
This research was funded in part by the US Department of Defense through a DoD IASP Grant
(H98230-09-1-0369) which is administered by the US National Security Agency and in part by a grant
from the University of New Orleans Office of Sponsored Research.

Using a Novel Behavioral
Stimuli-Response Framework to

Defend against Adversarial
Cyberspace Participants

Daniel Bilar

Department of Computer Science
University of New Orleans

New Orleans, LA 70148, USA
dbilar@uno.edu

Brendan Saltaformaggio
Department of Computer Science

University of New Orleans
New Orleans, LA 70148, USA

bsaltafo@uno.edu

Abstract- Autonomous Baiting, Control and Deception of Adversarial Cyberspace
Participants (ABCD-ACP) is an experimental defensive framework against potentially
adversarial cyberspace participants, such as malicious software and subversive
insiders. By deploying fake targets (called baits/stimuli) onto a virtualized
environment, the framework seeks to probabilistically identify suspicious participants
through aggregate suspicious behavior, subvert their decision structure and goad them
into a position favorable to the defense. Baits include simulating insertion of readable
and writable drives with weak or no password, marked doc/pdf/txt/exe/cad/xls/dat
files, processes with popular target names and processes that detect thread injections.
This approach bears some similarities to the concept of subverting an enemy's OODA
(Observe, Orient, Decide, and Act) loop, an information warfare strategy which seeks
to proactively influence and change enemy behavior. By controlling perception of the
environment, this approach similarly seeks to influence adversarial participants’
decision complexity, noise levels, effectiveness and ultimately their ability to fulfill their
mission. This is a work in progress: The conceptual framework is described, and
implemented baits and preliminary empirical results are presented.
The long term project end vision is an autonomic framework playing a repeated,
dynamic, imperfect information, non-cooperative stimuli-response game which
probabilistically identifies, then impedes, quarantines, subverts, possibly attributes and
possibly inoculates against suspected adversarial cyberspace participants.

Keywords: virtualization, malware, dynamic game, stimuli, behavior

2011 3rd International Conference on Cyber Conflict
C. Czosseck, E. Tyugu, T. Wingfield (Eds.)
Tallinn, Estonia, 2011 © CCD COE Publications

Permission to make digital or hard copies of this publication for internal use within

NATO, and for personal or educational use done for non-profit or non-commercial

purpose is granted providing that copies bear this notice and a full citation on the first

page. Any other reproduction or transmission requires prior written permission.

Copyright © 2011 by CCD COE Publications 169

I. INTRODUCTION
It is written that a person’s character may be recognized by how he handles
alcohol, his conduct in financial matters and his anger. In other words, behavior
shown in certain situations gives insight into character. A cyber-defensive
approach in the form of a behavioral stimuli-response framework is presented in
this paper. It should be noted that is work in progress.

Why is this needed? It is needed as an addition to Defense-in-Depth. The empirical
performance of the first line of defense - anti-viral (AV) byte signature blacklisting
- has been steadily declining. Independent laboratory test results over a period of a
decade have shown a steady rise in false negative rates, i.e. failing to detect
malicious code. The average miss rate of even previously submitted malicious code
hovers in the double digits. In 2010, after failing to update static signatures for just
one week, the best AV tested missed 37%, the worst between 60% and 90% (see
TABLE I.).

TABLE I. DETECTION RATE RANGES OF SIXTEEN TO TWENTY POPULAR AV SCANNERS [1]

Report Date AV Signature Update Malicious Code Corpus Date False Negatives (%)
2010/11 Aug. 16th Aug. 17th-24th [38-63]
2010/08 Aug. 16th Aug. 6th [0.2-19.1]
2010/05 Feb. 10th Feb 11th-18th [37-89]
2010/02 Feb. 10th Feb. 3rd [0.4-19.2]
2009/11 Aug. 10th Aug. 11th-17th [26-68]
2009/08 Aug. 10th Aug. 10th [0.2-15.2]
2009/05 Feb. 9th Feb. 9th -16th [31-86]
2009/02 Feb. 9th Feb. 1st [0.2-15.1]
2008/11 Aug. 4th Aug. 4th -11th [29-81]
2008/08 Aug. 4th Aug. 1st [0.4-13.5]
2008/05 Feb. 4th Feb. 5th -12th [26-94]
2008/02 Feb. 4th Feb. 2nd [0.2-12.3]

In addition, recent advances in formal computer virology show that detection of
malicious code that poses the most problems (staged downloads and interactive)
cannot be accomplished in linear time and enters the realm of exhaustive search
space and undecidability. Reference [2] proved that detection of interactive
malicious code is at least in complexity class NP((NP^oracle)^(NP^oracle)) .

This is no accident since the design and implementation of modern malware seeks
to specifically undermine the information gain of static signature approaches, in
effect presenting the defense with Halting-type problems. The reverse is not true:
From the point of view of adversarial participants, cyber-targets are pathologically
honest and do not systematically confuse adversarial participants with high entropy
schemes.

170

This paper’s view is that defenses have to adopt similar comprehensive
dissimulation and deception stances on cyber-targets and embedding
environments. By turning the tables on potentially Adversarial Cyberspace
Participants (ACP), their code footprint, decision complexity, noise levels and
uncertainty about the ‘real’ view of the cyber-environment are increased, thereby
giving defenses more temporal and spatial leeway. This experimental framework is
not meant to substitute for but rather complement traditional blacklisting byte
signature based mitigation approaches whose limitations are well-known [3].

II. PRIOR WORK
This paper emphasizes the primacy of ACP control flow subversion through
judicious manipulation of the environment’s observables. In the realm of best-of-
breed static structural signatures, [4] extracted malware family signatures using
maximum graph homomorphism between the function callgraph of two
executables. The flowgraph structure and its code ‘neighborhood’ were used to
develop an opcode-sequence agnostic graph hash for fast approximate comparison.
The intersection of known family members subsequently generated the family
superstructure signature. Such a signature extracted automatically from 15 variants
of the polymorphic malware family ‘Swizzor’ was able to recognize 900 additional
variants (in a sample of 20,000 unsorted pieces of malware) with no false positives.
However, this approach required pertinent structural information to be recovered; a
proposition that does not hold with malware that purposely obfuscates its control
flow structure.

This paper also posits ACPs (especially malicious software) to be sensitive to real
or perceived operating environment changes. For evidence consistent with this
assertion, the reader is referred to the 2005 analysis of the Slammer worm, in
which complex dependencies between user/kernel processes and threading are
described, as well as the 2008/2009 Conficker A worm, which exits upon detection
of a Ukrainian keyboard locale [5] [6]. In a comprehensive 2008 empirical study,
[7] investigated the environmental awareness of modern malware by measuring the
deterrence value of imitating virtual machines and debuggers through light-weight
registry key insertions, system call hooking (e.g. CheckRemoteDebuggerPresent()
set to TRUE) and process generation (e.g. a process named OllyDbg, a popular
debugger). Of the 6205 malware samples, about 25% reduced their malicious
behavior through these light-weight techniques.

This paper’s approach furthermore seeks to draw ACPs into a repeated stimuli-
response game with the expectation that its dynamic behavior can be influenced
quicker than non-malicious participants. In a comparative analysis of malicious
and non-malicious software, [8] showed through statistical static structural analysis
that malicious code tended to have a lower basic block count, implying a simpler
decision structure: less interaction, fewer branches and limited goals compared to

171

non-malicious software. This suggests that malicious code can be ‘outplayed’ by
exploiting this simpler decision structure.

From an implementation point of view, honeypots and honeynets - simulated
decoys that detract from 'real' networks, hosts and services – are well known
examples of ‘morphing the network’, i.e. changing the perception of the network’s
makeup. Reference [9] implemented a highly scalable, parsimonious hybridization
of low- and high-interaction honeynets that doubled as a platform for malware
collection. He suggested it to be used as part of an automated, next-generation
system to stop botnets. Ad-hoc hot patching, as well as randomization techniques
(randomized heap/stack/library positioning at compile, link and load times) are
incorporated into modern operating systems like Windows Vista/7 [10].

Lastly, probabilistic identification and control of hitherto-unknown/unseen threats
serves to enhance situational and behavioral awareness on a host, network and
mission level. In this, this project complements other efforts in US military
domains: DARPA’s Integrated Battle Command (BAA 05-14) gives decision aids
for battle operations, DARPA’s Real-Time Adversarial Intelligence & Decision
Making (BAA 04-16) tries to help battlefield commanders compute and counteract
threat predictions in tactical operations. Lastly, Israel’s Virtual Battle Management
AI - a defense system designed to handle situations that exceed the physiological
limits of human command in case of a doomsday strike - mirrors most closely the
project end vision [11].

III. DESIGN OF FRAMEWORK
The Gameboard consists of a virtualized operating environment (a Windows XP
SP2 VM) which is ‘morphed’ by the Defender. Morphing means that from the
point of view of Gameboard participants, the environment (or merely its perception
by the participants) is altered via stimuli in order to provoke a reaction that could
be used for identification. Stimuli (such as a .pst file, a simulated network drive, or
a process named iexplore.exe) are introduced to induce potential adversarial
participants (both humans and programs) to ‘show their colors’ (see Figure 1).

172

Figure 1: Notional Gameboard illustration. Stimuli (e.g. fake network drives, fake processes with
names of popular applications, AutoCad files) are deployed and participants’ responses to the baits
evaluated.

Conceptually, a repeated, dynamic, imperfect information, non-cooperative
stimuli-response game is played on the Gameboard. The players in the game are
{Defender} versus {Participants}. All Participants (benign or malicious) are
situated within the Gameboard (the VM). The Defender is situated outside the
Gameboard to hide some of its footprint, but it has the ability to introduce
baits/stimuli, change (real or perceived) macroscopic Gameboard parameters,
gauge responses and initiate defensive moves.

The game's first goal is to judge whether after several rounds of the stimuli-
response game the aggregate evidence warrants classifying a participant’s observed
behavior as adversarial. The concept of aggregate evidence borrows from
Whewell’s “Consilience of Induction”, in which the convergence of several,
ideally independent hypotheses serves to strengthen that conclusion [12]. Upon
probabilistic identification, the game’s second goal is to engage appropriate
defensive measures to impede, quarantine, and subvert the ACP threat.

The working assumptions are as follows:

1. From observations of triggered stimuli and responses, uncertainty anent
unknown intent can be reduced. In particular, potential adversarial
participants can be probabilistically identified.

2. Defender can control the runtime behavior of ACPs by influencing what
Participants perceive within the Gameboard.

173

A. Baiting Adversarial Cyberspace Participants
The repeated stimuli-response game can be conceptually decomposed as follows:
A Defender conversation consists of a high level scenario which is either
preemptively engaged, chosen by the user, or activated by other defensive systems
(such as an NIDS). Conversation examples include "Worm", "Rootkit", “Bot",
"Trojan", "Trusted Insider", "Hapless User" and more.

A Defender scenario informs one or more engagement types. Engagement type
examples include “Offer spread vectors”, “Offer confidentiality vectors”, “Offer
reconnaissance vectors”, “Present weakened defenses”, “Change system
parameters” and more.

For each engagement type, the Defender autonomously chooses a dynamic
engagement strategy. These engagement strategies consist of a game tree aggregate
of baits/stimuli, participant responses and defensive responses. It is a dynamic
game tree since moves are generated dynamically based on observed responses to
previous stimuli.

B. Controlling and Deceiving Cyberspace Participants
Collberg's atomic primitives constitute abstract categories of defenses and are
subsequently used as a blueprint for defensive responses upon probabilistic ACP
identification [13]. These primitives are cover, duplicate, split/merge, reorder, map,
indirect, mimic, advertise, detect/ response, and dynamic. The framework’s
adaptation of some of these primitives is given below:

Quarantine [Indirect]: Defender moves ACP to an instrumented but isolated
platform in order to learn more about its behavior.

(Self-)termination [Tamperproof]: Defender terminates ACP or induces its self-
termination. In addition, the Defender may simulate termination of benign
components as a strategic mimetic move (such as unlinking it from the process
table).

Scarcity [Mimicry, Tamperproof]: Defender presents the Gameboard in a
“critical” or “strained” state in an effort to violate ACP’s expected usage scenario
(e.g. 99% memory utilization, heavy network congestion, no heap space left) [14].

Subversion [Tamperproof]: Data-taint/poison the input to ACPs in order to create
an attribution trail (e.g. email bugs in .pst files). This is especially important for
military defense systems, where attackers try to plausibly deny responsibility
through one or more levels of indirection.

174

C. Composition of Context-Sensitive Interactions
It is an open research question whether engagement strategies can be derived from
first principles (i.e. formal malware models [15]). Similarly, it is not clear a priori
which set of defensive responses is best suited for which ACP classes. Empirical
sandbox observation of 10,000s of malware samples (exhibiting a wide variety of
behaviors) was scheduled, and samples were procured from a friendly malware
repository, http://offensivecomputing.net. It turned out that lack of sample
metadata (names were hashed) hindered the establishment of ‘ground truth’
(known identities of the control samples) anent the engagement strategies and the
defensive responses. Hence, a systematic evaluation of the dynamic compositional
question and concomitant quantitative measurements has not yet been undertaken.

D. Views of the Gameboard
Since they are situated within the Gameboard, all Participants have a view of the
Gameboard, but not necessarily the same in terms of scope and fidelity. In
particular, Participants’ views and subsequent behavior are constructed by
interacting with the Gameboard (checking if a certain process is running for
instance).

Defender's view: All of the Participants’ behavior unfolds over time. Some
behavior on the Gameboard is benign, while some is potentially adversarial. Some
behavior is seen by the Defender via baits that are triggered, while some behavior
will not be seen. The Defender engages in conversations with Participants to figure
out potential benevolence/malevolence.

Participant's view: The interactions between the Defender (through the
Gameboard morphing) and the Participant influence the Participant’s perception of
the environment and, as posited, subsequent Participant behavior. This behavior
may in turn influence the Defender's strategies, and so on, until identification
decision thresholds are reached and defensive responses are engaged.

E. Goals of The Defender
Drawing from prior experience and input from stakeholders, a list of Defender
goals was assembled, in descending order of importance. These goals influence
both the nature of the baits/stimuli injected into the Gameboard, the timing of their
deployment, as well as defensive responses.

Mission Continuity: Defender should not self-sabotage or sabotage the mission of
benign Participants in the Gameboard. The primary goal of any defense is to
sustain the mission. Mission continuity constraints include but are not limited to:
sustaining mission availability, confidentiality, integrity, and command and control
authenticity.

175

Actionable Information Gain: Defender’s responses should be geared towards
reducing uncertainty and learning more about potential ACPs. This is in part
accomplished by the interactions in the dynamic game. In addition, freezing the
Gameboard and migrating the ACP threads into a more highly instrumented
environment is being explored.

Defender Stealth: Potentially adversarial participant should remain unaware of
Defender’s observation and manipulation of ACP’s perception of the Gameboard.
This is accomplished by positioning the Defender outside of the Gameboard and by
randomizing design and implementation aspects of the baits.

Subversion: Defender responds in such a way as to repurpose the adversarial
participant for the benefit of the Gameboard’s mission. One possibility is supplying
the ACPs with specially crafted random input, which has been shown to crash in
other contexts between 25%-40% of given applications [17][18].

Participant Attribution: Defender responds in such a way that attribution of an
adversarial behavior source is made more likely (e.g. smart watermarking/
poisoning of data).

Inoculation: Defender may be able to synthesize a general modus operandus over
observed behavior for the purpose of inoculation: Through judiciously chosen baits
the traversal of appropriate control flow paths in the ACP is induced. This is in
keeping with the light-weight shutdown results of [7].

IV. IMPLEMENTATION OF THE FRAMEWORK
The Defender needs to influence and control the Gameboard environment in a way
that is transparent to the Participants. The VMWare platform was chosen due to its
market share and proprietary design. Unlike Bochs or Qemu, VMWare's code is
not normally available, forcing manipulation of the VM from the ‘outside’, with no
detectable footprint in the Gameboard besides the baits. Since there are numerous
robust VM detection approaches, it is reasonable to assume that Participants can
ascertain whether they are running in a virtualized environment [19]. As virtualized
execution environment are becoming more commonplace with the push towards
large-scale virtualized commercial environments, this is a reasonable extension and
benefits the scheme.

A. VMUtils library
VMware’s VIX API is used to control the Virtual Machine [20]. Since VIX is still
in flux, further modifications led to the development of the library VMUtils.

VMUtils wraps a number of VMWare’s VIX library functions in order to simplify
calls to the VIX API. An example is getting a handle for a VM which previously
consisted of multiple lengthy and confusing VIX API calls, all of which had to be

176

paired with additional error checks. The VMUtils library abstracts bait
implementation away from the Defender’s engagement strategies and allows for
bait design through a mediate layer. This is also useful for a centralized VM
administration approach like VMWare Server. Alternatively, a conventional
network-based communication API could be substituted in place of VMUtils.

B. Baits/Stimuli
Baits/stimuli seek to alter the perception of the operating environment (i.e. ‘morph
the Gameboard’) in order to induce tell-tale behavioral responses from potentially
adversarial cyberspace participants. Some changes in the environment are
lightweight, sometimes they are entirely simulated:

• Simulating insertion of readable and writable media
• Simulating creation of Network Drives with weak or no password
• Planting marked doc/pdf/txt/exe/cad/xls/dat files
• Planting bank cookies
• Creating fake processes with names of popular AV programs
• Creating processes to detect thread injection
• Navigating a browser to Microsoft Update/AV sites (to see whether

access to these sites is blocked)
• Navigating a browser to a bank site to see if participants attempt a XSRF

attack
• Navigating a browser to a social network site known to be vulnerable to

XSS attacks
• Simulating a particular bot client
• Slowing down or speeding up Gameboard system time

A robust bait portfolio must give quantitative metrics on adversarial participant
specificity and sensitivity: Low false positives are desired (i.e. does it flag
benevolent participants as adversarial?), as well as low false negatives. This is
ongoing empirical work and has not yet been addressed. The baits developed and
deployed to date are described below.

1) Dummy Process
A dummy process execution and monitoring bait was implemented first. A well-
known ACP tactic is, after infecting a machine, to turn off or uninstall AV
software. This bait hence targets the self-defense trait of ACPs by executing a
number of bait processes named after popular AV programs and monitors them for
execution disruption. Alternatively, it is possible to implement a callback-model
for the dummy process baits: the bait program creates new threads for each new
bait AV process started within the Gameboard, then makes the thread wait for an
exit code from the bait process. The later design was chosen.

177

A list of common AV process names (e.g. avguard.exe) was compiled into a config
file, which is read by a baiting program. The baiting program then renamed the
dummy process, copied it down to the Gameboard, and executed the bait AV
process. By waiting for exit codes from the processes running in the VM, the
Defender determined if any (and how many) baits were tripped – in other words,
which bait AV programs were terminated.

There are very few legitimate reasons (Force Quit, for instance, being an
exception) a non-malicious program would kill a running process of a common
AV. Intuitively, this bait has high malicious code specificity. It may have low
sensitivity depending on how many ACPs attempt to terminate the dummy
processes.

2) Network Shares
Another common ACP tactic is spreading via network shares. A mechanism was
implemented to mount and remove network shares and monitor them for access;
the rationale being that spreading is common for malicious code with network
shares representing tempting targets. A Defender directory was mapped to a
network drive on the Gameboard. The directory was monitored for changes,
immediately alerting the Denfender if an attempt was made to write to the network
share.

Since USB keys were used by Conficker and the 2008 Central Command attack for
spreading, attempts were undertaken in conjunction with the network shares. It
turned out to be harder than anticipated, due to the way VMWare handles USB
devices.

3) Data and System Files
A similar mechanism can be used for bait files. As the January 2010 Aurora attack
showed, industrial espionage targets the confidentiality of intellectual property,
such as AutoCad design files. By data-tainting a seemingly high value file, it is
hoped that an attribution trail can be established. Steganographic means may be
pursued, but a simpler mechanism was chosen for proof-of-concept.

A data file was created on the host machine containing a bogus .gov or .mil email
address (or other attractive metadata), then copied into the Gameboard and
monitored for activity. This bait aims to coax out malicious actions of potential
ACPs: Some instances of malicious code will search a filesystem looking for
anything that looks like email addresses, accounting spreadsheets, Outlook .pst
files or other data files. Using the same monitoring program from the network
share bait, this bait would be tripped on file access or, at a later point in time, by
bogus email usage. Although this bait is straightforward to implement, it may have
lower specificity due to installed indexers like Google Desktop. This mechanism
may also be applied to sensitive system files, complementing Windows File
Protection.

178

4) AV Sites
Editing the Windows Hosts file is a way that malicious code will attempt to block
web access to AV websites. This is an example of an ACP’s self-defense trait with
high specificity.

A bait program was written to test connectivity to many known AV websites. The
bait program read URLs from a config file and sent http requests to the web-server
from within the Gameboard. The first request was sent to the URL; then, using an
external DNS server, the same request was sent to the corresponding IP address.
Return codes were then compared to determine if malicious code had tampered
with web requests. If no determination could be made, a HTTP request was sent by
the Defender from the outside and used as a control to compare the previous
samples taken from within. Determining whether malicious code is interrupting
connections to AV servers constitutes a highly specific indicator of malicious
behavior. In 2010, a similar method was used for the Conficker Eye Chart test to
test for Conficker infection.

5) User Activities
Another scheme is to simulate normal user behavior to coax out malicious ACP
action. Any form of day-to-day user activity might constitute a trigger for
malicious code. Such activities include, but are not limited to, checking email,
program execution, online banking, or social networking. These activities are
simulated and monitored for interruption or abnormal execution.

As a proof of concept, Visual Basic (VB) scripts were used because of the tight
integration with Windows and the MSDN references [21][22]. These scripts were
deployed onto the Gameboard. Although this needs to be verified empirically, the
script’s execution isn't likely to be detectable with an acceptable false positive rate
by malicious software because MS Windows’ handling of VB scripting through
wscript.exe. The observable change the ACP sees is wscript.exe running, but there
is no straightforward way to tell what it is doing or that it is a Defender's bait
script. An example is given in Figure 2, a Yahoo login script controlling a Firefox
browser.

179

Figure 2: Navigating Firefox to Yahoo.com with wscript.exe

This example shows logging into a Yahoo mail account, opening a new tab, and
navigating to a different website. Should an XSS injection be detected (in
conjunction with an open source tool, XSSer), the Defender is notified. This
feature is being validated further.

6) Thread Injection
Windows’ CreateRemoteThread(..) serves as a prevalent exploit vector for
malicious code. This function, exposed by Windows executables, enables the
injection of an arbitrary thread inside the memory space of other processes [23].

Similar to the Dummy Process bait, a process is deployed to run within the
Gameboard, continuously querying its number of threads. Once the bait process
detects additional threads, it reports back to its monitor outside the Gameboard and
terminates. Detection of remote thread injection was chosen under the assumption
that it represents both a highly specific and sensitive trigger of malicious activity in
non-debugging environments.

7) Macro-Enviromental Triggers
Under development are so-called macro-environmental triggers, such as
controlling tick time within the Gameboard. By speeding up or slowing down tick
time, time-dependent actions could be triggered, thus allowing for more inference
anent ACPs’ decision structure, patterns and/or movements. Macro-environmental
triggers are by their very nature not highly specific: sudden loss of resources such
as RAM/HDD shortages and network congestion have been shown in other
contexts to crash programs in unexpected ways [14].

C. Defender
As noted, the Defender schedules, organizes, and monitors the baits, as well as
coordinates defensive responses. It also keeps track of information about the
Gameboard, such as logins and file paths.

180

The Defender loads information about the baits it intends to run from a config file.
These baits are then deployed in an order, timing and frequency determined by a
dynamic engagement strategy. The baits write information back to the controller
via a pipe: millisecond timing analysis, bait trip counts, and errors are subsequently
stored in a database. This aggregate evidence is used to weigh different hypotheses
(using a Bayesian log likelihood model selection approach [16]) anent the observed
behavior and formulate dynamic engagement strategies. This is still under
development; in the proof-of-concept prototype, only static strategies have been
implemented so far.

V. PRELIMINARY EMPIRICAL VALIDATION
Implemented baits are summarized in TABLE II. The rightmost column lists
malicious code examples that informed the design of the baits.

TABLE II. IMPLEMENTED BAITS AND MALWARE TRIGGERS

Bait Name Bait Action Malware example
Dummy
processes

Inject false antivirus programs
into the OS process list and
monitor for halt in execution

Conficker [24] (kills AV processes), Bugbear [25]
(shuts down various AV processes), Vundo[26]
(disables Norton AV)

Network
Shares

Mounts and removes network
shares on the client then
monitors them on the server's
side for activity

MyWife.d [27] (attempt to delete System files on
shared network drives), Lovgate [28] (copies itself to
all network drives on an infected computer),
Conficker (infects all registered drives)

Files Monitors system critical or bait
files on the client for activity

Mydoom.b [29] (alters the host file to block web
traffic), MyWife.d (deletes AV and system programs),
Waledac.a [30] (scans local drives for email
addresses)

User
Action

Executes “normal” user
behavior on the client system
and monitors for unusual
execution

Mydoom.b (diverts internet traffic, thus altering what
is expected to appear), Vundo (consumes system
resources and slows or impedes program execution)

Thread
Injection

Continually queries its number
of threads for any changes
from the expected number

Poisonivy [31] (injects code into processes such as
‘explorer.exe’ or ‘msnmsgr.exe’), Pandex [32] (seeks
‘iexplore.exe’ program to inject its code)

The Win32 MyDoom.b email worm was used to generate the following time line
points: t0a (bait setup), t0b (bait deployed and ready to be triggered), t1 (malicious
code is executed), t2 (bait is triggered), and t3 (bait is recalled/terminated) as
described in Table III.

TABLE III. MYDOOM.B TIMING RESULTS (AVERAGE IN SECONDS)

Bait t0a

t0b t1 t2 t3

Files (watching critical directories) 67 68 68 69 70
User action (checking AV websites) 70 71 68 73-103 103

These preliminary timing experiments are consistent with the second assumption
stated in the beginning of Section III: ACP runtime behavior can be influenced by

181

Gameboard perception. Many of our samples actually failed to run within the
Gameboard. Upon closer inspection, it seems that the virtualized environment
provides a certain amount of protection in itself; malicious software often checks
whether it is running in a debugging and/or virtualized environment and
subsequently does not exhibit malicious behavior [33].

VI. FEASIBILITY AND FUTURE WORK
It should be clear from the exposition that this experimental framework is merely
at an early proof-of-concept stage. Whatever research direction is charted,
quantification of metrics and empirical validation are to be addressed since they
represent methodological lacunae in the literature. A meta-survey of ninety
security papers between 1981 and 2008 showed that quantified security was a weak
hypothesis because of lack of validation and comparison against empirical data
[34]. Bearing this in mind, future research must additionally tackle the following
issues:

Behavior inferred by the stimuli-response framework needs to be modeled.
Leveraging previous behavioral ontology work [35] and following Shannon’s
terminology for Markovian models, a mechanism was recently proposed to extract
and characterize cyber-behavioral traits of humans for classification, prediction and
change detection purpose. That framework introduced the notion of 0th (atomic
elements), 1st (atomic + frequencies + context), and 2nd order (probabilities of
sequence of activities + context) behaviors. The approach has been evaluated in
domains such as military targeting, stress monitoring, and insider threat detection
with encouraging results [36].

From a game-theoretic perspective, the game may be played with obscuring
participants. Obscuring participants may be able and willing to play sub-optimally
(not take baits for example) to thwart behavioral estimates. In the context of cyber
adversaries, maximum-entropy and hidden Markov model methods have been used
to estimate subgame probabilities (i.e. the proportion of time spent in malicious
and benign subgames). This approach may be extended to obfuscating adversaries,
who attempt to hide their subgame probabilities [37].

Lastly, in order to transition the framework to production systems, the performance
and stability challenges of scaling to 100,000s of virtualized hosts on infrastructure
clouds will have to be kept in mind at design time [38].

As noted, the project end vision is an autonomic framework playing a repeated,
dynamic, imperfect information, non-cooperative stimuli-response game which
probabilistically identifies, then impedes, quarantines, subverts, possibly attributes
and possibly inoculates against suspected adversarial cyberspace participants.
Speculatively, an autonomous defense ‘alter ego’ for human decision makers is
envisioned which, when coupled with physiological sensors, remains poised to take
over when human judgment is deemed to be too affected by emotions and/or

182

information overload. As far-fetched as this may sound in 2011, skeptical readers
are invited to peruse the US Air Force Chief Scientist's vision for 2010-2030 [39].

ACKNOWLEDGEMENTS
We thank the anonymous reviewers at the National Security Agency and at the
ICCC3 conference for their helpful suggestions and comments.

REFERENCES
[1] A. Clementi, “Anti-Virus Comparatives,” http://av-comparatives.org, Feb. 2008 - Dec.

2010.
[2] G. Jacob, and E. Filiol, “Malware as Interaction Machines,” J. Comp. Vir. 4:3, 2008,

pp. 235-250
[3] M. Locasto, Y. Song, and S. Stolfo, “On the infeasibility of modelling polymorphic

shellcode,” in ACM CCS, 2007, pp. 541–551
[4] T. Dullien, and E. Carrera, and S. Eppler, and S. Porst, “Automated Attacker

Correlation for Malicious Code,” in Proceedings of the NATO IST Symposium
(Tallinn, Estonia), November 2010, pp. 26.1-26.10

[5] J. Crandall, Z. Su, S. Wu, and F. Chong, “On deriving unknown vulnerabilities from
zero-day polymorphic and metamorphic worm exploits,” in Proceedings of the 12th
ACM CCS, pp.235-248, 2005.

[6] P. Porras, and H. Saidi and V. Yegneswaran,” An Analysis of Conficker”, SRI
International Technical Report, March 2009.

[7] X. Chen, “Towards an understanding of anti-virtualization and anti-debugging behavior
in modern malware”, ICDSN Proceedings, pp. 177-186, 2008.

[8] D. Bilar, “On Callgraphs and Generative Mechanisms,” in J. Comp. Vir. 3:4, 2007, pp.
285-297

[9] D. Zamboni et al., “The Nepenthes Platform: An Efficient Approach to Collect
Malware,” in LNCS 4219, Berlin: Springer, 2006, pp. 165-184.

[10] M. Conover, “Assessment of Windows Vista Kernel-Mode Security”, Symantec
Advanced Threat Research, 2006.

[11] N. Shachtman, " Israel Eyes Thinking Machines to Fight ‘Doomsday’ Missile Strikes,"
Wired Danger Room, http://www.wired.com/dangerroom/2008/01/israel-thinking/,
January 2008

[12] L. Snyder, “'The whole box of tools': William Whewell and the logic of induction,” in
Handbook of the History of Logic - British Logic in the 19th Century, vol. 4, 2008, pp.
163-228

[13] C. Collberg. “Surreptitious Software: Models from Biology and History,” Computer
Network Security Series, Berlin: Springer, 2007, pp. 1-21

[14] H. Thompson, J. Whittaker, and F. Mottay, “Software Security Vulnerability Testing
in Hostile Environments.“ in Proceedings of the ACM Symposium on Applied
Computing, 2002, pp. 260-264

[15] S. Kramer and J. Bradfield, “A General Definition of Malware,” J. Comp. Vir 6:2,
2010, pp. 105-114

[16] R. Kass and L. Wasserman, “A Reference Bayesian Test for Nested Hypotheses and its
Relationship to the Schwarz Criterion,” in Journal of the American Statistical
Association 90:341, 1995, pp.928-934

[17] B. P. Miller, G. Cooksey, and F. Moore, “An Empirical Study of the Robustness of
MacOS Applications Using Random Testing,” in Proceedings of the 1st International
Workshop on Random Testing, 2006, pp. 46-54

[18] B. P. Miller, L. Fredriksen, and B. So., “An Empirical Study of the Reliability of Unix
Utilities,” in CACM 33:12, 1990, pp. 32-44

183

183

[19] P. Ferrie, “Attacks on Virtual Machine Emulators“, Symantec Advanced Threat
Research, 2007

[20] VMWare, “VIX API 1.10.2 Documentation”,
http://www.vmware.com/support/developer/vix-api/, October 2010

[21] M. Russinovich and D. Solomon, “Microsoft Windows Internals,” 5th ed., Microsoft
Press, June 2009.

[22] Microsoft, “VBScript Language Reference”, http://msdn.microsoft.com/en-
us/library/d1wf56tt%28v=VS.85%29.aspx, 2011

[23] B. Blunden, “The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the
System,” Plano, TX: Wordware Publishing, 2009, pp.245-265

[24] V. Tiu, "Virus Analysis - Confounded Conficker," Virus Bulletin, pp. 7-11, March
2009

[25] F-Secure, “Virus Encyclopedia – Worm:W/32Bugbear”, http://www.f-secure.com/v-
descs/tanatos.shtml, 2009

[26] Symantec Corporation, “Security Response – Trojan.Vundo”,
http://www.symantec.com/security_response/writeup.jsp?docid=2004-112111-3912-
99, 2011

[27] McAfee Inc., “Virus Profile: W32/MyWife.d@MM!M24”,
http://home.mcafee.com/VirusInfo/VirusProfile.aspx?key=138027, 2010.

[28] Sophos Ltd., “Sophos Security Analyses – W32/Lovgate-E Win32 worm”,
http://www.sophos.com/security/analyses/viruses-and-spyware/w32lovgatee.html,
2011

[29] F-Secure, “Virus Encyclopedia – Email-Worm:W/32Mydoom.B”, http://www.f-
secure.com/v-descs/mydoom_b.shtml, 2009

[30] F-Secure, “Virus Encyclopedia – Email-Worm:W/32Waledac.A”, http://www.f-
secure.com/v-descs/email-worm_w32_waledac_a.shtml, 2009.

[31] D. Elser, "Metafile Art Class," in Virus Bulletin, June 2008, pp. 4-7
[32] C. Prakash and A. Thomas, "Malware Analysis – Pandex: The Botnet That Could,"

Virus Bulletin, pp. 4-8, March 2008.
[33] T. Raffetseder, C. Kruegel, and E. Kirda, “Detecting Systems Emulators,” in LNCS

4779, Berlin:Springer, 2007, pp.1-18
[34] V. Verendel, “Quantified security is a weak hypothesis”, in Proceedings of the NSPW,

2009, pp. 37-50
[35] N. Sandell, R. Savell, D. Twardowski, and G. Cybenko, “HBML: A Representation

Language for Quantitative Behavioral Modeling in the Human Terrain,” in Social
Computing and Behaviorial Modeling, New York: Springer, 2009, pp. 180-190

[36] D. Robinson, “Cyber-Based Behavioral Modeling”, PhD Thesis, Dartmouth College
(Thayer School of Engineering), July 2010

[37] J. T. House and G. Cybenko, "Hypergame Theory applied to Cyber Attack and
Defense," Proc. SPIE, vol. 7666, 2010

[38] E. Kotsovinos, “Virtualization: Blessing or Curse?, ” in CACM 54:1, pp. 61-65,
January 2011

[39] W. Dahms, "Technology Horizons: A Vision for Air Force Science & Technology
During 2010-2030," Technical Report, USAF Science and Technology,
http://www.af.mil/information/technologyhorizons.asp, May 2010

184

