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Abstract- Autonomous Baiting, Control and Deception of Adversarial Cyberspace 
Participants (ABCD-ACP) is an experimental defensive framework against potentially 
adversarial cyberspace participants, such as malicious software and subversive 
insiders. By deploying fake targets (called baits/stimuli) onto a virtualized 
environment, the framework seeks to probabilistically identify suspicious participants 
through aggregate suspicious behavior, subvert their decision structure and goad them 
into a position favorable to the defense. Baits include simulating insertion of readable 
and writable drives with weak or no password, marked doc/pdf/txt/exe/cad/xls/dat 
files, processes with popular target names and processes that detect thread injections.  
This approach bears some similarities to the concept of subverting an enemy's OODA 
(Observe, Orient, Decide, and Act) loop, an information warfare strategy which seeks 
to proactively influence and change enemy behavior. By controlling perception of the 
environment, this approach similarly seeks to influence adversarial participants’ 
decision complexity, noise levels, effectiveness and ultimately their ability to fulfill their 
mission. This is a work in progress: The conceptual framework is described, and 
implemented baits and preliminary empirical results are presented.  
The long term project end vision is an autonomic framework playing a repeated, 
dynamic, imperfect information, non-cooperative stimuli-response game which 
probabilistically identifies, then impedes, quarantines, subverts, possibly attributes and 
possibly inoculates against suspected adversarial cyberspace participants. 
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I. INTRODUCTION 
It is written that a person’s character may be recognized by how he handles 
alcohol, his conduct in financial matters and his anger. In other words, behavior 
shown in certain situations gives insight into character. A cyber-defensive 
approach in the form of a behavioral stimuli-response framework is presented in 
this paper. It should be noted that is work in progress. 
 
Why is this needed? It is needed as an addition to Defense-in-Depth. The empirical 
performance of the first line of defense - anti-viral (AV) byte signature blacklisting 
- has been steadily declining.  Independent laboratory test results over a period of a 
decade have shown a steady rise in false negative rates, i.e. failing to detect 
malicious code. The average miss rate of even previously submitted malicious code 
hovers in the double digits. In 2010, after failing to update static signatures for just 
one week, the best AV tested missed 37%, the worst between 60% and 90% (see 
TABLE I. ). 

TABLE I.  DETECTION RATE RANGES OF SIXTEEN TO TWENTY POPULAR AV SCANNERS [1] 

Report Date AV Signature Update Malicious Code Corpus Date False Negatives (%) 
2010/11 Aug. 16th Aug. 17th-24th  [38-63] 
2010/08 Aug. 16th Aug. 6th  [0.2-19.1] 
2010/05 Feb. 10th Feb 11th-18th [37-89] 
2010/02 Feb. 10th  Feb. 3rd [0.4-19.2] 
2009/11 Aug. 10th Aug. 11th-17th [26-68] 
2009/08 Aug. 10th Aug. 10th [0.2-15.2] 
2009/05 Feb. 9th Feb. 9th -16th [31-86] 
2009/02 Feb. 9th Feb. 1st [0.2-15.1] 
2008/11 Aug. 4th Aug. 4th -11th [29-81] 
2008/08 Aug. 4th Aug. 1st [0.4-13.5] 
2008/05 Feb. 4th Feb. 5th -12th [26-94] 
2008/02 Feb. 4th Feb. 2nd [0.2-12.3] 

 
In addition, recent advances in formal computer virology show that detection of 
malicious code that poses the most problems (staged downloads and interactive) 
cannot be accomplished in linear time and enters the realm of exhaustive search 
space and undecidability. Reference [2] proved that detection of interactive 
malicious code is at least in complexity class NP((NP^oracle)^(NP^oracle)) . 
 
This is no accident since the design and implementation of modern malware seeks 
to specifically undermine the information gain of static signature approaches, in 
effect presenting the defense with Halting-type problems. The reverse is not true: 
From the point of view of adversarial participants, cyber-targets are pathologically 
honest and do not systematically confuse adversarial participants with high entropy 
schemes. 
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This paper’s view is that defenses have to adopt similar comprehensive 
dissimulation and deception stances on cyber-targets and embedding 
environments. By turning the tables on potentially Adversarial Cyberspace 
Participants (ACP), their code footprint, decision complexity, noise levels and 
uncertainty about the ‘real’ view of the cyber-environment are increased, thereby 
giving defenses more temporal and spatial leeway. This experimental framework is 
not meant to substitute for but rather complement traditional blacklisting byte 
signature based mitigation approaches whose limitations are well-known [3].  

II. PRIOR WORK 
This paper emphasizes the primacy of ACP control flow subversion through 
judicious manipulation of the environment’s observables. In the realm of best-of-
breed static structural signatures, [4] extracted malware family signatures using 
maximum graph homomorphism between the function callgraph of two 
executables. The flowgraph structure and its code ‘neighborhood’ were used to 
develop an opcode-sequence agnostic graph hash for fast approximate comparison.  
The intersection of known family members subsequently generated the family 
superstructure signature. Such a signature extracted automatically from 15 variants 
of the polymorphic malware family ‘Swizzor’ was able to recognize 900 additional 
variants (in a sample of 20,000 unsorted pieces of malware) with no false positives. 
However, this approach required pertinent structural information to be recovered; a 
proposition that does not hold with malware that purposely obfuscates its control 
flow structure. 
 
This paper also posits ACPs (especially malicious software) to be sensitive to real 
or perceived operating environment changes. For evidence consistent with this 
assertion, the reader is referred to the 2005 analysis of the Slammer worm, in 
which complex dependencies between user/kernel processes and threading are 
described, as well as the 2008/2009 Conficker A worm, which exits upon detection 
of a Ukrainian keyboard locale [5] [6]. In a comprehensive 2008 empirical study, 
[7] investigated the environmental awareness of modern malware by measuring the 
deterrence value of imitating virtual machines and debuggers through light-weight 
registry key insertions, system call hooking (e.g. CheckRemoteDebuggerPresent() 
set to TRUE) and process generation (e.g. a process named OllyDbg, a popular 
debugger). Of the 6205 malware samples, about 25% reduced their malicious 
behavior through these light-weight techniques. 
 
This paper’s approach furthermore seeks to draw ACPs into a repeated stimuli-
response game with the expectation that its dynamic behavior can be influenced 
quicker than non-malicious participants. In a comparative analysis of malicious 
and non-malicious software, [8] showed through statistical static structural analysis 
that malicious code tended to have a lower basic block count, implying a simpler 
decision structure: less interaction, fewer branches and limited goals compared to 
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non-malicious software.  This suggests that malicious code can be ‘outplayed’ by 
exploiting this simpler decision structure. 
 
From an implementation point of view, honeypots and honeynets - simulated 
decoys that detract from 'real' networks, hosts and services – are well known 
examples of ‘morphing the network’, i.e. changing the perception of the network’s 
makeup. Reference [9] implemented a highly scalable, parsimonious hybridization 
of low- and high-interaction honeynets that doubled as a platform for malware 
collection. He suggested it to be used as part of an automated, next-generation 
system to stop botnets. Ad-hoc hot patching, as well as randomization techniques 
(randomized heap/stack/library positioning at compile, link and load times) are 
incorporated into modern operating systems like Windows Vista/7 [10]. 
 
Lastly, probabilistic identification and control of hitherto-unknown/unseen threats 
serves to enhance situational and behavioral awareness on a host, network and 
mission level. In this, this project complements other efforts in US military 
domains:  DARPA’s Integrated Battle Command (BAA 05-14) gives decision aids 
for battle operations, DARPA’s Real-Time Adversarial Intelligence & Decision 
Making (BAA 04-16) tries to help battlefield commanders compute and counteract 
threat predictions in tactical operations. Lastly, Israel’s Virtual Battle Management 
AI - a defense system designed to handle situations that exceed the physiological 
limits of human command in case of a doomsday strike - mirrors most closely the 
project end vision [11]. 

III. DESIGN OF FRAMEWORK 
The Gameboard consists of a virtualized operating environment (a Windows XP 
SP2 VM) which is ‘morphed’ by the Defender. Morphing means that from the 
point of view of Gameboard participants, the environment (or merely its perception 
by the participants) is altered via stimuli in order to provoke a reaction that could 
be used for identification. Stimuli (such as a .pst file, a simulated network drive, or 
a process named iexplore.exe) are introduced to induce potential adversarial 
participants (both humans and programs) to ‘show their colors’ (see Figure 1).  
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Figure 1: Notional Gameboard illustration. Stimuli  (e.g. fake network drives, fake processes with 
names of popular applications,  AutoCad files) are deployed and participants’ responses to the baits 
evaluated. 

  
Conceptually, a repeated, dynamic, imperfect information, non-cooperative 
stimuli-response game is played on the Gameboard.  The players in the game are 
{Defender} versus {Participants}.  All Participants (benign or malicious) are 
situated within the Gameboard (the VM). The Defender is situated outside the 
Gameboard to hide some of its footprint, but it has the ability to introduce 
baits/stimuli, change (real or perceived) macroscopic Gameboard parameters, 
gauge responses and initiate defensive moves. 
 
The game's first goal is to judge whether after several rounds of the stimuli-
response game the aggregate evidence warrants classifying a participant’s observed 
behavior as adversarial.  The concept of aggregate evidence borrows from 
Whewell’s “Consilience of Induction”, in which the convergence of several, 
ideally independent hypotheses serves to strengthen that conclusion [12].  Upon 
probabilistic identification, the game’s second goal is to engage appropriate 
defensive measures to impede, quarantine, and subvert the ACP threat. 
 
The working assumptions are as follows:  
 

1. From observations of triggered stimuli and responses, uncertainty anent 
unknown intent can be reduced. In particular, potential adversarial 
participants can be probabilistically identified. 
 

2. Defender can control the runtime behavior of ACPs by influencing what 
Participants perceive within the Gameboard. 
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A. Baiting Adversarial Cyberspace Participants 
The repeated stimuli-response game can be conceptually decomposed as follows: 
A Defender conversation consists of a high level scenario which is either 
preemptively engaged, chosen by the user, or activated by other defensive systems 
(such as an NIDS). Conversation examples include "Worm", "Rootkit", “Bot", 
"Trojan", "Trusted Insider", "Hapless User" and more. 
 
A Defender scenario informs one or more engagement types. Engagement type 
examples include “Offer spread vectors”, “Offer confidentiality vectors”, “Offer 
reconnaissance vectors”, “Present weakened defenses”, “Change system 
parameters” and more. 
 
For each engagement type, the Defender autonomously chooses a dynamic 
engagement strategy. These engagement strategies consist of a game tree aggregate 
of baits/stimuli, participant responses and defensive responses.  It is a dynamic 
game tree since moves are generated dynamically based on observed responses to 
previous stimuli.  

B. Controlling and Deceiving Cyberspace Participants 
Collberg's atomic primitives constitute abstract categories of defenses and are 
subsequently used as a blueprint for defensive responses upon probabilistic ACP 
identification [13]. These primitives are cover, duplicate, split/merge, reorder, map, 
indirect, mimic, advertise, detect/ response, and dynamic. The framework’s 
adaptation of some of these primitives is given below: 
  
Quarantine [Indirect]: Defender moves ACP to an instrumented but isolated 
platform in order to learn more about its behavior.  
 
(Self-)termination [Tamperproof]: Defender terminates ACP or induces its self-
termination. In addition, the Defender may simulate termination of benign  
components as a strategic mimetic move (such as unlinking it from the process 
table). 
 
Scarcity [Mimicry, Tamperproof]: Defender presents the Gameboard in a 
“critical” or “strained” state in an effort to violate ACP’s expected usage scenario 
(e.g. 99% memory utilization, heavy network congestion, no heap space left) [14].   
 
Subversion [Tamperproof]: Data-taint/poison the input to ACPs in order to create 
an attribution trail (e.g. email bugs in .pst files). This is especially important for 
military defense systems, where attackers try to plausibly deny responsibility 
through one or more levels of indirection. 
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C. Composition of Context-Sensitive Interactions 
It is an open research question whether engagement strategies can be derived from 
first principles (i.e. formal malware models [15]).  Similarly, it is not clear a priori 
which set of defensive responses is best suited for which ACP classes. Empirical 
sandbox observation of 10,000s of malware samples (exhibiting a wide variety of 
behaviors) was scheduled, and samples were procured from a friendly malware 
repository, http://offensivecomputing.net. It turned out that lack of sample 
metadata (names were hashed) hindered the establishment of ‘ground truth’ 
(known identities of the control samples) anent the engagement strategies and the 
defensive responses. Hence, a systematic evaluation of the dynamic compositional 
question and concomitant quantitative measurements has not yet been undertaken. 

D. Views of the Gameboard 
Since they are situated within the Gameboard, all Participants have a view of the 
Gameboard, but not necessarily the same in terms of scope and fidelity. In 
particular, Participants’ views and subsequent behavior are constructed by 
interacting with the Gameboard (checking if a certain process is running for 
instance). 
 
Defender's view: All of the Participants’ behavior unfolds over time. Some 
behavior on the Gameboard is benign, while some is potentially adversarial. Some 
behavior is seen by the Defender via baits that are triggered, while some behavior 
will not be seen. The Defender engages in conversations with Participants to figure 
out potential benevolence/malevolence. 
 
Participant's view: The interactions between the Defender (through the 
Gameboard morphing) and the Participant influence the Participant’s perception of 
the environment and, as posited, subsequent Participant behavior. This behavior 
may in turn influence the Defender's strategies, and so on, until identification 
decision thresholds are reached and  defensive responses are engaged. 

E. Goals of The Defender 
Drawing from prior experience and input from stakeholders, a list of Defender 
goals was assembled, in descending order of importance. These goals influence 
both the nature of the baits/stimuli injected into the Gameboard, the timing of their 
deployment, as well as defensive responses. 
 
Mission Continuity: Defender should not self-sabotage or sabotage the mission of 
benign Participants in the Gameboard. The primary goal of any defense is to 
sustain the mission. Mission continuity constraints include but are not limited to: 
sustaining mission availability, confidentiality, integrity, and command and control 
authenticity. 
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Actionable Information Gain: Defender’s responses should be geared towards 
reducing uncertainty and learning more about potential ACPs. This is in part 
accomplished by the interactions in the dynamic game. In addition, freezing the 
Gameboard and migrating the ACP threads into a more highly instrumented 
environment is being explored. 
 
Defender Stealth: Potentially adversarial participant should remain unaware of 
Defender’s observation and manipulation of ACP’s perception of the Gameboard. 
This is accomplished by positioning the Defender outside of the Gameboard and by 
randomizing design and implementation aspects of the baits. 
 
Subversion: Defender responds in such a way as to repurpose the adversarial 
participant for the benefit of the Gameboard’s mission. One possibility is supplying 
the ACPs with specially crafted random input, which has been shown to crash in 
other contexts between 25%-40% of given applications [17][18]. 
 
Participant Attribution: Defender responds in such a way that attribution of an 
adversarial behavior source is made more likely (e.g. smart watermarking/ 
poisoning of data). 
 
Inoculation: Defender may be able to synthesize a general modus operandus over 
observed behavior for the purpose of inoculation: Through judiciously chosen baits 
the traversal of appropriate control flow paths in the ACP is induced. This is in 
keeping with the light-weight shutdown results of [7]. 

IV. IMPLEMENTATION OF THE FRAMEWORK 
The Defender needs to influence and control the Gameboard environment in a way 
that is transparent to the Participants. The VMWare platform was chosen due to its 
market share and proprietary design. Unlike Bochs or Qemu, VMWare's code is 
not normally available, forcing manipulation of the VM from the ‘outside’, with no 
detectable footprint in the Gameboard besides the baits. Since there are numerous 
robust VM detection approaches, it is reasonable to assume that Participants can 
ascertain whether they are running in a virtualized environment [19]. As virtualized 
execution environment are becoming more commonplace with the push towards 
large-scale virtualized commercial environments, this is a reasonable extension and 
benefits the scheme. 

A. VMUtils library 
VMware’s VIX API is used to control the Virtual Machine [20]. Since VIX is still 
in flux, further modifications led to the development of the library VMUtils. 
 
VMUtils wraps a number of VMWare’s VIX library functions in order to simplify 
calls to the VIX API. An example is getting a handle for a VM which previously 
consisted of multiple lengthy and confusing VIX API calls, all of which had to be 
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paired with additional error checks.  The VMUtils library abstracts bait 
implementation away from the Defender’s engagement strategies and allows for 
bait design through a mediate layer. This is also useful for a centralized VM 
administration approach like VMWare Server. Alternatively, a conventional 
network-based communication API could be substituted in place of VMUtils.  

B. Baits/Stimuli 
Baits/stimuli seek to alter the perception of the operating environment (i.e. ‘morph 
the Gameboard’) in order to induce tell-tale behavioral responses from potentially 
adversarial cyberspace participants. Some changes in the environment are 
lightweight, sometimes they are entirely simulated:  
 

• Simulating insertion of readable and writable media 
• Simulating creation of Network Drives with weak or no password 
• Planting marked doc/pdf/txt/exe/cad/xls/dat files  
• Planting bank cookies  
• Creating fake processes with names of popular AV programs 
• Creating processes to detect thread injection 
• Navigating a browser to Microsoft Update/AV sites (to see whether 

access to these sites is blocked) 
• Navigating a browser to a bank site to see if participants attempt a XSRF 

attack 
• Navigating a browser to a social network site known to be vulnerable to 

XSS attacks 
• Simulating a particular bot client 
• Slowing down or speeding up Gameboard system time 

 
A robust bait portfolio must give quantitative metrics on adversarial participant 
specificity and sensitivity: Low false positives are desired (i.e. does it flag 
benevolent participants as adversarial?), as well as low false negatives. This is 
ongoing empirical work and has not yet been addressed. The baits developed and 
deployed to date are described below.  
 

1) Dummy Process 
A dummy process execution and monitoring bait was implemented first. A well-
known ACP tactic is, after infecting a machine, to turn off or uninstall AV 
software. This bait hence targets the self-defense trait of ACPs by executing a 
number of bait processes named after popular AV programs and monitors them for 
execution disruption. Alternatively, it is possible to implement a callback-model 
for the dummy process baits: the bait program creates new threads for each new 
bait AV process started within the Gameboard, then makes the thread wait for an 
exit code from the bait process. The later design was chosen. 
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A list of common AV process names (e.g. avguard.exe) was compiled into a config 
file, which is read by a baiting program. The baiting program then renamed the 
dummy process, copied it down to the Gameboard, and executed the bait AV 
process. By waiting for exit codes from the processes running in the VM, the 
Defender determined if any (and how many) baits were tripped – in other words, 
which bait AV programs were terminated. 
 
There are very few legitimate reasons (Force Quit, for instance, being an 
exception) a non-malicious program would kill a running process of a common 
AV. Intuitively, this bait has high malicious code specificity. It may have low 
sensitivity depending on how many ACPs attempt to terminate the dummy 
processes. 
 

2) Network Shares 
Another common ACP tactic is spreading via network shares. A mechanism was 
implemented to mount and remove network shares and monitor them for access; 
the rationale being that spreading is common for malicious code with network 
shares representing tempting targets. A Defender directory was mapped to a 
network drive on the Gameboard. The directory was monitored for changes, 
immediately alerting the Denfender if an attempt was made to write to the network 
share. 
 
Since USB keys were used by Conficker and the 2008 Central Command attack for 
spreading, attempts were undertaken in conjunction with the network shares. It 
turned out to be harder than anticipated, due to the way VMWare handles USB 
devices. 
 

3) Data and System Files 
A similar mechanism can be used for bait files. As the January 2010 Aurora attack 
showed, industrial espionage targets the confidentiality of intellectual property, 
such as AutoCad design files. By data-tainting a seemingly high value file, it is 
hoped that an attribution trail can be established. Steganographic means may be 
pursued, but a simpler mechanism was chosen for proof-of-concept. 
 
A data file was created on the host machine containing a bogus .gov or .mil email 
address (or other attractive metadata), then copied into the Gameboard and 
monitored for activity. This bait aims to coax out malicious actions of potential 
ACPs: Some instances of malicious code will search a filesystem looking for 
anything that looks like email addresses, accounting spreadsheets, Outlook .pst 
files or other data files. Using the same monitoring program from the network 
share bait, this bait would be tripped on file access or, at a later point in time, by 
bogus email usage. Although this bait is straightforward to implement, it may have 
lower specificity due to installed indexers like Google Desktop. This mechanism 
may also be applied to sensitive system files, complementing Windows File 
Protection.  
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4) AV Sites 
Editing the Windows Hosts file is a way that malicious code will attempt to block 
web access to AV websites. This is an example of an ACP’s self-defense trait with 
high specificity. 
 
A bait program was written to test connectivity to many known AV websites. The 
bait program read URLs from a config file and sent http requests to the web-server 
from within the Gameboard. The first request was sent to the URL; then, using an 
external DNS server, the same request was sent to the corresponding IP address. 
Return codes were then compared to determine if malicious code had tampered 
with web requests. If no determination could be made, a HTTP request was sent by 
the Defender from the outside and used as a control to compare the previous 
samples taken from within. Determining whether malicious code is interrupting 
connections to AV servers constitutes a highly specific indicator of malicious 
behavior. In 2010, a similar method was used for the Conficker Eye Chart test to 
test for Conficker infection. 
 

5) User Activities 
Another scheme is to simulate normal user behavior to coax out malicious ACP 
action. Any form of day-to-day user activity might constitute a trigger for 
malicious code. Such activities include, but are not limited to, checking email, 
program execution, online banking, or social networking. These activities are 
simulated and monitored for interruption or abnormal execution.  
 
As a proof of concept, Visual Basic (VB) scripts were used because of the tight 
integration with Windows and the MSDN references [21][22]. These scripts were 
deployed onto the Gameboard. Although this needs to be verified empirically, the 
script’s execution isn't likely to be detectable with an acceptable false positive rate 
by malicious software because MS Windows’ handling of VB scripting through 
wscript.exe. The observable change the ACP sees is wscript.exe running, but there 
is no straightforward way to tell what it is doing or that it is a Defender's bait 
script. An example is given in Figure 2, a Yahoo login script controlling a Firefox 
browser. 
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Figure 2: Navigating Firefox to Yahoo.com with wscript.exe 

This example shows logging into a Yahoo mail account, opening a new tab, and 
navigating to a different website. Should an XSS injection be detected (in 
conjunction with an open source tool, XSSer), the Defender is notified. This 
feature is being validated further. 
 

6) Thread Injection 
Windows’ CreateRemoteThread(..) serves as a prevalent exploit vector for 
malicious code. This function, exposed by Windows executables, enables the 
injection of an arbitrary thread inside the memory space of other processes [23]. 
 
Similar to the Dummy Process bait, a process is deployed to run within the 
Gameboard, continuously querying its number of threads. Once the bait process 
detects additional threads, it reports back to its monitor outside the Gameboard and 
terminates. Detection of remote thread injection was chosen under the assumption 
that it represents both a highly specific and sensitive trigger of malicious activity in 
non-debugging environments. 
 

7) Macro-Enviromental Triggers 
Under development are so-called macro-environmental triggers, such as 
controlling tick time within the Gameboard. By speeding up or slowing down tick 
time, time-dependent actions could be triggered, thus allowing for more inference 
anent ACPs’ decision structure, patterns and/or movements. Macro-environmental 
triggers are by their very nature not highly specific: sudden loss of resources such 
as RAM/HDD shortages and network congestion have been shown in other 
contexts to crash programs in unexpected ways [14]. 

C. Defender 
As noted, the Defender schedules, organizes, and monitors the baits, as well as 
coordinates defensive responses. It also keeps track of information about the 
Gameboard, such as logins and file paths.  
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The Defender loads information about the baits it intends to run from a config file. 
These baits are then deployed in an order, timing and frequency determined by a 
dynamic engagement strategy. The baits write information back to the controller 
via a pipe: millisecond timing analysis, bait trip counts, and errors are subsequently 
stored in a database. This aggregate evidence is used to weigh different hypotheses 
(using a Bayesian log likelihood model selection approach [16]) anent the observed 
behavior and formulate dynamic engagement strategies. This is still under 
development; in the proof-of-concept prototype, only static strategies have been 
implemented so far. 

V. PRELIMINARY EMPIRICAL VALIDATION 
Implemented baits are summarized in TABLE II.  The rightmost column lists 
malicious code examples that informed the design of the baits.   

TABLE II.  IMPLEMENTED BAITS AND MALWARE TRIGGERS 

Bait Name Bait Action Malware example 
Dummy 
processes 

Inject false antivirus programs 
into the OS process list and 
monitor for halt in execution 

Conficker  [24] (kills AV processes), Bugbear [25] 
(shuts down various AV processes), Vundo[26] 
(disables Norton AV)  

Network 
Shares  

Mounts and removes network 
shares on the client then 
monitors them on the server's 
side for activity 

MyWife.d  [27] (attempt to delete System files on 
shared network drives), Lovgate [28]  (copies itself to 
all network drives on an infected computer), 
Conficker  (infects all registered drives) 

Files Monitors system critical or bait 
files on the client for activity 

Mydoom.b  [29] (alters the host file to block web 
traffic), MyWife.d (deletes AV and system programs), 
Waledac.a [30] (scans local drives for email 
addresses) 

User 
Action 

Executes “normal” user 
behavior on the client system 
and monitors for unusual 
execution 

Mydoom.b (diverts internet traffic, thus altering what 
is expected to appear), Vundo (consumes system 
resources and slows or impedes program execution) 

Thread 
Injection 

Continually queries its number 
of threads for any changes 
from the expected number 

Poisonivy [31] (injects code into processes such as 
‘explorer.exe’ or ‘msnmsgr.exe’), Pandex [32]  (seeks  
‘iexplore.exe’ program to inject its code) 

 
The Win32 MyDoom.b email worm was used to generate the following time line 
points: t0a (bait setup), t0b (bait deployed and ready to be triggered), t1 (malicious 
code is executed), t2 (bait is triggered), and t3 (bait is recalled/terminated) as 
described in Table III.  

TABLE III.  MYDOOM.B TIMING RESULTS (AVERAGE  IN SECONDS) 

Bait  t0a 
 

t0b t1 t2 t3 

Files (watching critical directories) 67 68 68 69 70 
User action (checking AV websites) 70 71 68 73-103 103 

 
These preliminary timing experiments are consistent with the second assumption 
stated in the beginning of Section III: ACP runtime behavior can be influenced by 
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Gameboard perception. Many of our samples actually failed to run within the 
Gameboard. Upon closer inspection, it seems that the virtualized environment 
provides a certain amount of protection in itself; malicious software often checks 
whether it is running in a debugging and/or virtualized environment and 
subsequently does not exhibit malicious behavior [33].  

VI. FEASIBILITY AND FUTURE WORK 
It should be clear from the exposition that this experimental framework is merely 
at an early proof-of-concept stage. Whatever research direction is charted, 
quantification of metrics and empirical validation are to be addressed since they 
represent methodological lacunae in the literature. A meta-survey of ninety 
security papers between 1981 and 2008 showed that quantified security was a weak 
hypothesis because of lack of validation and comparison against empirical data 
[34].  Bearing this in mind, future research must additionally tackle the following 
issues: 
 
Behavior inferred by the stimuli-response framework needs to be modeled. 
Leveraging previous behavioral ontology work [35] and following Shannon’s 
terminology for Markovian models, a mechanism was recently proposed to extract 
and characterize cyber-behavioral traits of humans for classification, prediction and 
change detection purpose. That framework introduced the notion of 0th (atomic 
elements), 1st (atomic + frequencies + context), and 2nd order (probabilities of 
sequence of activities + context) behaviors. The approach has been evaluated in 
domains such as military targeting, stress monitoring, and insider threat detection 
with encouraging results [36].  
 
From a game-theoretic perspective, the game may be played with obscuring 
participants. Obscuring participants may be able and willing to play sub-optimally 
(not take baits for example) to thwart behavioral estimates. In the context of cyber 
adversaries, maximum-entropy and hidden Markov model methods have been used 
to estimate subgame probabilities (i.e. the proportion of time spent in malicious 
and benign subgames). This approach may be extended to obfuscating adversaries, 
who attempt to hide their subgame probabilities [37]. 
 
Lastly, in order to transition the framework to production systems, the performance 
and stability challenges of scaling to 100,000s of virtualized hosts on infrastructure 
clouds will have to be kept in mind at design time [38]. 
 
As noted, the project end vision is an autonomic framework playing a repeated, 
dynamic, imperfect information, non-cooperative stimuli-response game which 
probabilistically identifies, then impedes, quarantines, subverts, possibly attributes 
and possibly inoculates against suspected adversarial cyberspace participants. 
Speculatively, an autonomous defense ‘alter ego’ for human decision makers is 
envisioned which, when coupled with physiological sensors, remains poised to take 
over when human judgment is deemed to be too affected by emotions and/or 
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information overload. As far-fetched as this may sound in 2011, skeptical readers 
are invited to peruse the US Air Force Chief Scientist's vision for 2010-2030 [39]. 
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