integer [156]
Integer to String [156]
Character Rotation [154, 153]
Character Subtraction [154]
Base 16 [138, 139, 154]
Base 32 [157]
Base 64 [141, 153, 154, 138, 140]
Base 85 [158, 159]
String Parsing [141, 156, 153, 160, 139]

code implementation to R2D2. R2D2 will automatically create symbolic expressions for

the code to be used during matching.

To identify decoders in malware, R2D2 compares malware and decoder algorithm ex-

62

pressions. This is challenging because the malware expression includes additional infor-

mation that is unrelated to decoding. For example, after data is read from a web app, it

may contain additional characters used as string markers, or portions of the data may be

encoded differently. If we attempt to match a decoder algorithm expression to an entire

malware expression, we will likely generate a false negative result where we miss identi-

fying a decoder. Unlike a direct comparison of like expressions, R2D2 must first localize

the portion of the malware expression that relates to decoding. Only then can R2D2 use

Algorithm 2 on a localized subexpression to confirm the use of any decoding algorithms.

Decoder Localization. Confirming DDR-based malware relies on symbolizing the buffer

that stores data read from the web app (subsection 4.2.2). As the symbolized malware

buffer, referred to as Mλ, is decoded, it assumes operations corresponding to data com-

putations. However, without identifying the segment of Mλ that corresponds to decoding,

R2D2 will not be able to match it with any decoder algorithms. So, R2D2 localizes the

boundary around the decoding algorithm via concrete input/output (IO) domain matching.

This is done using Algorithm 3 which occurs in conjunction with DDR Confirmation (sub-

section 4.2.2). We use the malware as input to the algorithm to reflect this point. When

complete, Algorithm 3 returns a set of all confirmed decoders identified.

Input/Output Domain Mapping. Throughout R2D2’s malware exploration (Algorithm 3,

lines 3-4), it tracks memory address accesses (line 6). This allows R2D2 to keep track of

Mλ as it is moved through memory5. Every time Mλ is accessed, R2D2 calculates concrete

values for each byte of the buffer (line 7) for input to all decoder algorithms and stores the

output resulting in a map of data including the current instruction, concretized Mλ, and

the decoding results from each decoding (lines 8-11). However, R2D2 also compares live

execution results with previously-stored results to localize the decoding boundary (lines

12-18). If a previously decoded result at instruction A matches to a concretized memory

value at instruction J , then the boundary is A− J .

5We also consider when it is moved from memory to registers.

63

Algorithm 3 Malware Decoder Identification
Input: M , DI = [{Da

1λ . . . Da
nλ}, . . . {Dz

1λ . . . Dz
nλ}]

Output: confirmedAlgos
1: decMap = NULL
2: algoBoundary = NULL
3: function LOCALIZEDECODERBOUNDARY(M)
4: Inst = stepInstruction(M).successor(

▷ Explore malware by insrtuction-by-instruction
5: while stepInstruction(M) do

▷ At each symbolic memory access, extract the symbolic data and concretize it
6: if mem = memoryAccess(inst) then
7: concrete = concretizeMem(mem)

▷ Use the concrete values as input to all decoders and save the results
8: for each Dλ ∈ DI do
9: decoded = Dλ(concrete)

10: decMap[Inst] = {concreteDλ , decodedDλ}
11: end for

▷ To identify the decoder boundary, match the current concrete values with previously decoded
results and compute the distance between

12: for each element ∈ decMap do
13: if decoded = element.concreteDλ then
14: instTuple = (Inst, element.Inst)
15: d = Distance(instTuple)
16: algoBoundary[Dλ] = [(d, (instTuple))]
17: end if
18: end for
19: end if
20: Inst = stepInstruction(M).successor()
21: end while
22: confirmedAlgos = NULL

▷ Confirm decoders with symbolic equivalence testing based on the shortest distance
sub-expression

23: for each algo ∈ algoBoundary do
24: start, end = minDistance(algo)
25: subExp = Mλ[start, end]

▷ Call to Algorithm 2 to compare expressions and store matches if found
26: match = SymbolicEquivalence(subExpr, algo.Dλ)
27: if match then
28: confirmedAlgos[Dλ] = (start, end)
29: end if
30: end for
31: return confirmedAlgos
32: end function

Matching the IO domains with concrete execution of decoder algorithms may seem

sufficient, but when two decoders produce the same result, the matching would be incon-

clusive. For example, if 0x5956645762467059546e633d is decoded with Base64,

the result is 0x6157566c5a584e77. If we use the same input and XOR it with

64

0x59566457031126350E362D4A, we arrive at identical outputs. If the C&C orches-

trators post additional encoded messages, relying on only the IO boundary could lead au-

thorities to apply the incorrect decoder. Therefore, using the boundary, R2D2 matches

expressions to confirm decoders.

Sub-Expression Decoder Comparison. R2D2 identifies multiple decoder boundaries

when the memory region goes unmodified for a portion of malware execution. Although

R2D2 would be able to perform symbolic expression matching at these larger boundaries,

by computing the distance between instructions corresponding to matching IO domains,

R2D2 can more precisely locate the decoding function in the malware (line 15). Iterating

through the identified boundaries, R2D2 takes the minimum distance match and uses the

start and end instruction values to extract a subtree expression from Mλ (lines 22-25). Next,

the subexpression tree and the expression from the decoder algorithms are compared for

equivalence (line 26). We generate symbolic expression for all decoding algorithms and

store them for future referencing by R2D2 during its execution. If there is a confirmed

match, R2D2 reports the identified decoder in the malware.

After taking a malware binary as input, R2D2 reports if the malware integrates DDR

capabilities and what web app it relies upon. R2D2 also reports the decoder(s) used to

encode the C&C rendezvous point allowing authorities the ability to reveal hidden C&C

server domains or IPs quickly.

4.3 Validating Our Techniques

R2D2 is implemented in C++ and Python leveraging S2E [46] for concolic analysis. Be-

fore our large-scale measurement, we needed to verify that R2D2 can identify dead drop

resolvers and decoders correctly.

65

Table 4.3: Validating Dead Drop Domain Candidate Identification and Confirmation.

Malware #Variants DDR Domain TP FP FN Domain Origin TP FP FN DDR Confirmation TP FP FN Time (s)

razy 5 www.twitter.com 5 0 0 hard-coded 5 0 0 tag propagated 5 0 0 148
doina 5 drive.google.com 5 0 0 hard-coded 5 0 0 implicit flow 5 0 0 230
kryptik 5 www.pastebin.com 5 0 0 hard-coded 5 0 0 tag propagated 5 0 0 484
midie 5 bitbucket.org 5 0 0 hard-coded 5 0 0 tag propagated 0 5 0 130
cryptolocker 5 sftnwbyrkswt.net1 5 0 0 DGA 3 0 2 N/A 0 0 0 887
zusy 5 www.pastebin.com 5 0 0 hard-coded 5 0 0 tag propagated 5 0 0 332
comnie 5 www.github.com 5 0 0 hard-coded 5 0 0 tag propagated 5 0 0 417

Total 35 Accuracy (100%) 35 0 0 Accuracy (96%) 33 0 2 Accuracy (90%) 25 5 0 375
1: This is one of many DGA domains that R2D2 identified.

66

4.3.1 Dead Drop Resolver Identification and Confirmation

Table 4.3 presents R2D2’s evaluation to identify domains and DDR integration in malware.

To do so, we use 35 Windows malware samples from our dataset and manually reverse

engineered them to determine the ground truth metrics. Columns 1-2 list malware families

and variants. The remaining columns display the ground truth domains identified, their

origin, and how the DDR capabilities were confirmed, including accuracy metrics — true

positive (TP), false positive (FP), and false negative (FN). Since we seek to identify hybrid

DDR+DGA malware, we used a known DGA-based malware, cryptolocker (Row 5) to

ensure DGA detection. This ensures that we test all of R2D2’s design components.

R2D2 correctly identified all domains (35 TPs) and achieved a 96% accuracy in iden-

tifying 33 of 35 domain origins. R2D2 also achieved 90% accuracy confirming 25 of 30

DDR-based malware.

Upon closer inspection, we found FNs in cryptolocker occurred because 2 variants

contained a hard-coded domain that the malware attempted to connect to first. If it failed,

then the DGA was used. R2D2 rightly classified the hard-coded domain but missed the

DGA component in 2 of 5 crytolocker malware. However, our investigation confirmed that

these are rare occurrences.

The 5 FPs occurred in the midie sample because of over tainting. When data was read

from bitbucket.org, R2D2 allowed the malware to continue to read data 128 bytes at a

time until a hard-coded value specifying the amount of data to read was reached. However,

at the last iteration, 128 bytes was an over-approximation whereby R2D2 symbolized a

portion of the buffer more than the prescribed read limit. This resulted in symbolizing the

parameter used in the subsequent malicious outbound connection. Further investigation

confirmed that bitbucket.org was accessed by the malware and data was retrieved,

but the data was used in the WriteFile API before the newly written file was used in

ShellExecute. This confirms that bitbucket.org was used to host a dropped file

but not as a DDR.

67

Given the low number of FPs (5) and FNs (2) and the high accuracy of 100%, 96%, and

90% for domain identification, domain origin, and DDR confirmation, respectively, R2D2

is ready for large-scale deployment. Moreover, averaging a run time of 375 seconds, R2D2

can quickly report details of DDR integration toward rapid remediation by authorities.

4.3.2 Decoding Algorithm Comparison

Before we identify decoders in malware, we must first answer: Given two different imple-

mentations of the same algorithm, will R2D2 still be able to identify that algorithm? Put

simply, will R2D2’s reference decoders (from Table 4.2) work regardless of a malware’s

implementation? Answering this requires: (1) comparing source code similarity to ensure

all decoder implementations are different and (2) comparing symbolic expression equiva-

lence of all pairs of decoders to show that irrespective of implementation, only decoders of

the same class (e.g., all Base64 decoders) match with high confidence.

Source Code Similarity

We choose up to 3 implementations of each algorithm from Table 4.2 that are available

on open-source software repositories. We use Moss [161], a system for detecting software

similarity that is widely used in academia to detect code plagiarism. If we can show that

Algorithm 2 matches decoders of the same class even though their implementations differ,

then R2D2’s approach will work irrespective of a malware’s decoder implementation. As

shown in Table 4.5, no differing algorithms (600 comparisons) overlap, as formalized in

Row 6, where |R| is the length of the set containing all decoder algorithm implementations

and m and n are indices of different algorithms in the set. The only matches occurred when

one algorithm was compared with itself (25 comparisons), which is expected. This verifies

that each of the decoding algorithms selected for R2D2 is a different implementation.

68

Table 4.4: Baseline Comparison for Decoding Algorithm Similarity via Symbolic Expres-
sions Matching.

Base16 Base32 Base64 Base85 XOR Chr Sub. Str ⇆ Int Rotate Str Prs

v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3 S→I S← v1 v2 v3 v1 v2

B
as

e1
6 v1 100 98 92 16 19 11 28 0 16 21 9 42 0 0 0 0 0 0 0 0 0 0 0 0 0

v2 89 100 72 15 8 23 50 51 52 32 14 7 9 8 8 0 0 0 0 0 0 0 0 0 0
v3 96 91 100 14 23 22 12 9 27 11 24 22 0 0 0 0 0 0 0 0 0 0 0 0 0

B
as

e3
2 v1 12 11 14 100 97 98 62 68 64 1 22 13 0 0 0 0 0 0 7 1 0 0 0 0 0

v2 1 1 13 98 100 97 2 12 9 0 17 8 0 0 0 0 0 0 0 0 0 0 0 0 0
v3 13 21 16 92 83 100 3 9 22 13 4 3 0 0 0 0 0 0 0 0 0 0 0 0 0

B
as

e6
4 v1 70 14 2 0 0 27 100 44 77 19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

v2 1 16 4 3 4 4 97 100 100 21 14 5 0 0 0 0 0 0 0 0 0 0 0 0 0
v3 4 40 16 11 3 21 89 100 100 7 18 10 0 0 0 0 0 0 0 0 0 0 0 0 0

B
as

e8
5 v1 17 45 46 23 42 62 41 37 19 100 91 93 0 0 0 0 0 0 0 0 0 0 0 0 0

v2 10 61 42 29 37 58 38 52 43 87 100 92 0 0 0 0 0 0 0 1 0 0 0 0 0
v3 32 15 29 22 12 33 19 27 20 89 92 100 0 0 0 0 0 0 0 0 0 0 0 0 0

X
O

R v1 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 11 0 0 11 0 0 0 0 0 0
v2 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 0 0 0 11 0 0 0 0 0 0
v3 0 0 0 0 0 0 0 0 0 0 0 0 100 100 100 0 0 0 11 0 0 0 0 0 0

C
ha

r
Su

b

v1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100 92 94 0 0 0 0 0 0 0
v2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 100 84 11 0 0 0 0 0 0
v3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 92 91 100 11 0 0 0 0 0 0

St
r,

In
t→ 0 0 0 0 0 0 0 0 0 0 2 4 11 11 11 1 0 0 100 4 0 0 0 0 0

← 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 22 100 0 0 0 0 0

R
ot

at
e v1 6 0 0 0 0 0 0 0 0 0 0 0 6 4 6 2 6 0 0 0 100 100 100 0 0

v2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 100 100 100 0 0
v3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 100 100 100 0 0

St
r

Pr
sv1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 11 0 13 3 3 100 99

v2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 11 0 19 2 3 99 100

69

Table 4.5: Baseline Comparison for Decoding Algorithm C/C++ Source Code via Moss.

Base16 Base32 Base64 Base85 XOR Char Sub. Str ⇆ Int Rotate Str Prs

v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3 v1 v2 v3 S→I S← v1 v2 v3 v1 v2

v1 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 100 0 0 100 0
v2 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0
v3 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 0 100 0 100 0 0 100 0 100

∀m,n ∈ [0, |R|] ∧m ̸= n : Moss(Rn, Rm) = 0%

70

Symbolic Expression Matching

Table 4.6: Baseline Comparison for Decoding Algorithm Similarity via Symbolic Expres-
sions.

Base16 Base32 Base64 Base85 XOR Chr Sub. Str↔Int Rotate Str Prs

B
as

e1
6

B
as

e3
2

B
as

e6
4

B
as

e8
5

X
O

R
C

ha
r

Su
b

St
r,

In
t

R
ot

at
e

St
r

Pr
s

Table 4.4 presents the evaluation of Algorithm 2 which takes two symbolic expressions

as input. The comparison of a pair of expressions is not limited to one evaluation. Since we

specify a symbolic input size of 8 bytes, the decoders’ expressions could concretize to 2568,

or 4.2 billion, possible values. Ideally, we would like to evaluate the entire input space, but

that is prohibitively time-consuming, especially when considering 625 comparisons. So,

71

we execute each comparison for 2 hours. We find this to be sufficient because the number

of nomatch versus match (Algorithm 2) results plateau and stabilize for more than 30

minutes within 2 hours, convincing us of the overall percentage match of both algorithms

being considered. In the worse case, when Base16 is compared with Base85 (Table 4.6,

Column 4, Row 1), the last plateau begins at 85 minutes and continues until the 2-hour

mark. We present a view of the plateau for each set of comparisons in Table 4.6.

Interestingly, we found that some decoder algorithms cannot derive the same output

on corner-case inputs. In fact, we observed this in practice when testing decoder algo-

rithms concretely. These corner cases are expected in algorithms developed differently as

decoding functions are not rigorously tested to ensure completeness or include different

error handling. Still, these differences are negligible compared to the difference with other

algorithm classes.

As Table 4.4 shows, each cell represents the percentage of expression matching. The

majority (474/5546 or 85.5%) of comparisons of algorithms from different classes result in

0% match, which is expected. However, notice Base64 v1 compared with the other Base64

versions (Row 7). We expect them to match at a high rate, even amid mismatching corner

cases. Our investigation revealed that the 44% and 77% comparison percentages for v2

and v3 are due to error checking in v1. As a reminder, all decoder implementations take

8 bytes as input. In fact, v1 has error checking to ensure the input size is > 4. When

R2D2 forks at this error check, it will take two paths: (1) successful return and (2) failure

where null is returned. As discussed previously, the symbolic data is constrained for the

second algorithm in the comparison based on the exploration of the first comparison. So,

where v1 had 1 failure and 1 success in the above example since v2 has less strict error

checking, it succeeded in both, accounting for their low matching percentage. Conversely,

when Base64 v2 and v3 (Rows 8 and 9) are compared with v1 (Column 7), they match at

97%, 89%, and 100%, since the former does not have excessive error checking. Since all

6For the other 71 of 625 comparisons, decoders are compared with themselves.

72

implementations take 8 bytes as input, when v2 is explored first and succeeds, the resulting

constrained symbolic expression used in v1 ensures that R2D2 takes the success path in v1,

resulting in a high percentage match.

Table 4.4 also shows an interesting trend within the Base decoding classes (Base 16,

Base 32, etc.). We are not surprised that 12/144 Base class comparisons (all Base versions

compared with themselves) match at 100% (top left to bottom right diagonal of the Base

class comparisons). However, of the remainder, we only observe 6/144 with a 0% match

when we would expect to find 108 with a 0% match (when one Base class is compared

with another). Base algorithms depend on a table of data to index for character translation.

As a result, all Base algorithms match to a certain extent based on the indexing of tables,

but not enough to deduce a confident equivalence. There are other overlapping instances of

algorithms from differing classes, but they are also too low to be considered a match.

From each class, we select the best performing implementation, meaning that they

match >90% within their class and <25% across the others (highlighted in orange on the

left of Table 4.4). These are built into R2D2 as “reference implementations.” As subsub-

section 4.2.3 described, new algorithms can always be added to R2D2. These results show

that R2D2 can identify decoders with different implementations in malware.

4.3.3 Decoding Algorithm Identification

We now must verify that R2D2 can identify decoders in malware using Algorithm 3. We

use the same malware ground truth set from subsection 4.3.1 Since both midie and cry-

tolocker (Table 4.3) are not DDR-based malware, we omit them from decoder evaluation.

Table 4.7 presents our validation of R2D2’s decoder identification in 25 manually reverse

engineered malware. Columns 1-2 list the malware family and variants. Column 3 lists the

decoders. The remaining columns list the accuracy metrics. Overall, R2D2 achieves a 94%

accuracy in correctly identifying 45 of 50 decoders.

We notice that FPs occur in doina malware. We expect that DDR-based malware en-

73

Table 4.7: Validating Decoder Identification.

Malware #Variants Decoder Metrics

TP FP FN

razy 5
Base64
String Parsing

5 0 0
5 0 0

doina 5 String Parsing 0 5 0

kryptik 5
Base64
String Parsing

5 0 0
5 0 0

zusy 5
XOR
Base16

5 0 0
5 0 0

comnie 5
Base64
XOR
Char Rotate

5 0 0
5 0 0
5 0 0

Total 25 Accuracy (94%) 45 5 0

codes the C&C rendezvous points, but in this case, doina requests a text file from Google

Drive containing an IP address in plaintext. We would expect R2D2 not to identify any

decoders, but it identified String Parsing (Row 5). This occurs because the malware checks

for the IP address format using string search routines, similar to what is needed for string

parsing. R2D2 may be prone to FPs when dealing with plaintext data, but the effect is

negligible since authorities will immediately have the C&C rendezvous point.

For all other malware families and variants, R2D2 detected the IO boundary and suc-

cessfully compared sub-expressions for decoder matching. Given the low number of FPs

(5) and no FNs, and 94% accuracy, R2D2 provides the means to identify decoders in mal-

ware effectively.

4.4 Dead Drop Resolver Findings

Deploying R2D2 revealed 10,170 DDR-based malware in our dataset. Figure 4.3 illustrates

the relative prevalence of DDR use since 2017. The red line represents the quantity of mal-

ware from a specific year. The orange line represents the quantity of DDR-based malware

74

that R2D2 identified. The normalized result, or blue line, indicates the trend of DDR use

over the last 5 years. Note that there has been a notable increase in the relative amount

of DDR-based malware in the wild over the last 2 years. This is not surprising given the

benefits that DDRs offer malware authors.

2017 2018 2019 2020 2021 2022

0

20,000

40,000

Year

#M
al

w
ar

e
Entire Dataset
DDR Malware
Trend Line

Figure 4.3: DDR Malware Trends Since 2017.

Since we designed R2D2 to study DDR-based malware, it will not reveal how the addi-

tional malware in our dataset work. However, a cursory investigation revealed that some of

the remaining samples also rely on web apps, but not as a DDR. We leave the exploration

of other web app abuse in malware for future work. The remainder used HTTP-based com-

munication with non-web app domains. This is in line with what has been observed in prior

works that reported up to 70% of malware use HTTP-based communication [109, 21] to

connect to malicious domains.

4.4.1 Dead Drop Resolver-Based Malware Discoveries

We deployed R2D2 to analyze 100k malware and present the results in Table 4.8. Column

1 lists the 15 web apps identified. Columns 2-3 list the number of malware and families.

Column Domain Origin lists the number of malware containing hard-coded versus DGA

domains, and Column CTP (concolic taint propagation) shows how many samples relied

75

Table 4.8: Distribution of Web App Domains used for DDR-based Malware Across our
Dataset.

Web App
Domains #Malware #Families Domain Origin CTP1

Hard-Coded DGA Propagated Implicit Flow

pastebin.com 6,053 30 6,053 0 5,712 341
blockchain.info 1,888 59 1,888 0 1,765 123
blockcypher.com 1,437 41 1437 0 1,398 39
bitaps.com 722 16 722 0 707 15
docs.google.com 616 10 616 0 571 45
blockr.io 200 5 200 0 189 11
dropbox.com 204 6 204 0 189 15
googleusercontent.com 151 9 151 0 141 10
coinmarketcap.com 50 10 50 0 47 3
twitter.com 34 8 22 12 34 0
blockchain.com 5 7 5 0 5 0
github.com 7 3 7 0 7 0
blockstream.info 3 3 3 0 3 0
drive.google.com 3 2 3 0 3 0
wordpress.com 4 2 4 0 4 0

Total 11,3772 154 11,365 2 12 10,775 2 602 2

1: Concolic Taint Propagation.

2: This is not the total number. Most malware using cryptocurrency web apps use more than 1 as backup.

on explicit flow versus implicit flows. R2D2 identified 10,170 DDR-based malware across

154 families that abuse 15 web apps and 275 unique accounts. R2D2 also found that 1,054

(10.3%) DDR-based malware use multiple web apps for backup.

The Pastebin web app accounts for the most DDR-based malware (Row 1) at 6,053

(≈59%). This is not surprising, as Pastebin has long been used for malicious purposes [162].

However, it has generally been used to host stolen content or malware to be dropped on vic-

tim systems. This work is among the first to expose its pervasiveness as a hosting platform

for hidden C&C rendezvous points.

Blockchain.info is the next most prevalent web app accounting for 1,888 samples (≈19%).

In fact, 3/4 highest-ranking web apps are crypto web apps. There are 7 crypto web apps

that enable DDR-based malware (Rows 2-4, 6, 9, 11, and 13), totaling 3,098 DDR-based

malware. Notably, 3,098 malware in our dataset use a crypto web app. Of those, 1,054 use

76

one or more domains for backups. However, even with backups, each malware uses one

wallet ID to retrieve recent transactions, which are decoded into a C&C server IP address.

We present the list of the 75 identified wallet IDs in Table 4.12, Table 4.13, and Table 4.11.

R2D2 also identified popular web apps, including Twitter, Google, Github, and Drop-

box. However, they account for fewer occurrences than expected, totaling 1,019 or ≈10%

of all DDR-based malware. Several works have studied popular web app abuse though

none considered DDR, so malware authors are likely using less popular web apps to reduce

suspicion.

Next, we observe that miniduke uses a DGA to generate Twitter accounts (Column

Domain Origin). This hybrid DDR+DGA malware is unique given that only 12 have been

found in our study, accounting for 0.12% of all DDR-based malware. We conclude that

although the complexity of this malware can pose challenges for authorities, the plethora

of works that counteract DGA-based malware may motivate malware authors to use DDRs

solely.

Next, we also notice the distribution of malware where the standard concolic taint prop-

agation proved sufficient (Column CTP). In 10,775 instances of web app abuse in malware,

the data read from the web app was propagated via data dependence. Yet, only 602 in-

stances of tag propagation crossed implicit flow blocks that broke propagation before being

remedied by R2D2 (subsubsection 4.2.2). This occurs when the buffer that holds the de-

coding string receives its data from hard-coded malware values dependent upon a previous

condition (e.g., if byte 1 of the encoded string is ’a’, then store ’/’ in the decoded string

buffer). However, these are rare occurrences.

In total, we find that 10,170 of the 100k malware are DDR-based malware illustrating

the prevalence of this practice. In fact, Netskope reported that more than 66% of malware

downloads come from web apps [81]. However, what was unknown is how many use web

apps for DDR, which R2D2 finds to be ≈10%.

77

4.4.2 Decoders Identified

Table 4.9: The Number of Occurrences of Decoders in the DDR-based Malware.

Decoder #Malware #Families

String Parsing 7,424 92
Base64 6,305 107
Exclusive OR 4,474 61
Base16 3,166 60
String to Integer 2,854 23
Integer to String 2,854 23
Character Rotation 2,135 29
Character Subtraction 711 11
Base32 0 0
Base85 0 0

Table 4.9 presents R2D2’s decoder identification in 10,170 DDR-based malware. The

most common decoder is String Parsing, occurring 7,424 DDR-based malware. Since over

78% DDR-based malware use multiple encoding techniques to impede analysis, they must

parse the data received from the web app to apply decoding properly. R2D2 provides the

ability to detect this so authorities can directly decode these more complex obfuscation

schemes. Base64 is the next most popular decoder occurring in 6,305 (62%) DDR-based

malware. Base64 affords the benefits of ensuring data goes unmodified during transport.

Thus, DDR-based malware commonly use it.

Surprisingly, R2D2 identified ≈6% of DDR-based malware with plaintext C&C ren-

dezvous points. For example, a Pastebin DDR-based malware retrieved 81.30.144.81:39431.

As discussed in subsection 4.3.3, R2D2 often reports String Parsing in malware with plain-

text rendezvous points. In this case, the malware parsed : as the delimiter to separate the IP

address from the port number.

To our surprise, the most popular decoders are not complex. In fact, if the correct

encoding is identified, decoding becomes a trivial task. Yet, malware authors continue

to use them because it is difficult to identify the encoding type, especially when multiple

are used. In total, R2D2 identified 29,923 decoders used in 10,170 DDR-based malware

78

Figure 4.4: A Pastebin Account Removed.

for an average of 2.25 decoders per malware. R2D2 provides authorities with a recipe

of decoders enabling the rapid identification of malicious C&C server rendezvous points

toward counteraction.

4.4.3 Towards Remediation

R2D2 revealed the requisite evidence to pursue botnet counteraction: the contacted web

app, confirmation of its abuse to host a C&C rendezvous point, and the decoding recipe to

reveal the rendezvous point. With this information, authorities can submit transactions to

malicious crypto wallets to sinkhole the botnet, as demonstrated in [163] or work with web

app providers to replace encoded C&C rendezvous points with their own. Furthermore,

authorities can use information from R2D2 to monitor the botnet even when it migrates the

C&C server. As recently demonstrated, botnet monitoring is crucial to enabling successful

disruption and takedown attempts [21]. In this research, since we lack authority to pursue

active counteraction, we sought cooperation from web app providers.

R2D2: Real-World Impact. R2D2 found 275 web app accounts, and we reported them

to the web app providers. Thus far, Pastebin, WordPress, and BitcoinAbuse confirmed

our findings and took action against 9,155 DDRs (90% of our total findings). Specifically,

Pastebin disabled (Figure 4.4) the offending accounts we discovered directly resulting in

6,053 infected victim systems unable to communicate with the malicious web app account

(60% of all DDR-based malware that R2D2 identified) and any newly infected systems

cannot access the C&C server. Similarly, WordPress also responded to our findings and

79

Figure 4.5: Response From WordPress.

also removed the offending accounts from their platform (Figure 4.5). Although Word-

Press DDR-based malware only accounted for 0.04% of all 10,170 DDR-based malware

discovered, it illustrates the range of options that malware authors have for DDR botnets.

For the 3,098 DDR-based malware (30%) that use crypto wallets to retrieve C&C ren-

dezvous points, they must connect to one of many blockchain explorer web apps (e.g.,

blockchain.info) to search/read the blockchain. Disk space requirements make down-

loading the entire blockchain to the victim system impractical. Thus, although blockchains

are immutable, these web apps control access to view crypto transactions. A practical solu-

tion towards remediation is to flag wallet IDs used in cybercrime and block viewing access

to prevent malware from retrieving blockchain information. To this end, we submitted the

75 wallets IDs, listed in Table 4.12, Table 4.13, and Table 4.11 that R2D2 discovered to

BitcoinAbuse [164] to publicly document that they have been used in malware. However,

since R2D2 reveals how the crypto transactions are decoded to C&C server IP addresses,

authorities can submit transactions to the offending accounts to sinkhole the botnet [163].

Lastly, Twitter negatively responded to our findings and did not remove the malicious

account since it “hasn’t broken our safety policies”, as illustrated by their response in Fig-

80

Figure 4.6: Response From Twitter.

ure 4.6. Of the remainder, the accounts for 774 malware were already taken down at the

time of our study. We are awaiting a response from other web app providers hosting the

other 241 DDRs.

4.4.4 Packed Dead Drop Resolver-Based Malware

Table 4.10: Packed Dead Drop Resolver-Based Malware.

Packer Type [92] Packer [115] #Malware

Type-I
BobSoft Mini Delphi 845
UPX 234
FASM 1

Type-II PeCompact 145

Type-III
ASPack 2
ASProtect 2

Type-IV tElock 1

Total 1,230

Considering malware obfuscation via encoding led us to consider packing techniques

used on the binaries themselves. Using PackerID [115], we present Table 4.10 which lists

81

the packer type in Column 1, as defined by Ugarte-Pedrero et al. [92] and packers in Col-

umn 2. Column 3 shows the number of malware. Only 12% (1,230) of the DDR-based

malware are packed. Furthermore, 1,080 (89%) of packed samples use Type-I packers

which are easier to unpack. While Type-II packers use added layers of packing, they are

still not difficult to unpack. We only identified 5 instances (0.4%) of Type-III and IV pack-

ers.

Given the prevalence of the decoders identified in 9,559 (94%) of the 10,170 DDR

samples, we assume malware authors are not devoting resources to packing in hopes that

obfuscation and DDR integration will prove sufficient for robust botnets. We hope our

study of DDR-based malware will shed light on this under-explored but trending practice

and enable authorities to take action against DDR-enabled botnets.

Table 4.11: Bitcoin Wallet IDs (1/3).

Web App Wallet ID

blockcypher.com

33fde6e00a62995ddd4977b5cf7b8bc55c
1VocauiabutZLvzBau7V6QgCC7WQnmU1n2
1BjVeaZBMA9QEweeRfK6nftzDPbr7jMaDk
161fPjdCt5H9uYawPpPT4poc8RBcLFaE3R
1CeLgFDu917tgtunhJZ6BA2YdR559Boy9Y

bitaps.com
17gd1msp5FnMcEMF1MitTNSsYs7w7AQyCt
1CMRScsrxPe2N4HwPpNKcHUhfCJXUm2Cx6
1HTDy9SkfhwaNCXFA8wFCvN53f3iGpm8kb

4.5 Discussion

4.5.1 Adversarial Response

A malware author may use cryptographic techniques to encrypt the C&C rendezvous point

and thwart R2D2. However, there are several tools/techniques [165, 166, 167] available that

can be integrated into R2D2 towards decryption. It is also possible for malware authors to

develop complex functions that impede a tractable computation for our symbolic solver

82

Table 4.12: Bitcoin Wallet IDs (2/3).

Web App Wallet ID

coinmarketcap.com
1BkeGqpo8M5KNVYXW3obmQt1R58zXAqLBQ
1N94rYBBCZSnLoK56omRkAPRFrpr5t8C1y

blockstream.info
1qre9cdrqdagy0p2sww2dvp7td86kws09v
1qj2h87z0v8u7ddp823apvjzpu5asssfpy

blockchain.info

1Lud76Q98VRHCUiyK7XUs7AgFofrqXeP78
15GqSWnxEFZezUCcGjhBMknA1PB7aYNXC1
18sHYU49vUFk6TN6G2Pj6DSCUzkbLvwJtc
1DsyxmgvkBTnLBnCXWyymNaDNhgmzib4mp
1BkeGqpo8M5KNVYXW3obmQt1R58zXAqLBQ
13LHbsf1CWgat1ZLYYoMsjeeybvCD7ZUxh
3ab5ab9511cf52565314425424d0b0b978
1qtkmks24vyuemjm6w3j3qagyn2pu3d93y
1NL67bQ8dPbfxLKcXBpuE3n8H5AsExBvwt
38D2P6apsGhghkGK4mSAMB9yr5enXW6iUy
32Lsw4r5YGLS5qhZsgp1b2kk1xTbf7T4Wf
16nA62oxxsDgc2R2NoW6WtFrZkB3XLvVpb
323c2a4e57b5ba21687fe7ce5918ceaf4a
1Dhf71bPe3wQ4At9YSaEVXGyhwzFiKNdBo
1q97764a4dnuzfd5dxxyhqggyn7de9z978
1qsce320qf73s9v593p0jxfs46q7nh0zus
1NxsR82Efaqbnt3c9QQUoYJpejwFtDrnNe
1Eyx9PKb1bs9X7n4UK7JHnzSxedyUvHimE
1FK6Y4BcHV5jQ6nPJTL83EyrhLzWGTvkfv
1PwAEK6Zp371Vegwp38XzP4nULikzUrCRa
1K4GnSGtoH7qx4SvpoJ3v3Nv2yZg6v5sDY
1EYnNjRKWqFBRLe53Ui1HVwxDwK1gqsKGp
3Gf7NRXDKtAzeTYG9fwHLg9snpSi2AZpyj
3QKjFKdqtJi34UnFwdA8VsaV2NkRgmaUnf
3NXdpbSZqe3sniegAgzEpo7YisDqVQiL6y
1KVwMFZw4QUuoqdeWtehDeB7qLhx3ncGVV
1KQheJU4ZwXvMdoLevVhDVVHU1zwWUMcDp
1qwqr922tvn69gsdhn7fcayspwt202fzer
33u5t5A8qvQFdwVMANDFS91LGMw68fiaMc
1GAEMH9wiX8LqJm7v8oKLdgM5Zr3msE6E3

blockr.io

1cptcvckjajnkdd7psapv3cakunvd4mcmt
17gd1msp5FnMcEMF1MitTNSsYs7w7AQyCt
1HTDy9SkfhwaNCXFA8wFCvN53f3iGpm8kb
1a4778fd2ba2b8ae98c573defa3b0e86d8
1GcnsLs7C31uuroNmUHwwbB5xQeNvm63Ee

83

Table 4.13: Bitcoin Wallet IDs (3/3).

Web App Wallet ID

blockr.io

1CpTCVckjajNKDd7PsApV3cAkunVd4Mcmt
1d6037414ac2bbf101eadae4d4c4d57e98
1CMRScsrxPe2N4HwPpNKcHUhfCJXUm2Cx6
17bf8ba6d1bb9e5f03b0946d467fca7887
1b354ee81d0ea177be5355b8a430db1b22
3a0ed3db93838620fee7aed8c87f3ebacb
11486a040f0cf7511a53f7610958f2a109
35ef6c71fafa9e30ee56d312dd626999ac
1e77054da43c04f19b628a7ea5bfc6d1ca
1e52ba07c17cc49995c915209b23b23ad6

blockcypher.com

1HTDy9SkfhwaNCXFA8wFCvN53f3iGpm8kb
1016d7ceff188e9fe32e68e9761bd811f3
17gd1msp5FnMcEMF1MitTNSsYs7w7AQyCt
1BkeGqpo8M5KNVYXW3obmQt1R58zXAqLBQ
3916a96ba7bfc95ed103aff4286360e820
1ML94w1SCudkiFHaEwYqTmKGTkywxVBuZg
1a4778fd2ba2b8ae98c573defa3b0e86d8
1GcnsLs7C31uuroNmUHwwbB5xQeNvm63Ee
193896af781481f195a4c55cbf053b7e95
1CMRScsrxPe2N4HwPpNKcHUhfCJXUm2Cx6
3bcec9103e14bd8969f2d1f2e14bd72399
3e3c52d8aeed29d2e5f2835061f01fa758
18ecb27aff6d1c6a889f810c50eb72e565
1d8c213480d883fc2c4a001ecfb106f241
1CpTCVckjajNKDd7PsApV3cAkunVd4Mcmt
198009d287c818d2a9aa72f7f828c19c84
19hi8BJ7HxKK45aLVdMbzE6oTSW5mGYC82
1N9ALZUgqYzFQGDXvMY5j1c7PGMMGYqUde
133be6e6ccca5bb6b3e3aaa34cf14a374a
34d153ae12ebfe18cea39ddc07d514865b
14bbtRSruiXHtvofYgB24Wdpma1Bx6RSof
19ZN4JM9ZH2nLc3PZh85n3t1WVzjBKD39D
14a0b3c26dc368d1b69862eb28fd8648fd
1ALuqPer2DSD9YyU9nrZz6NR1dDwCQLnE7
1BYZgQnu3M86ra95Jywj5xiL2fE7Nbn64q
1Fbhv84haM4TiwcR71WCVZg87EWbFxFUZC
1Q5qfq1tC7ptd5bGWimbCkJT1hp8v9eNfu

84

causing R2D2 to time out. However, both require malware authors to trade agility and

easy deployment for more complex malware, which is the opposite of the trend we and

others [21, 168] have observed.

4.5.2 Uncooperative Web App Providers

Web app providers are culpable for hosting malicious content [169]. At the same time,

they must weigh freedom of expression while ensuring users adhere to the terms and con-

ditions [170, 171, 169]. Toward usability, web app providers seek to ensure they do not

unnecessarily block content where evidence of abuse is unavailable [169]. Therefore, like

Twitter (Figure 4.6), we may encounter cases where providers are uncooperative to reme-

diate DDR behavior on their platform. Since web app providers maintain sole control, we

are limited to their actions against DDR botnets.

4.5.3 Domain Generation Algorithm Domain Origin Identification

Since most DGA-based malware rely on system information retrieved from APIs to seed

DGAs, our approach to inject symbolic data from these APIs means that we can track

the symbolic data and identify the origin of the DGA web app account. However, R2D2

does not consider the rare cases where the seed is hard-coded into the malware. Malware

authors generally avoid this approach because it makes predicting future candidate domains

easier [122]. An option to handle this hard coded seeds is re-execution allowing multiple

domains to be used and exposed which reveal the integration of a DGA.

4.5.4 A Subtler Case of Implicit Flows

In subsubsection 4.2.2, we discussed the common case of implicit flows that we consider.

However, a subtler case occurs where x is initialized to a default value before the condi-

tional branch (Algorithm 1, line 3). In this example, we assume there is no else condition,

meaning x is either the default value, or the new value (line 4) if the condition has been

85

met. If the condition at line 3 is not met, R2D2 would not associate ta to x and fail to

propagate the tag. If DDR-based malware use this approach, then the default value is used

and it likely corresponds to a hard-coded domain name. This is plausible if the malware

authors include a backup domain in the even that the web app endpoint is not reachable.

However, we have not see this subtler case of implicit flow in practice.

4.6 Conclusion

This chapter comprehensively studied the under-explored DDR technique using R2D2, our

measurement pipeline, to analyze 100k malware spanning back 5 years, revealing 10,170

DDR-based malware from 154 families. R2D2 also revealed the type of encoding used,

providing authorities with rapid means to decode C&C server domains, with String Parsing

and Base64 being the most common. We reported all of our findings to web app providers,

and they confirmed them and took action against the 9,155 DDRs (90% of DDR-based mal-

ware discovered). Of the remainder, web app providers previously took down the accounts

for 774 malware, and we are awaiting a response concerning 241 DDRs.

86

CHAPTER 5

CONCLUSION AND FUTURE WORK

The first step to monitor and counteract botnets is to study their C&C infrastructures. How-

ever, these infrastructures consist of victim system information (e.g., network logs, etc.),

malware binaries or memory image snapshots containing malware payloads, poxy servers,

C&C servers, etc. Authorities resort to intensive analyses of the available components,

giving plenty of time for C&C orchestrators to cover their tracks. This dissertation shows

that malware binary logic can be reused to enable automated and scalable opportunities

for rapid botnet disruption and takedown. Underpinning the research solutions discussed

herein are fundamental techniques for binary program instrumentation, binary functionality

analysis, and communication protocol inference. To recap what this dissertation proposes,

we provide a discussion through our Goals (Section 5.1), Challenges (Section 5.2), and

Solutions (Section 5.3). We then end with a discussion of future work (Section 5.4).

5.1 Goals

The current botnet monitoring state-of-the-art uses cross-domain analysis of numerous

C&C infrastructure components and malware variants via static and dynamic analysis tech-

niques. However, these early approaches required context switching and are often prone to

human error. Furthermore, being prohibitively tedious, when authorities eventually make

significant progress in their investigations, C&C orchestrators are likely to have employed

defensive evasions tactics, including C&C server migration. In this dissertation, our goal

was to design and implement practicable solutions that submit to single domain analysis

towards effectiveness and scalability. A more detailed list of our goals follow:

87

5.1.1 Scalable Malware Analysis

To explore our goals, we performed systematic malware studies. These studies are scal-

able, reproducible, and provides the requisite information to identify and leverage malware

binary logic for C&C monitoring, infiltration, disruption, or takedown. Thus, our first goal

was to design and implement malware analysis frameworks that focuses on targeted explo-

ration (to reveal reusable malware binary logic) instead of code coverage. Reducing the

scope of exploration to only relevant paths ensured our approach is scalable. We also eval-

uated and validated our framework using malware captured in the wild over 15 years. This

ensured our findings sheds light on the evolution of reusable malware logic in the malware

threat environment. Toward reproducibility, we made relevant source code available to the

security community.

5.1.2 Reusable Malware Logic

To submit to single-domain analysis and practicability, we aimed to identify reusable mal-

ware logic for botnet counteraction. Based on our manual reverse engineering and reports

from academic and industry experts, we identified three types of reusable malware logic:

1. Over-Permissioned Protocols: These are standardized protocols that provide file

transfer, data storage, and message-based communications. However, they are also

feature-rich and provide unfettered access to the C&C server beyond the subset of

features implemented by a given client (bot). For example, if a malware author in-

tegrates the File Transfer Protocol (FTP) into their malware but only specifies that

the malware PUT files from the victim system onto the C&C server, authorities can

leverage this to do the same. However, since the entire protocol is baked in, authori-

ties can leverage FTP to also GET files from the C&C server since that capability is

inherent in FTP implementations. Secondly, FTP requires client-side authentication

to access the C&C server, meaning the malware stores this information so that bots

88

can authenticate to their C&C server. Identifying these authentication details in the

malware allows authorities to access the C&C server under the guise of normal bot

operations.

2. C&C Monitoring Capabilities: To infer the C&C server’s composition and con-

tents, we analyzed the malware to understand what types of capabilities are exer-

cised on the victim system. Notably, some of these capabilities result in data being

sent back to the C&C server. For example, password stealers target victim system

software to retrieve user credentials. These credentials are aggregated in victim sys-

tem memory before being exfiltrated to the C&C server. Identifying exfiltrated data

formats and types reveals the type of information stored on the C&C server.

3. Hiding C&C Rendezvous Points in Plain Sight: C&C orchestrators generally

maintain control of all the components of their C&C infrastructures. Recently, some

C&C orchestrators have begun using web applications to hide C&C server ren-

dezvous points (i.e., encoded domain names or IPs). Since these web applications

are public, the C&C orchestrators post messages or upload files accessible by all

web app users, but encoding masquerades the true intent of posted messages allow-

ing them to hide in plain sight. However, with this deception comes a loss of control.

Now, web applications providers control how malware resolves their C&C server

domains or IPs. If these hidden rendezvous points are identified, authorities can dis-

mantle botnets in collaboration with web application providers.

5.1.3 Validating our Approach

We analyzed 300k Windows malware binaries captured within the last 15 years to validate

our frameworks. Our goal is to perform the analysis in a scalable manner and prove that

the malware logic of interest is reusable and effectively enables botnet disruptions and

takedowns.

89

5.2 Challenges

We encountered several challenges while aiming to achieve our goals. For clarity, we subset

our challenges in their corresponding goals.

5.2.1 Scalable Malware Analysis

Submitting to a single-domain (malware-only) analysis limits data available that may be

relevant to botnet counteraction. So, we must ensure that our malware-only analysis is

effective. However, modern malware often employs sophisticated obfuscation of packing

techniques that impedes analysis and inhibits large-scale studies. Worse still, malware also

uses anti-analysis and defensive evasion strategies that make any analyses prohibitively

tedious and sometimes error-prone when malware operations are not fully executed. Based

on these challenges, pursuing sole static analysis techniques is not an option, and dynamic

analysis approaches will limit malware exploration. We opt for concolic analysis to more

directly explore the malware. Now, we are inevitably faced with path explosion, making

the analyses intractable. Thus, we develop solutions grounded in fundamental techniques

for binary program analysis to ensure tractability.

5.2.2 Reusable Malware Logic

Identifying reusable malware logic is difficult because what can be leveraged for one botnet

may not be useful for other botnets. Furthermore, as we discovered, malware authors can

use different code implementations to accomplish the same task. Thus, finding reusable

and scalable malware logic and a generalizable means of identification is not trivial.

5.2.3 Validating our Approach

Validating our techniques means affecting the operations of C&C infrastructures. This

undoubtedly introduces some ethical concerns. However, we follow the precedence estab-

90

lished in previous works [116, 17, 117, 88] while exposing the weaknesses that make C&C

servers vulnerable to infiltration. Moreover, we maintain that any access we do achieve

to C&C infrastructure components avoids any claim of tortious interference, as described

in Mouton vs. VC3 [119]. Furthermore, in more overt means of counteractions, we were

required to collaborate with web applications providers, whose platforms were being un-

knowingly abused by malicious actors. Since any user, malicious or benign, agrees to

adhere to acceptable use policy requirements, web application providers can remedy any

perceived violation without breaching the boundaries outlined in their policies.

5.3 Solutions and Results

This dissertation presented C3PO [21] and R2D2 [22], measurement pipelines that studied

the (1) evolution of over-permissioned protocols in 200k malware spanning 15 years and

(2) under-explored DDR technique in 100k malware spanning 5 years.

5.3.1 C3PO

C3PO identified 62,202 over-permissioned bots across 8,512 families identifying infiltra-

tion vectors that allow C3PO to spoof bot-to-C&C communication. C3PO also identified

443,905 C&C monitoring capabilities, which reveal the composition and contents of the

C&C server to guide monitoring post infiltration. We deployed C3PO on two bots with live

C&C servers validating its ability to identify over-permissioned protocols, infiltrate C&C

servers, and leverage C&C monitoring capabilities to achieve covert monitoring. C3PO

also identified over 2500 files containing victim information, additional malicious pay-

loads, exploitation scripts, and stolen credentials, providing legally admissible evidence to

engender counteraction attempts. Armed with C3PO, authorities can pursue disruptions

and takedowns of over-permissioned protocol-based botnets.

91

5.3.2 R2D2

R2D2 targets the disruption and takedown of DDR-based botnets. During its analysis of

100k malware, R2D2 revealed 10,170 DDR malware from 154 families. R2D2 also re-

vealed the type of encoding used, providing authorities with rapid means to decode C&C

server domains, with String Parsing and Base64 being the most common. I reported all of

our findings to web app providers, and they confirmed them and took action against the

9,155 DDRs (90% of DDR malware discovered). Of the remainder, web app providers

previously took down the accounts for 774 malware, and we are awaiting a response con-

cerning 241 DDRs. This dissertation demonstrates that malware logic can be reused to

enable botnet disruption and takedown.

5.4 Future Work

Our future work can be broadly categorized as (1) deceptively responding to C&C servers

toward in-depth investigations enabling botnet counteraction and (2) the further exploration

of web application abuse to enable C&C infrastructures.

1. C3PO (Chapter 3) provides the means to covertly infiltrate the C&C server under the

guise of normal bot operations. Instead of masquerading as a trusted bot, can we in-

stead respond deceptively to C&C servers on behalf of trusted bots to delay discovery

and enable more in-depth investigations of live and active C&C servers? The ability

to do so can provide more actionable intelligence like the scale of the botnet, the

locale of operations, other affected peers in the botnet, etc., towards counteraction.

2. Inspired by R2D2 (Chapter 4), we look to other ways that malware abuse web ap-

plications. Specifically, we aim to discover if malware relies on web applications as

C&C servers rather than just a pivoting to identify C&C server locations. We aim to

understand the scope of web applications abuse across the entire malware operational

landscape.

92

REFERENCES

[1] New action to combat ransomware ahead of u.s. elections, https://blogs.microsoft.
com/on- the- issues/2020/10/12/trickbot- ransomware-cyberthreat-us-elections/,
[Accessed: 2020-12-10].

[2] C. Rossow et al., “SoK: P2pwned-modeling and Evaluating the Resilience of Peer-
to-peer Botnets,” in Proceedings of the 34th IEEE Symposium on Security and Pri-
vacy (S&P), San Francisco, CA, May 2013, pp. 97–111.

[3] B. Krebs, U.s. cyber command behind trickbot tricks, https://krebsonsecurity.com/
2020/10/report-u-s-cyber-command-behind-trickbot-tricks/, [Accessed: 2020-08-
22].

[4] Y. Nadji, M. Antonakakis, R. Perdisci, D. Dagon, and W. Lee, “Beheading Hydras:
Performing Effective Botnet Takedowns,” in Proceedings of the 20th ACM Con-
ference on Computer and Communications Security (CCS), Berlin, Germany, Oct.
2013, pp. 121–132.

[5] R. Wainwright and F. J. Cilluffo, Responding to cybercrime at scale: Operation
avalanche — a case study, http://www.jstor.org/stable/resrep20752.

[6] New action to disrupt world’s largest online criminal network, https : / / blogs .
microsoft.com/on- the- issues/2020/03/10/necurs- botnet- cyber- crime- disrupt/,
[Accessed: 2020-03-12].

[7] V. Le Pochat et al., “A Practical Approach for Taking Down Avalanche Botnets
Under Real-World Constraints,” in Proceedings of the 2020 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, Feb. 2020.

[8] Avast and French police take over malware botnet and disinfect 850,000 computers,
https : / /www.zdnet .com/article /avast - and- french- police- take- over- malware-
botnet-and-disinfect-850000-computers/, [Accessed: 2020-03-29].

[9] W. Sebastian and C. Rossow, “MALPITY: Automatic Identification and Exploita-
tion of Tarpit Vulnerabilities in Malware,” in Proceedings of the 4th European
Symposium on Security and Privacy (EuroS&P), Stockholm, Sweden, Jun. 2019,
pp. 590–605.

[10] Zeus-p2p monitoring and analysis, https://www.cert.pl/wp-content/uploads/2015/
12/2013-06-p2p-rap en.pdf, [Accessed: 2020-12-10].

93

https://blogs.microsoft.com/on-the-issues/2020/10/12/trickbot-ransomware-cyberthreat-us-elections/
https://blogs.microsoft.com/on-the-issues/2020/10/12/trickbot-ransomware-cyberthreat-us-elections/
https://krebsonsecurity.com/2020/10/report-u-s-cyber-command-behind-trickbot-tricks/
https://krebsonsecurity.com/2020/10/report-u-s-cyber-command-behind-trickbot-tricks/
http://www.jstor.org/stable/resrep20752
https://blogs.microsoft.com/on-the-issues/2020/03/10/necurs-botnet-cyber-crime-disrupt/
https://blogs.microsoft.com/on-the-issues/2020/03/10/necurs-botnet-cyber-crime-disrupt/
https://www.zdnet.com/article/avast-and-french-police-take-over-malware-botnet-and-disinfect-850000-computers/
https://www.zdnet.com/article/avast-and-french-police-take-over-malware-botnet-and-disinfect-850000-computers/
https://www.cert.pl/wp-content/uploads/2015/12/2013-06-p2p-rap_en.pdf
https://www.cert.pl/wp-content/uploads/2015/12/2013-06-p2p-rap_en.pdf

[11] B. B. Kang et al., “Towards Complete Node Enumeration in a Peer-to-peer Bot-
net,” in Proceedings of the 4th ACM Symposium on Information, Computer and
Communications Security (ASIACCS), Sydney, Australia, Mar. 2009, pp. 23–34.

[12] D. Andriesse, C. Rossow, and H. Bos, “Reliable Recon in Adversarial Peer-to-peer
Botnets,” in Proceedings of the Internet Measurement Conference (IMC), Tokyo,
Japan, Oct. 2015, pp. 129–140.

[13] G. Gu, V. Yegneswaran, P. Porras, J. Stoll, and W. Lee, “Active Botnet Probing to
Identify Obscure Command and Control Channels,” in Proceedings of the Annual
Computer Security Applications Conference (ACSAC), 2009, pp. 241–253.

[14] C. Zuo, Q. Zhao, and Z. Lin, “Authscope: Towards Automatic Discovery of Vul-
nerable Authorizations in Online Services,” in Proceedings of the 24th ACM Con-
ference on Computer and Communications Security (CCS), Dallas, TX, Oct. 2017,
pp. 799–813.

[15] A. Nappa, Z. Xu, M. Z. Rafique, J. Caballero, and G. Gu, “Cyberprobe: Towards
Internet-scale Active Detection of Malicious Servers,” in Proceedings of the 2014
Annual Network and Distributed System Security Symposium (NDSS), San Diego,
CA, Feb. 2014, pp. 1–15.

[16] Z. Xu, A. Nappa, R. Baykov, G. Yang, J. Caballero, and G. Gu, “Autoprobe: To-
wards Automatic Active Malicious Server Probing Using Dynamic Binary Analy-
sis,” in Proceedings of the 21st ACM Conference on Computer and Communica-
tions Security (CCS), Scottsdale, AZ, Nov. 2014, pp. 179–190.

[17] Z. Durumeric, E. Wustrow, and J. A. Halderman, “ZMap: Fast Internet-wide Scan-
ning and its Security Applications,” in 22nd USENIX Security Symposium (USENIX
Security 13), 2013, pp. 605–620.

[18] B. Stone-Gross et al., “Your Botnet is my Botnet: Analysis of a Botnet Takeover,”
in Proceedings of the 16th ACM conference on Computer and Communications
Security, 2009, pp. 635–647.

[19] Kelihos/hlux botnet returns with new techniques, https://securelist.com/kelihoshlux-
botnet-returns-with-new-techniques/32021/, [Accessed: 2020-12-10].

[20] I. Arghire, Trickbot botnet survives takedown attempt, https://www.securityweek.
com/trickbot-botnet-survives-takedown-attempt, [Accessed: 2020-12-10].

[21] J. Fuller et al., “C3PO: Large-Scale Study of Covert Monitoring of C&C Servers
via Over-Permissioned Protocol Infiltration,” in Proceedings of the 28th ACM Con-
ference on Computer and Communications Security (CCS), Seoul, South Korea,
Nov. 2021.

94

https://securelist.com/kelihoshlux-botnet-returns-with-new-techniques/32021/
https://securelist.com/kelihoshlux-botnet-returns-with-new-techniques/32021/
https://www.securityweek.com/trickbot-botnet-survives-takedown-attempt
https://www.securityweek.com/trickbot-botnet-survives-takedown-attempt

[22] J. Fuller et al., “Is that Malware Reading Twitter? Towards Understanding and
Preventing Dead Drop Resolvers on Public Web Apps,” in In Submission in 2023
IEEE Symposium on Security and Privacy (SP), IEEE, 2023.

[23] L. Böck, E. Vasilomanolakis, M. Mühlhäuser, and S. Karuppayah, “Next Gener-
ation P2P Botnets: Monitoring Under Adverse Conditions,” in Proceedings of the
21th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID), Crete, Greece, Sep. 2018, pp. 511–531.

[24] S. Karuppayah, L. Böck, T. Grube, S. Manickam, M. Mühlhäuser, and M. Fischer,
“Sensorbuster: On Identifying Sensor Nodes in P2P Botnets,” in Proceedings of
the 12th International Conference on Availability, Reliability and Security (ARES),
Reggio Calabria, Italy, Oct. 2017, pp. 1–6.

[25] S. Karuppayah, M. Fischer, C. Rossow, and M. Mühlhäuser, “On Advanced Moni-
toring in Resilient and Unstructured P2P Botnets,” IEEE, 2014, pp. 871–877.

[26] J. Caballero, P. Poosankam, C. Kreibich, and D. Song, “Dispatcher: Enabling Ac-
tive Botnet Infiltration using Automatic Protocol Reverse-Engineering,” in Pro-
ceedings of the 16th ACM Conference on Computer and Communications Security,
2009, pp. 621–634.

[27] J. Ma, K. Levchenko, C. Kreibich, S. Savage, and G. M, “Unexpected Means
of Protocol Inference,” in Proceedings of the Internet Measurement Conference
(IMC), Rio de Janeiro, Brazil, Oct. 2006, pp. 313–326.

[28] W. Cui, J. Kannan, and H. J. Wang, “Discoverer: Automatic Protocol Reverse En-
gineering from Network Traces,” in Proceedings of the 26th USENIX Security Sym-
posium (Security), Vancouver, BC, Canada, Aug. 2017, pp. 1–14.

[29] H. Dreger, A. Feldmann, M. Mai, V. Paxson, and R. Sommer, “Dynamic Application-
layer Protocol Analysis for Network Intrusion Detection,” in Proceedings of the
15th USENIX Security Symposium (Security), Vancouver, Canada, Jul. 2006, pp. 257–
272.

[30] J. Caballero, H. Yin, Z. Liang, and D. Song, “Polyglot: Automatic Extraction of
Protocol Message Format Using Dynamic Binary Analysis,” in Proceedings of the
14th ACM Conference on Computer and Communications Security (CCS), Alexan-
dria, VA, Nov. 2007, pp. 317–329.

[31] Z. Lin, X. Jiang, D. Xu, and X. Zhang, “Automatic Protocol Format Reverse Engi-
neering through Context-Aware Monitored Execution,” in Proceedings of the 15th
Annual Network and Distributed System Security Symposium (NDSS), vol. 8, San
Diego, CA, Feb. 2008, pp. 1–15.

95

[32] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, “Prospex: Protocol
Specification Extraction,” in Proceedings of the 30th IEEE Symposium on Security
and Privacy (S&P), Oakland, CA, May 2009, pp. 110–125.

[33] D. Binkley, N. Gold, and M. Harman, “An Empirical Study of Static Program Slice
Size,” 2, vol. 16, ACM, 2007, 8–es.

[34] D. Lucia, D. Lucca, et al., “Software salvaging based on conditions,” in Proceed-
ings 1994 International Conference on Software Maintenance, IEEE, 1994, pp. 424–
433.

[35] K. B. Gallagher, “Using program slicing in software maintenance,” Ph.D. disserta-
tion, University of Maryland, Baltimore County, 1990.

[36] M. Weiser and J. Lyle, “Experiments on slicing-based debugging aids,” in Papers
presented at the first workshop on empirical studies of programmers on Empirical
studies of programmers, 1986, pp. 187–197.

[37] D. Binkley, “The application of program slicing to regression testing,” Information
and software technology, vol. 40, no. 11-12, pp. 583–594, 1998.

[38] A. De Lucia, A. R. Fasolino, and M. Munro, “Understanding function behaviors
through program slicing,” in WPC’96. 4th Workshop on Program Comprehension,
IEEE, 1996, pp. 9–18.

[39] M. Harman, R. Hierons, C. Fox, S. Danicic, and J. Howroyd, “Pre/post conditioned
slicing,” in Proceedings IEEE International Conference on Software Maintenance.
ICSM 2001, IEEE, 2001, pp. 138–147.

[40] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural Slicing Using Dependence
Graphs,” in Proceedings of the 1988 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), vol. 12, Atlanta, GA, Jun. 1988,
pp. 26–60.

[41] M. Weiser, “Program slicing,” IEEE Transactions on software engineering, no. 4,
pp. 352–357, 1984.

[42] J. Jaffar, V. Murali, J. A. Navas, and A. E. Santosa, “Path-sensitive Backward
Slicing,” in Proceedings of the International Static Analysis Symposium (ISAS),
Springer, 2012, pp. 231–247.

[43] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, “Chianti: A Tool for Change
Impact Analysis of Java Programs,” ACM, 2004, pp. 432–448.

96

[44] V. Srinivasan and T. Reps, “An Improved Algorithm for Slicing Machine Code,”
10, vol. 51, ACM, 2016, pp. 378–393.

[45] C. Cadar and D. Engler, “Execution Generated Test Cases: How to Make Systems
Code Crash Itself,” in Proceedings of the International SPIN Workshop on Model
Checking of Software, Springer, San Francisco, CA, USA, Aug. 2005, pp. 2–23.

[46] V. Chipounov, V. Georgescu, C. Zamfir, and G. Candea, “Selective Symbolic Exe-
cution,” in Proceedings of the 5th Workshop on Hot Topics in System Dependability
(HotDep), Estoril, Portugal, Jun. 2009.

[47] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley, “Unleashing Mayhem on
Binary Code,” in Proceedings of the 33rd IEEE Symposium on Security and Privacy
(S&P), San Francisco, CA, May 2012, pp. 380–394.

[48] J. C. King, “Symbolic Execution and Program Testing,” Communications of the
ACM, vol. 19, no. 7, pp. 385–394, 1976.

[49] R. S. Boyer, B. Elspas, and K. N. Levitt, “SELECT — A Formal System for Testing
and Debugging Programs by Symbolic Execution,” 6, vol. 10, ACM, 1975, pp. 234–
245.

[50] L. A. Clarke, “A System to Generate Test Data and Symbolically Execute Pro-
grams,” 3, IEEE, 1976, pp. 215–222.

[51] F. Peng, Z. Deng, X. Zhang, D. Xu, Z. Lin, and Z. Su, “X-force: Force-executing
Binary Programs for Security Applications,” in Proceedings of the 23rd USENIX
Security Symposium (Security), San Diego, CA, Aug. 2014, pp. 829–844.

[52] K. Kim et al., “J-force: Forced Execution on Javascript,” in Proceedings of the 26th
international conference on World Wide Web, 2017, pp. 897–906.

[53] A. Naderi-Afooshteh, Y. Kwon, A. Nguyen-Tuong, A. Razmjoo-Qalaei, M.-R. Zamiri-
Gourabi, and J. W. Davidson, “MalMax: Multi-Aspect Execution for Automated
Dynamic Web Server Malware Analysis,” in Proceedings of the 26th ACM Confer-
ence on Computer and Communications Security (CCS), London, UK, Nov. 2011,
pp. 1849–1866.

[54] R. Brotzman, S. Liu, D. Zhang, G. Tan, and M. Kandemir, “Casym: Cache aware
symbolic execution for side channel detection and mitigation,” in CaSym: Cache
Aware Symbolic Execution for Side Channel Detection and Mitigation, IEEE, 2019.

[55] Y. Shoshitaishvili, R. Wang, C. Hauser, C. Kruegel, and G. Vigna, “Firmalice-
automatic detection of authentication bypass vulnerabilities in binary firmware.,”

97

in Proceedings of the 2015 Annual Network and Distributed System Security Sym-
posium (NDSS), San Diego, CA, Feb. 2015.

[56] S. Y. Chau et al., “Symcerts: Practical Symbolic Execution for Exposing Noncom-
pliance in X. 509 Certificate Validation Implementations,” in 2017 IEEE Sympo-
sium on Security and Privacy (SP), IEEE, 2017, pp. 503–520.

[57] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and P. Maniatis, “Path-
exploration lifting: Hi-fi tests for lo-fi emulators,” in Proceedings of the 17th ACM
International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), London, UK, Mar. 2012.

[58] Y. Shoshitaishvili et al., “Mechanical Phish: Resilient Autonomous Hacking,” in
Proceedings of the 39th IEEE Symposium on Security and Privacy (S&P), vol. 16,
San Francisco, CA, May 2018, pp. 12–22.

[59] C. Zuo and Z. Lin, “Smartgen: Exposing Server Urls of Mobile Apps with Selec-
tive Symbolic Execution,” in Proceedings of the 26th International Conference on
World Wide Web, 2017, pp. 867–876.

[60] O. Alrawi et al., “Forecasting Malware Capabilities From Cyber Attack Memory
Images,” in Proceedings of the 30th USENIX Security Symposium (Security), Vir-
tual Conference, Aug. 2021.

[61] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer, “Behavior-based
Spyware Detection,” in USENIX Security Symposium (Security), 2006, p. 694.

[62] E. Stinson and J. C. Mitchell, “Characterizing Bots’ Remote Control Behavior,”
in Proceedings of the Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), Lucerne, CH, Jul. 2007, pp. 89–108.

[63] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and J. C. Mitchell, “A Layered
Architecture for Detecting Malicious Behaviors,” in Proceedings of the 11th In-
ternational Symposium on Research in Attacks, Intrusions and Defenses (RAID),
Cambridge, Massachusetts, Sep. 2008, pp. 78–97.

[64] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X.-y. Zhou, and X. Wang,
“Effective and Efficient Malware Detection at the End Host,” in Proceedings of the
18th USENIX Security Symposium (Security), vol. 4, Montreal, Canada, Aug. 2009,
pp. 351–366.

[65] Y. Aafer, W. Du, and H. Yin, “Droidapiminer: Mining Api-level Features for Ro-
bust Malware Detection in Android,” in International Conference on Security and
Privacy in Communication Systems, Springer, 2013, pp. 86–103.

98

[66] G. J. Széles and A. Coleşa, “Malware Clustering Based on Called API During
Runtime,” in Proceedings of the International Workshop on Information and Oper-
ational Technology and Security (IOSec), Crete, GR, Sep. 2018, pp. 110–121.

[67] X. Deng and J. Mirkovic, “Malware Analysis Through High-level Behavior,” in
Proceedings of the 11th USENIX Workshop on Cyber Security Experimentation
and Test (CSET), Baltimore, MD, Aug. 2018.

[68] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel, “A View on Current
Malware Behaviors,” in Proceedings of the 2nd USENIX Workshop on Large-Scale
Exploits and Emergent Threats (LEET), Boston, MA, Apr. 2009.

[69] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda, “Inspector Gadget: Automated Ex-
traction of Proprietary Gadgets from Malware Binaries,” in 2010 IEEE Symposium
on Security and Privacy, IEEE, 2010, pp. 29–44.

[70] G. Anthes, “Security in the Cloud,” Communications of the ACM, vol. 53, no. 11,
pp. 16–18, 2010.

[71] Y. Chen, V. Paxson, and R. H. Katz, “What’s New About Cloud Computing Se-
curity,” University of California, Berkeley Report No. UCB/EECS-2010-5 January,
vol. 20, no. 2010, pp. 2010–5, 2010.

[72] F. Maggi and S. Zanero, “Rethinking security in a cloudy world,” Politecnico di
Milano, Tech. Rep. TR-2010-11, 2010.

[73] K. Clark, M. Warnier, and F. M. Brazer, “BOTCLOUDS: The Future of Cloud-
based Botnets?” In Proceedings of the 1st International Conference on Cloud Com-
puting and Services Science (CLOSER), Noordwijkerhout, Netherlands, May 2011.

[74] H. Badis, G. Doyen, and R. Khatoun, “Understanding Botclouds From a System
Perspective: A Principal Component Analysis,” in Proceedings of the IEEE/IFIP
Network Operations and Management Symposium (NOMS), IEEE, 2014.

[75] G. Lingam, R. R. Rout, D. V. L. N. Somayajulu, and S. K. Das, “Social Botnet
Community Detection: A Novel Approach based on Behavioral Similarity in Twit-
ter Network using Deep Learning,” in Proceedings of the 15th ACM Symposium on
Information, Computer and Communications Security (ASIACCS), Taipei, Taiwan,
Oct. 2020.

[76] N. Pantic and M. I. Husain, “Covert Botnet Command and Control Using Twit-
ter,” in Proceedings of the 31st Annual Computer Security Applications Conference
(ACSAC), Los Angeles, CA, Dec. 2015.

99

[77] H. Wang, Z. Xi, F. Li, and S. Chen, “Abusing Public Third-Party Services for EDoS
Attacks,” in Proceedings of the 10th USENIX Workshop on Offensive Technologies
(WOOT), Austin, TX, Aug. 2016.

[78] M. Torkashvan and H. Haghighi, “CB2C: A Cloud-Based Botnet Command and
Control,” Indian Journal of Science and Technology, vol. 8, no. 22, p. 1, 2015.

[79] W. Lu, M. Miller, and L. Xue, “Detecting Command and Control Channel of Bot-
nets in Cloud,” in International Conference on Intelligent, Secure, and Dependable
Systems in Distributed and Cloud Environments, Springer, 2017, pp. 55–62.

[80] S. Zhao, P. P. Lee, J. C. Lui, X. Guan, X. Ma, and J. Tao, “Cloud-Based Push-
Styled Mobile Botnets: A Case Study of Exploiting the Cloud to Device Messaging
Service,” in Proceedings of the Annual Computer Security Applications Conference
(ACSAC), 2012, pp. 119–128.

[81] Netskope Threat Research Reveals More Than Two-Thirds of Malware Downloads
Came From Cloud Apps in 2021, https : / / www. netskope . com / press - releases /
netskope-threat-research-reveals-more-than-two-thirds-of-malware-downloads-
came-from-cloud-apps-in-2021, [Accessed: 2022-03-12].

[82] Attack matrix for enterprise, https://attack.mitre.org/, [Accessed: 2021-11-06].

[83] Trickbot botnet survives takedown attempt, but microsoft sets new legal precedent,
https://www.zdnet.com/article/trickbot-botnet-survives- takedown-attempt-but-
microsoft-sets-new-legal-precedent/, [Accessed: 2020-12-10].

[84] An update on disruption of trickbot, https://blogs.microsoft.com/on- the- issues/
2020/10/20/trickbot-ransomware-disruption-update, [Accessed: 2020-12-10].

[85] S. Banescu and A. Pretschner, “A Tutorial on Software Obfuscation,” vol. 108,
Elsevier, 2018, pp. 283–353.

[86] Carbanak APT: The Great Bank Robbery, https : / / media . kasperskycontenthub.
com/wp- content/uploads/sites/43/2018/03/08064518/Carbanak APT eng.pdf,
[Accessed: 2020-04-16].

[87] A. Mandal, Thick Client Application Security, http : / /www. infosecwriters . com/
Papers/AMandal Thick Client Application Security.pdf, [Accessed: 2020-04-18].

[88] O. Alrawi, C. Zuo, R. Duan, R. P. Kasturi, Z. Lin, and B. Saltaformaggio, “The
Betrayal at Cloud City: An Empirical Analysis of Cloud-based Mobile Backends,”
in Proceedings of the 28th USENIX Security Symposium (Security), Santa Clara,
CA, Aug. 2019, pp. 551–566.

100

https://www.netskope.com/press-releases/netskope-threat-research-reveals-more-than-two-thirds-of-malware-downloads-came-from-cloud-apps-in-2021
https://www.netskope.com/press-releases/netskope-threat-research-reveals-more-than-two-thirds-of-malware-downloads-came-from-cloud-apps-in-2021
https://www.netskope.com/press-releases/netskope-threat-research-reveals-more-than-two-thirds-of-malware-downloads-came-from-cloud-apps-in-2021
https://attack.mitre.org/
https://www.zdnet.com/article/trickbot-botnet-survives-takedown-attempt-but-microsoft-sets-new-legal-precedent/
https://www.zdnet.com/article/trickbot-botnet-survives-takedown-attempt-but-microsoft-sets-new-legal-precedent/
https://blogs.microsoft.com/on-the-issues/2020/10/20/trickbot-ransomware-disruption-update
https://blogs.microsoft.com/on-the-issues/2020/10/20/trickbot-ransomware-disruption-update
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064518/Carbanak_APT_eng.pdf
https://media.kasperskycontenthub.com/wp-content/uploads/sites/43/2018/03/08064518/Carbanak_APT_eng.pdf
http://www.infosecwriters.com/Papers/AMandal_Thick_Client_Application_Security.pdf
http://www.infosecwriters.com/Papers/AMandal_Thick_Client_Application_Security.pdf

[89] Command and Control Used in Sanny APT Attacks Shut Down, https://threatpost.
com/command-and-control-used-sanny-apt-attacks-shut-down-032213/77658/,
[Accessed: 2021-01-09].

[90] Sanny Malware Updates Delivery Method, https://threatpost.com/sanny-malware-
updates-delivery-method/130803/, [Accessed: 2021-01-09].

[91] B. Cheng et al., “Towards Paving the way for Large-Scale Windows Malware Anal-
ysis: Generic Binary Unpacking with Orders-of-Magnitude Performance Boost,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communica-
tions Security, 2018, pp. 395–411.

[92] X. Ugarte-Pedrero, D. Balzarotti, I. Santos, and P. G. Bringas, “SoK: Deep Packer
Inspection: A Longitudinal Study of the Complexity of Run-time Packers,” in Pro-
ceedings of the 36th IEEE Symposium on Security and Privacy (S&P), San Jose,
CA, May 2015, pp. 659–673.

[93] Mandiant, APT1: Exposing One of China’s Cyber Espionage Units, https://www.
fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf,
[Accessed: 2020-05-23].

[94] M. D. Brown and S. Pande, “CARVE: Practical Security-focused Software De-
bloating using Simple Feature Set Mappings,” in Proceedings of the 3rd ACM
Workshop on Forming an Ecosystem Around Software Transformation (FEAST),
London, United Kingdom, 2019, pp. 1–7.

[95] Microsoft Documentation, https://docs.microsoft.com/en-us/, [Accessed: 2021-01-
09].

[96] C. Kalt, “Internet relay chat: Client protocol,” RFC Editor, RFC 2812, Apr. 2000.

[97] MRFC 1350 - The TFTP Protocol, https://tools.ietf.org/html/rfc1350, [Accessed:
2021-01-09].

[98] MySQL Documentation, https://dev.mysql.com/doc/, [Accessed: 2021-01-09].

[99] MongoDB C Driver, https://docs.mongodb.com/drivers/c, [Accessed: 2021-01-09].

[100] Malpedia: Free and Open Malware Reverse Engineering Resource offered by Fraun-
hofer FKIE, https://malpedia.caad.fkie.fraunhofer.de, [Accessed: 2021-11-06].

[101] G. Hunt and D. Brubacher, “Detours: Binary Interception of Win32 Functions,” in
Proceedings of the 3rd USENIX Windows NT Symposium, Seattle, WA, Jul. 1999.

101

https://threatpost.com/command-and-control-used-sanny-apt-attacks-shut-down-032213/77658/
https://threatpost.com/command-and-control-used-sanny-apt-attacks-shut-down-032213/77658/
https://threatpost.com/sanny-malware-updates-delivery-method/130803/
https://threatpost.com/sanny-malware-updates-delivery-method/130803/
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://www.fireeye.com/content/dam/fireeye-www/services/pdfs/mandiant-apt1-report.pdf
https://docs.microsoft.com/en-us/
https://tools.ietf.org/html/rfc1350
https://dev.mysql.com/doc/
https://docs.mongodb.com/drivers/c
https://malpedia.caad.fkie.fraunhofer.de

[102] Y. Shoshitaishvili et al., “SoK: (State of) The Art of War: Offensive Techniques
in Binary Analysis,” in Proceedings of the 37th IEEE Symposium on Security and
Privacy (S&P), San Jose, CA, May 2016, pp. 138–157.

[103] S. Sebastián and J. Caballero, “AVclass2: Massive Malware Tag Extraction from
AV Labels,” in Proceedings of the 36th Annual Computer Security Applications
Conference (ACSAC), Virtual Conference, Dec. 2020, pp. 42–53.

[104] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero, “Avclass: A Tool for Mas-
sive Malware Labeling,” in Proceedings of the 19th International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), Evry, France, Sep. 2016,
pp. 230–253.

[105] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and M. Antonakakis, “A Lustrum
of Malware Network Communication: Evolution and Insights,” in 2017 IEEE Sym-
posium on Security and Privacy (SP), IEEE, 2017, pp. 788–804.

[106] P. Kotzias, L. Bilge, and J. Caballero, “Measuring PUP Prevalence and PUP Dis-
tribution through Pay-Per-Install Services,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 739–756.

[107] X. Mi et al., “Resident Evil: Understanding Residential IP Proxy as a Dark Ser-
vice,” in Proceedings of the 40th IEEE Symposium on Security and Privacy (S&P),
San Francisco, CA, May 2019, pp. 1185–1201.

[108] D. Kim, B. J. Kwon, K. Kozák, C. Gates, and T. Dumitras, , “The Broken Shield:
Measuring Revocation Effectiveness in the Windows Code-Signing PKI,” in Pro-
ceedings of the 27th USENIX Security Symposium (Security), Baltimore, MD, Aug.
2018, pp. 851–868.

[109] R. Perdisci, W. Lee, and N. Feamster, “Behavioral Clustering of HTTP-based Mal-
ware and Signature Generation using Malicious Network Traces,” in Proceedings
of the 7th USENIX Symposium on Networked Systems Design and Implementation
(NSDI), San Jose, CA, Apr. 2010.

[110] R. F. M. Dollah, M. Faizal, F. Arif, M. Z. Mas’ud, and L. K. Xin, “Machine Learn-
ing for HTTP Botnet Detection Using Classifier Algorithms,” vol. 10, Universiti
Teknikal Malaysia Melaka, 2018, pp. 27–30.

[111] T. Nelms, R. Perdisci, and M. Ahamad, “Execscent: Mining for new C&C Domains
in Live Networks with Adaptive Control Protocol Templates,” in 22nd USENIX
Security Symposium (USENIX Security 13), 2013, pp. 589–604.

102

[112] A. Oprea, Z. Li, R. Norris, and K. Bowers, “Made: Security Analytics for En-
terprise Threat Detection,” in Proceedings of the 34th Annual Computer Security
Applications Conference (ACSAC), 2018.

[113] New Chrome Password Stealer Sends Stolen Data to a MongoDB Database, https:
/ / www. bleepingcomputer. com / news / security / new - chrome - password - stealer -
sends-stolen-data-to-a-mongodb-database/, [Accessed: 2020-02-06].

[114] X. Lin, Expiro malware is back and even harder to remove, https://www.mcafee.
com/blogs/other-blogs/mcafee-labs/expiro-infects-encrypts-files-to-complicate-
repair/, [Accessed: 2020-08-14].

[115] Peid, https://www.aldeid.com/wiki/PEiD, [Accessed: 2021-01-11].

[116] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my
Cloud: Exploring Information Leakage in Third-Party Compute Clouds,” in Pro-
ceedings of the 16th ACM conference on Computer and Communications Security,
2009, pp. 199–212.

[117] F. Li et al., “You’ve got Vulnerability: Exploring Effective Vulnerability Notifica-
tions,” in 25th USENIX Security Symposium (USENIX Security 16), 2016, pp. 1033–
1050.

[118] A. J. Burstein, “Conducting Cybersecurity Research Legally and Ethically,” in
Proceedings of the 1st USENIX Workshop on Large-Scale Exploits and Emergent
Threats (LEET), vol. 8, San Francisco, CA, Apr. 2008, pp. 1–8.

[119] Moulton vs. VC3], http://www.internetlibrary.com/pdf/Moulton-VC3.pdf/, [Ac-
cessed: 2020-08-14].

[120] Latest steam malware shows signs of rat activity, https://blog.malwarebytes.com/
cybercrime/2016/03/latest-steam-malware-shows-sign-of-rat-activity/, [Accessed:
2020-08-20].

[121] VirusTotal, https://www.virustotal.com/, [Accessed: 2022-1-5].

[122] M. Antonakakis et al., “From Throw-away Traffic to Bots: Detecting the Rise of
DGA-based Malware,” in Proceedings of the 21st USENIX Security Symposium
(Security), Bellevue, WA, Aug. 2012, pp. 491–506.

[123] Donot team leverages new modular malware framework in south asia, https : / /
www.netscout .com/blog/asert /donot- team- leverages- new- modular- malware-
framework-south-asia, [Accessed: 2020-08-22].

103

https://www.bleepingcomputer.com/news/security/new-chrome-password-stealer-sends-stolen-data-to-a-mongodb-database/
https://www.bleepingcomputer.com/news/security/new-chrome-password-stealer-sends-stolen-data-to-a-mongodb-database/
https://www.bleepingcomputer.com/news/security/new-chrome-password-stealer-sends-stolen-data-to-a-mongodb-database/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/expiro-infects-encrypts-files-to-complicate-repair/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/expiro-infects-encrypts-files-to-complicate-repair/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/expiro-infects-encrypts-files-to-complicate-repair/
https://www.aldeid.com/wiki/PEiD
http://www.internetlibrary.com/pdf/Moulton-VC3.pdf/
https://blog.malwarebytes.com/cybercrime/2016/03/latest-steam-malware-shows-sign-of-rat-activity/
https://blog.malwarebytes.com/cybercrime/2016/03/latest-steam-malware-shows-sign-of-rat-activity/
https://www.virustotal.com/
https://www.netscout.com/blog/asert/donot-team-leverages-new-modular-malware-framework-south-asia
https://www.netscout.com/blog/asert/donot-team-leverages-new-modular-malware-framework-south-asia
https://www.netscout.com/blog/asert/donot-team-leverages-new-modular-malware-framework-south-asia

[124] Fast Flux Networks Working and Detection, https://resources.infosecinstitute.com/
topic/fast-flux-networks-working-detection-part-1, [Accessed: 2022-03-12].

[125] Dynamic Resolution: Fast Flux DNS, https://attack.mitre.org/techniques/T1568/
001/, [Accessed: 2022-03-12].

[126] Fast Flux networks: What are they and how do they work? https://www.welivesecurity.
com/2017/01/12/fast-flux-networks-work, [Accessed: 2022-03-12].

[127] Dynamic Resolution: DNS Calculation, https://attack.mitre.org/techniques/T1568/
003/, [Accessed: 2022-03-12].

[128] Whois Numbered Panda, https:/ /www.crowdstrike.com/blog/whois- numbered-
panda/, [Accessed: 2022-03-12].

[129] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-Padilla, “A Com-
prehensive Measurement Study of Domain Generating Malware,” in 25th USENIX
Security Symposium (USENIX Security 16), 2016, pp. 263–278.

[130] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “Exposure: Finding Malicious
Domains Using Passive DNS Analysis,” in NDSS, 2011, pp. 1–17.

[131] Hackers buying space from major cloud providers to distribute malware, https :
//www.securitymagazine.com/articles/96900-hackers-buying-space-from-major-
cloud-providers-to-distribute-malware, [Accessed: 2022-03-12].

[132] Cloud and Threat Report: Cloudy with a Chance of Malware, https://www.netskope.
com/blog/cloud-and-threat-report-cloudy-with-a-chance-of-malware, [Accessed:
2022-03-12].

[133] R. P. Kasturi et al., “TARDIS: Rolling back the Clock on CMS-Targeting Cyber
Attacks,” in 2020 IEEE Symposium on Security and Privacy (SP), IEEE, 2020,
pp. 1156–1171.

[134] R. P. Kasturi et al., “Mistrust Plugins You Must: A Large-Scale Study Of Malicious
Plugins In WordPress Marketplaces,” in Proceedings of the 31th USENIX Security
Symposium (Security), Boston, MA, Aug. 2022.

[135] Read The Manual: A Guide to the RTM Banking Trojan, https://www.welivesecurity.
com/wp-content/uploads/2017/02/Read-The-Manual.pdf, [Accessed: 2022-03-
12].

[136] APT17: Hiding in Plain Sight - FireEye and Microsoft Expose Obfuscation Tactic,
https://www.fireeye.com/current- threats/apt-groups/rpt-apt17.html, [Accessed:
2021-02-21].

104

https://resources.infosecinstitute.com/topic/fast-flux-networks-working-detection-part-1
https://resources.infosecinstitute.com/topic/fast-flux-networks-working-detection-part-1
https://attack.mitre.org/techniques/T1568/001/
https://attack.mitre.org/techniques/T1568/001/
https://www.welivesecurity.com/2017/01/12/fast-flux-networks-work
https://www.welivesecurity.com/2017/01/12/fast-flux-networks-work
https://attack.mitre.org/techniques/T1568/003/
https://attack.mitre.org/techniques/T1568/003/
https://www.crowdstrike.com/blog/whois-numbered-panda/
https://www.crowdstrike.com/blog/whois-numbered-panda/
https://www.securitymagazine.com/articles/96900-hackers-buying-space-from-major-cloud-providers-to-distribute-malware
https://www.securitymagazine.com/articles/96900-hackers-buying-space-from-major-cloud-providers-to-distribute-malware
https://www.securitymagazine.com/articles/96900-hackers-buying-space-from-major-cloud-providers-to-distribute-malware
https://www.netskope.com/blog/cloud-and-threat-report-cloudy-with-a-chance-of-malware
https://www.netskope.com/blog/cloud-and-threat-report-cloudy-with-a-chance-of-malware
https://www.welivesecurity.com/wp-content/uploads/2017/02/Read-The-Manual.pdf
https://www.welivesecurity.com/wp-content/uploads/2017/02/Read-The-Manual.pdf
https://www.fireeye.com/current-threats/apt-groups/rpt-apt17.html

[137] Web service, https://attack.mitre.org/techniques/T1102/, [Accessed: 2021-11-06].

[138] OPERATION GHOST. The Dukes aren’t back — they never left, https : / / www.
welivesecurity.com/wp-content/uploads/2019/10/ESET Operation Ghost Dukes.
pdf, [Accessed: 2022-02-26].

[139] Casbaneiro: Dangerous Cooking with a Secret Ingredient, https://www.welivesecurity.
com/2019/10/03/casbaneiro-trojan-dangerous-cooking/, [Accessed: 2022-03-06].

[140] The Dropping Elephant - Aggressive Cyber-Espionage in the Asian Region, https:
//securelist.com/the-dropping-elephant-actor/75328/, [Accessed: 2022-03-06].

[141] Analyzing malware by API calls, https://blog.malwarebytes.com/threat-analysis/
2017/10/analyzing-malware-by-api-calls/, [Accessed: 2022-03-06].

[142] F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in USENIX Annual
Technical Conference, FREENIX Track, California, USA, vol. 41, 2005, pp. 10–
5555.

[143] Getting Started with Winsock, https://docs.microsoft.com/en-us/windows/win32/
winsock/getting-started-with-winsock, [Accessed: 2021-11-06].

[144] About WinINet, https://docs.microsoft.com/en-us/windows/win32/wininet/about-
wininet, [Accessed: 2022-03-12].

[145] About WinHTTP, https : / /docs .microsoft . com/en- us /windows /win32 /winhttp /
about-winhttp, [Accessed: 2022-03-12].

[146] A. Küchler, A. Mantovani, Y. Han, L. Bilge, and D. Balzarotti, “Does Every Second
Count? Time-Based Evolution of Malware Behavior in Sandboxes,” in Proceedings
of the 2021 Annual Network and Distributed System Security Symposium (NDSS),
Virtual Conference, Feb. 2021.

[147] L. Maffia, D. Nisi, P. Kotzias, G. Lagorio, S. Aonzo, and D. Balzarotti, “Longi-
tudinal Study of the Prevalence of Malware Evasive Techniques,” arXiv preprint
arXiv:2112.11289, 2021.

[148] N. Galloro, M. Polino, M. Carminati, A. Continella, and S. Zanero, “A Systemati-
cal and Longitudinal Study of Evasive Behaviors in Windows Malware,” COSE22,
vol. 113,

[149] J. Gao and S. S. Lumetta, “Loop Path Reduction by State Pruning,” in 2018 33rd
IEEE/ACM International Conference on Automated Software Engineering (ASE),
IEEE, 2018, pp. 838–843.

105

https://attack.mitre.org/techniques/T1102/
https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf
https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf
https://www.welivesecurity.com/wp-content/uploads/2019/10/ESET_Operation_Ghost_Dukes.pdf
https://www.welivesecurity.com/2019/10/03/casbaneiro-trojan-dangerous-cooking/
https://www.welivesecurity.com/2019/10/03/casbaneiro-trojan-dangerous-cooking/
https://securelist.com/the-dropping-elephant-actor/75328/
https://securelist.com/the-dropping-elephant-actor/75328/
https://blog.malwarebytes.com/threat-analysis/2017/10/analyzing-malware-by-api-calls/
https://blog.malwarebytes.com/threat-analysis/2017/10/analyzing-malware-by-api-calls/
https://docs.microsoft.com/en-us/windows/win32/winsock/getting-started-with-winsock
https://docs.microsoft.com/en-us/windows/win32/winsock/getting-started-with-winsock
https://docs.microsoft.com/en-us/windows/win32/wininet/about-wininet
https://docs.microsoft.com/en-us/windows/win32/wininet/about-wininet
https://docs.microsoft.com/en-us/windows/win32/winhttp/about-winhttp
https://docs.microsoft.com/en-us/windows/win32/winhttp/about-winhttp

[150] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M. Korczyński, and W. Joosen,
“Tranco: A Research-Oriented Top Sites Ranking Hardened Against Manipula-
tion,” in Proceedings of the 2019 Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2019.

[151] H. Asghari, M. Ciere, and M. J. Van Eeten, “Post-mortem of a Zombie: Conficker
Cleanup after Six Years,” in Proceedings of the 24th USENIX Security Symposium
(Security), Washington, DC, Aug. 2015, pp. 1–16.

[152] Double Dragon - APT41, a Dual Espionage and Cyber Crime Operation, https :
//content.fireeye.com/apt-41/rpt-apt41, [Accessed: 2022-03-06].

[153] Monsoon – Analysis of an APT Campaign, https : / /www. forcepoint . com/sites /
default/files/resources/files/forcepoint-security-labs-monsoon-analysis-report.pdf,
[Accessed: 2022-03-06].

[154] Understanding the Patchwork Cyberespionage Group, https://documents.trendmicro.
com/assets/tech-brief-untangling-the-patchwork-cyberespionage-group.pdf, [Ac-
cessed: 2022-03-06].

[155] Bronze Butler Targets Japanese Enterprises, https : / / www . secureworks . com /
research/bronze-butler-targets-japanese-businesses, [Accessed: 2022-03-06].

[156] Pony’s C&C Servers Hidden Inside the Bitcoin Blockchain, https://research.checkpoint.
com/2019/ponys-cc-servers-hidden- inside- the-bitcoin-blockchain/, [Accessed:
2022-03-06].

[157] Multigrain - Point of Sale Attackers Make an Unhealthy Adition to the Pantry,
https://www.fireeye.com/blog/threat- research/2016/04/multigrain pointo.html,
[Accessed: 2021-11-06].

[158] Gustuff Banking Botnet Targets Australia, https://blog.talosintelligence.com/2019/
04/gustuff-targets-australia.html, [Accessed: 2022-03-06].

[159] Biopass RAT: New Malware Sniffs Victims via Live Streaming, https : / / www .
trendmicro.com/en us/research/21/g/biopass-rat-new-malware-sniffs-victims-via-
live-streaming.html, [Accessed: 2021-11-06].

[160] Malware Campaign Targets South Korean Banks, https : / /blog. trendmicro.com/
trendlabs-security- intelligence/malware-campaign- targets-south-korean-banks-
uses-pinterest-as-cc-channel/, [Accessed: 2021-11-06].

[161] A System for Detecting Software Similarity, https: / / theory.stanford.edu/∼aiken/
moss/, [Accessed: 2022-02-26].

106

https://content.fireeye.com/apt-41/rpt-apt41
https://content.fireeye.com/apt-41/rpt-apt41
https://www.forcepoint.com/sites/default/files/resources/files/forcepoint-security-labs-monsoon-analysis-report.pdf
https://www.forcepoint.com/sites/default/files/resources/files/forcepoint-security-labs-monsoon-analysis-report.pdf
https://documents.trendmicro.com/assets/tech-brief-untangling-the-patchwork-cyberespionage-group.pdf
https://documents.trendmicro.com/assets/tech-brief-untangling-the-patchwork-cyberespionage-group.pdf
https://www.secureworks.com/research/bronze-butler-targets-japanese-businesses
https://www.secureworks.com/research/bronze-butler-targets-japanese-businesses
https://research.checkpoint.com/2019/ponys-cc-servers-hidden-inside-the-bitcoin-blockchain/
https://research.checkpoint.com/2019/ponys-cc-servers-hidden-inside-the-bitcoin-blockchain/
https://www.fireeye.com/blog/threat-research/2016/04/multigrain_pointo.html
https://blog.talosintelligence.com/2019/04/gustuff-targets-australia.html
https://blog.talosintelligence.com/2019/04/gustuff-targets-australia.html
https://www.trendmicro.com/en_us/research/21/g/biopass-rat-new-malware-sniffs-victims-via-live-streaming.html
https://www.trendmicro.com/en_us/research/21/g/biopass-rat-new-malware-sniffs-victims-via-live-streaming.html
https://www.trendmicro.com/en_us/research/21/g/biopass-rat-new-malware-sniffs-victims-via-live-streaming.html
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://blog.trendmicro.com/trendlabs-security-intelligence/malware-campaign-targets-south-korean-banks-uses-pinterest-as-cc-channel/
https://theory.stanford.edu/~aiken/moss/
https://theory.stanford.edu/~aiken/moss/

[162] The Malicious Use of Pastebin, https://www.fortinet.com/blog/threat- research/
malicious-use-of-pastebin, [Accessed: 2022-03-12].

[163] T. Taniguchi, H. Griffioen, and C. Doerr, “Analysis and Takeover of the Bitcoin-
Coordinated Pony Malware,” in Proceedings of the 16th ACM Symposium on Infor-
mation, Computer and Communications Security (ASIACCS), Hong Kong, China,
Jun. 2021.

[164] Bitcoin abuse database, https://www.bitcoinabuse.com/, [Accessed: 2022-2-06].

[165] J. Li, Z. Lin, J. Caballero, Y. Zhang, and D. Gu, “K-Hunt: Pinpointing Insecure
Cryptographic Keys from Execution Traces,” in Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security, 2018, pp. 412–
425.

[166] D. Xu, J. Ming, and D. Wu, “Cryptographic Function Detection in Obfuscated Bi-
naries via Bit-Precise Symbolic Loop Mapping,” in 2017 IEEE Symposium on Se-
curity and Privacy (SP), IEEE, 2017, pp. 921–937.

[167] C. Meijer, V. Moonsamy, and J. Wetzels, “Where’s crypto?: Automated identifica-
tion and classification of proprietary cryptographic primitives in binary code,” in
30th USENIX Security Symposium (USENIX Security 21), 2021, pp. 555–572.

[168] How malware writers’ laziness is helping one startup predict attacks before they
even happen, https : / /www.zdnet . com/article / how- malware - writers - laziness -
is - helping- one- startup- predict - attacks- before- they- even- happen/, [Accessed:
2022-1-16].

[169] K. Thomas et al., “Sok: Hate, Harassment, and The Changing Landscape of On-
line Abuse,” in Proceedings of the 42nd IEEE Symposium on Security and Privacy
(S&P), San Francisco, CA, May 2021, pp. 247–267.

[170] J. A. Pater, M. K. Kim, E. D. Mynatt, and C. Fiesler, “Characterizations of Online
Harassment: Comparing Policies Across Social Media Platforms,” in Proceedings
of the 19th international conference on supporting group work, 2016, pp. 369–374.

[171] S. Zannettou, J. Blackburn, E. De Cristofaro, M. Sirivianos, and G. Stringhini,
“Understanding Web Archiving Services and their (Mis) Use on Social Media,”
in Twelfth International AAAI Conference on Web and Social Media, 2018.

107

https://www.fortinet.com/blog/threat-research/malicious-use-of-pastebin
https://www.fortinet.com/blog/threat-research/malicious-use-of-pastebin
https://www.bitcoinabuse.com/
https://www.zdnet.com/article/how-malware-writers-laziness-is-helping-one-startup-predict-attacks-before-they-even-happen/
https://www.zdnet.com/article/how-malware-writers-laziness-is-helping-one-startup-predict-attacks-before-they-even-happen/

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	1 | Introduction
	Motivation
	Thesis Statement
	Research Scope and Outline

	2 | Related Work
	C&C Infiltration and Monitoring
	Communication Protocol Identification
	Backward Slicing
	Symbolic Execution
	Malware Capability Analysis
	Web Application Abuse

	3 | C3PO: Large-Scale Study of Covert Monitoring of Command & Control Servers via Over-Permissioned Protocol Infiltration
	A Motivating Example
	Measurement Pipeline
	Validating our Techniques
	Large-scale Deployment
	C3PO Applied
	Discussion and Limitations
	Conclusion

	4 | R2D2: Is That Malware Reading Twitter? Towards Understanding and Preventing Dead Drop Resolvers on Public Web Apps
	Overview
	Design
	Validating Our Techniques
	Dead Drop Resolver Findings
	Discussion
	Conclusion

	5 | Conclusion and Future Work
	Goals
	Challenges
	Solutions and Results
	Future Work

	References

