
Hiding in Plain Sight: An Empirical Study of
Web Application Abuse in Malware

Mingxuan Yao1, Jonathan Fuller2, Ranjita Pai Sridhar1, Saumya Agarwal1,
Amit K. Sikder1, Brendan Saltaformaggio1

1Georgia Institute of Technology 2United States Military Academy

Abstract
Web applications provide a wide array of utilities that
are abused by malware as a replacement for traditional
attacker-controlled servers. Thwarting these Web
App-Engaged (WAE) malware requires rapid
collaboration between incident responders and web app
providers. Unfortunately, our research found that delays
in this collaboration allow WAE malware to thrive. We
developed Marsea, an automated malware analysis
pipeline that studies WAE malware and enables rapid
remediation. Given 10K malware samples, Marsea
revealed 893 WAE malware in 97 families abusing 29
web apps. Our research uncovered a 226% increase in
the number of WAE malware since 2020 and that
malware authors are beginning to reduce their reliance
on attacker-controlled servers. In fact, we found a 13.7%
decrease in WAE malware relying on attacker-controlled
servers. To date, we have used Marsea to collaborate
with the web app providers to take down 50% of the
malicious web app content.

1 Introduction

Web applications provide a wide range of utilities,
including content delivery [1]–[5], data storage [5]–[8],
social networking [9]–[11], and much more. These
utilities incentivize malware authors to integrate
popular web apps [12]–[15] into their malware. This
integration enables Web App-Engaged (WAE) malware
to profile a victim’s system, retrieve additional
payloads, exfiltrate and store victim information, and
even hide subsequent connections to attacker-controlled
C&C servers. Even worse, WAE malware are stealthier
because their network traffic blends in with
non-malicious traffic. Stopping this abuse requires
technical and policy solutions from Incident Responders
(IRs) and web app providers. However, such novel
collaboration has not happened to date, and little

research has been done to prove that WAE malware are
prevalent enough to warrant such an investment.

Recent works on web app security show the
possibility of abusing benign services for malicious
purposes [16]–[20]. Yet, these works only scratch the
surface of the WAE malware problem by solely
considering proof-of-concepts [16]–[18] of possible abuse.
The research community also proposed feature sets
based on user engagement [19]–[24] to classify abuse,
where engagement is the interaction (e.g., views, likes,
commits) that end-users have with web app content.
Unfortunately, these ad-hoc studies focused on specific
web apps and omitted the WAE malware required to
attribute the abuse. Separately, prior research
performed case studies of individual WAE malware
samples [25]–[27] but only provided anecdotal evidence.

Aiming to give IRs and web app providers a clear view
of WAE malware in the wild, this paper seeks to answer
five research questions:

RQ1: How prevalent are WAE malware?
RQ2: What capabilities do web apps provide attackers?
RQ3: How effective is the current collaboration
between IRs and web app providers?

RQ4: Can the abused web app help estimate the
extent of a WAE malware’s infection?

RQ5: How should IRs and web app providers
collaborate to effectively remediate WAE malware?

To answer our research questions, we studied WAE
malware in collaboration with Netskope, the leading
Secure Access Service Edge (SASE) provider, which
provides cloud security and networking to more than
25% of the Fortune 100. Together we built Marsea,1 an
automated concolic analysis pipeline, to perform a
scalable and retroactive study of WAE malware and
answer our five RQs. Given only a malware binary,
Marsea uses a novel session reconstruction and web app

1MalwAre Replace malicious Servers with wEb app Abuse.

modeling approach to identify and partition the abuse
vectors based on web app identities and assets.
Identities are identifiable information (e.g., accounts,
user names, API keys). Assets are content (e.g., files,
posts) hosted on web apps. These partitioned vectors
reflect the capabilities that the web app provides to the
malware and serve as proof-of-abuse, enabling
collaboration. Marsea then performs engagement data
harvesting from the abused web apps, which gives IRs
and web app providers an automated approach to
measure the effectiveness of their collaboration. Further,
we present three case studies to motivate the need for
Marsea in their future novel collaboration.

To evaluate the prevalence of WAE malware, we
deployed Marsea on 3K samples pulled randomly from
VirusTotal [28] spanning the last 3 years. From this
dataset, Marsea found that the number of web app
abuse increased by 226% since 2020. Further, a more
comprehensive study requires a larger set of known
WAE malware. To this end, our collaborator gave us an
additional 7K suspected WAE malware samples to
augment our existing dataset. Marsea’s study of all 10K
samples uncovered 893 malware in 97 malware families
abusing 29 web apps. Worse still, Marsea revealed
significant delays in the current collaboration between
IRs and web app providers. We found an average delay
of 253 days between when WAE malware authors create
their assets on the web apps and when the WAE
malware is finally detected. Our findings also suggest
that WAE malware could have infected up to 909,788
victims by evaluating the engagement data from 33
abused web app assets. At the time of writing, we have
used Marsea to collaborate with the web app providers
to take down 50% of active WAE assets, and we are
awaiting responses for the remainder. Lastly, we have
made Marsea available at:
https://github.com/CyFI-Lab-Public/MARSEA.

2 Challenges and Motivation

RQ1: A temporal measurement of malware web app
adoption is required to answer RQ1. However, many
web app assets used by malware are no longer available.
Thus, failing to build this connection leaves subsequent
network communications undiscoverable. Worse still,
tracking only web app connections is not evidence of
abuse (e.g., malware often connect to web apps to test
network connectivity). Motivated by this, Marsea
performs concolic analysis with a customized
exploration strategy to spoof network communications.
During our preliminary study, Marsea concolically
analyzed the Zusy WAE malware and confirmed its
connection to the Pastebin web app [5]. Then, Marsea
identifies that the fetched content is written to a local

file, confirming that Zusy is not using Pastebin for a
connectivity check. In fact, Zusy hosts the configuration
of the cryptocurrency miner XMRIG in the Pastebin
post. Further, Marsea confirmed that Zusy does not rely
on attacker-controlled C&C servers and only abuses
Pastebin during its execution.

RQ2: Armed with Marsea, our study (§5) revealed that
WAE malware are increasing in prevalence, which should
alert the IRs and the web app providers to be prepared
for future growth. Ideally, proof-of-abuse, including the
web app capabilities being abused by each identity and
asset, is needed to enable rapid remediation. Deriving
this proof motivated our measurement of capabilities
that web apps provide to malware RQ2.

Capability identification requires partitioning the
WAE malware’s abuse vectors based on their identity
and assets. To identify the abuse vectors, Marsea uses
Vector Rules (§3.2) to match the information flow from
the fetched content. By tracking the information flow
from the content fetched by Zusy to the WriteFile
operation, Marsea identified the File Download vector.
Unfortunately, partitioning is challenging since the
identity and asset are not readily available in the WAE
malware binary. Investigating Pastebin abuse requires
the Post’s content (the Pastebin asset) and the malware
author’s Username (the Pastebin identity). Upon
investigation, we found that Zusy’s binary includes no
asset or identity but only a Pastebin paste key as the
object name when configuring the network session with
Pastebin. To overcome this challenge and obtain the
identity and asset used by Zusy, Marsea performs
session reconstruction (§3.3) to reproduce the Pastebin
session (i.e., GET pastebin.com/raw/QKAdpkY). Then,
Marsea uses Web App Modeling (§3.4) to parse the
session and extract the paste key QKAdpkY. Given the
identified key and modeling, Marsea requests Pastebin
and confirms that Zusy is abusing the file hosting
capability of Pastebin via the asset (a post named
active) from the identity anthrax_.

RQ3: Next, we turned our attention to studying how
effective the current collaboration between IRs and web
app providers is. To do so, we define two key time
windows during a WAE malware outbreak. The
Response Delay (RD) is the time between when the
attackers create the assets to when the corresponding
WAE malware (that abuse those assets) are first
submitted to VirusTotal [28]. The Post-Detection
Window (PW) begins when the WAE malware is first
submitted to VirusTotal and ends when web app
providers take down the associated assets. Minimizing
RD and PW indicates a more effective collaboration.
Upon closer investigation, we found that web apps track
the time information of the hosted assets and often

https://github.com/CyFI-Lab-Public/MARSEA

expose such data to the public. Motivated by this,
Marsea queries the time information of assets from the
web app and calculates the RD of Zusy as 21 days and
PW as 108 days. Worse still, when we began this
research, the post was still available on Pastebin.
During our study, Marsea revealed a high RD and PW ,
leading to significantly more infected victims.

RQ4: Given that the current collaboration fails to
quickly take down abused assets, we wondered how many
victims end up infected by WAE malware. Several works
have proposed covert access [29] or active monitoring [30],
[31] of attacker-controlled servers. However, IRs still need
to collect information manually to evaluate the extent of
infections. This is hardly scalable and not applicable to
WAE malware since the malware’s activity takes place
on a public web app. In fact, the publicly available data
gives IRs and web app providers a unique opportunity to
monitor the extent of a WAE malware family’s infection
by harvesting the web app’s engagement data (e.g., views,
comments). Armed with this insight, Marsea harvested
the view numbers of the Pastebin post abused by Zusy
malware, which indicates up to 796 victims.

RQ5: Noting the deficiency of current collaboration
efforts (RQ3) and the extent of WAE malware
infections (RQ4), we develop our techniques in Marsea
to target rapid remediation of WAE malware. For Zusy,
we submitted proof-of-abuse derived from Marsea to
Pastebin, resulting in the revocation of abused
identities and assets. Apart from Zusy, Marsea enabled
us to correlate the assets attributed to WAE malware
with other identities and assets on the web app to
facilitate the remediation (designated Lateral
Remediation in §5.5). Moreover, modern malware
perform their infection via multiple stages, and WAE
malware often fetch these stages from web apps. In fact,
this research has found that this infection chain can
reveal the connections among different WAE malware
families and can assist IRs in uncovering new WAE
malware from a single WAE sample (designated Early
Stage Termination in §5.5). Lastly, Marsea also exposes
an opportunity for us to monitor and counteract the
migration of WAE malware intra- and inter-web apps
(designated Migration Remediation in §5.5).

3 Methodology

Marsea needs only a malware sample binary as input.
The analysis is automated to identify WAE malware and
output proof-of-abuse and answers the 5 RQs. Marsea
is open source and available at: <redacted>.

3.1 Concolic Exploration Strategy
Marsea uses concolic analysis to spoof network sessions
to ensure forced execution of the malware. Specifically,
Marsea introduces symbolic data through system input
APIs that read data from external sources (e.g., network
communication). The symbolic data enables Marsea to
drive the execution when the assets are unavailable.
As stated in §2, the Zusy malware abused Pastebin to
host a malicious configuration file. During analysis, Zusy
invokes InternetReadFile to fetch the content from
Pastebin. Marsea introduces symbolic data to the buffer
defined by InternetReadFile. When Zusy checks the
string (e.g., cpu) in the buffer, Marsea can generate two
states to ensure continued execution even if the abused
asset is unavailable.

However, since I/O APIs are expected to be
frequently invoked by the WAE malware, and Marsea
injects symbolic data for each, numerous states are
generated. For example, when Zusy fetches content from
Pastebin, it continues to invoke InternetReadFile in a
loop until all data has been read, which would be
reflected as the parameter lpdwNumberOfBytesRead
being zero. In this case, Marsea injects symbolic data λ
to lpdwNumberOfBytesRead. Now, every time the Zusy
checks if λi is zero in the i-th interaction, Marsea
spawns two states with λi > 0 to keep the execution in
the loop and with λi ≡ 0 to drive the execution out of
the loop. However, if Marsea chooses the state
randomly, it could easily re-visit the loop. To solve this,
we developed a context-aware exploration strategy.

Specifically, Marsea checks if the control flow being
executed: (1) is from the malware or a Dynamic Linked
Library (DLL) and (2) if it has already been analyzed
or executed before. Based on these, each available path
will be in any of four possible conditions:

(new code, malware) = α

(new code, library) = β

(old code, malware) = γ

(old code, library) = δ

Marsea prioritizes each state to explore by following
an order of precedence: α → β → γ → δ. Now, Marsea
will prioritize the state leaving the iteration
immediately (λ0 = 0) and the state executing the
iteration once (λ0 ≠ 0 ∧ λ1 = 0). This context-aware
exploration strategy enables Marsea to efficiently handle
loops and innumerable states (e.g., read until nothing).

3.2 Web App and Vectors Identification
Concolic analysis proves efficient for selective path
exploration, but, on its own, it cannot answer our 5
RQs. To answer RQ1, Marsea needs to identify abused
web apps and the abuse vectors performed by the
malware. This is similar to a detective (e.g., IRs)

Algorithm 1: Marsea’s Vector Identification.
Input: Instruction I, Vector Rule R, Connect API

Annotation Π, Current State S
Output: Identified Vectors with associated web app V ec

// Initialize vector and propagation graph
1 V ec←∅;
2 P rop←∅;

// Invoke connect function
3 if I.target ∈Π then

// Update handle to web app map
4 S.M [DefHandle(I)]←GetT arget(I);
5 end

// I uses handle
6 if (UseHandle← I.ARGS∪S.M) ̸= ∅ then
7 S.M [DefHandle(I)]← S.M [UseHandle];
8 end
9 for Rij ∈R do

// Invoked function is in rule Rij

10 if I.target ∈Rij then
// Initialize instruction list to trace

back
11 T ← [I];
12 while Inst← P op(T) do

// Add inst in graph P rop
13 P rop.addNode(inst)

// inst uses handle in S.M
14 if inst.ARGS∪S.M ̸= ∅ then
15 V ecca← S.M [inst.ARGS∪S.M];
16 end

// Trace the symbolic data
17 for NewInst ∈ SymbolicSource(I.ARGS) do

// Build the dependence
18 P rop.addEdge(NewInst,Inst)

T.Append(NewInst);
19 end
20 end

// Try matching P rop with Rij

21 if HasP ath(P rop,Rij) then
22 V ecbehavior ←Rij ;
23 break;
24 end
25 end
26 end
27 return V ec;

collecting evidence from a crime scene (e.g., malware)
for off-site processing. Without the context of the crime
scene, the detective may make (inaccurate) assumptions
about evidence. To overcome this challenge, Marsea
uses a fined-grained and context-driven approach to
identify abused web apps and abuse vectors.

Algorithm 1 shows how Marsea identifies abused web
apps and vectors. During concolic analysis, Line 3 of
Algorithm 1 tracks the invocation of system APIs
which build the connection to remote endpoints (e.g.,
WinHttpConnect), denoted as Π. Once the malware
invokes a system API in Π, Marsea recovers the
communication target information from the input to
the API (GetTarget() of Algorithm 1). For example,
when Zusy builds the network connection to the remote

endpoint by invoking InternetConnect, Marsea
identifies the endpoint pastebin.com from parameter
lpszServerName. Notably, since Marsea’s concolic
analysis logic needs no information of Π annotation, it
is a one-time effort and can be extended easily. Armed
with the ability to identify abused web apps, Marsea
can pursue large-scale analysis to identify the
prevalence of WAE malware (RQ1).

Definitions for Abuse Vector Rules
Primitive Example Library Functions
Receive: WinHttpReadData | WinHttpReceiveReponse | ...
ReadF ile: ReadFile | ReadFileEx | ReadFileScatter | ...
SysOp: RegOpenKey | CreateFile | DeleteFile | ...
W riteF ile: WriteFile | fwrite | write | ...
Send: send | HttpSendRequest | WinHttpSendRequest | ...
Connect: WinHttpConnect | InternetConnect | connect | ...
Execute: ShellExecute | CreateProcess | ...

Abuse
Vectors Priority Rules

Execute R11 (Receive→W riteF ile)→ Execute
File Download R12 Receive→W riteF ile
Message Fetch R13 Receive→ SysOp

File Upload R21 ReadF ile→ Send
Message Push R22 SysOp→ Send

Jump Server R31 Connect→Receive→ Connect′

Table 1: Abuse Vectors And Associated Rules.

Answering RQ2 requires Marsea to identify the
abuse vectors, which indicates the capabilities the web
apps provide. To do so, Marsea tracks information flow
in the context of malware execution. Unfortunately,
tracking all concrete data during analysis is unnecessary
and unscalable. Recall the symbolic data Marsea
introduced to enable the concolic analysis (§3.1). It
turns out that the propagation of symbolic data
indicates the information flow. As shown in Lines 10
to 13 of Algorithm 1, Marsea tracks symbolic data
propagation, saved in Prop. For example, after Marsea
introduces symbolic data through InternetReadFile
invoked by Zusy, the symbolic data is propagated to
WriteFile. In this case, Zusy is abusing the web app to
perform the File Download vector. These API
dependencies Marsea uses (e.g., InternetReadFile →
WriteFile) are presented as vector rules, Rij

in Table 1. The full list of system APIs will be
open-sourced along with Marsea. We present the
definition of each abuse vector below:
Execute: The malware retrieves an asset from a web
app, stores the content in a local file, and executes the
file on the victim’s system.
File Download: The malware retrieves an asset from
a web app and stores the content in a local file on the
victim’s system. These are often configuration files for
the malware.

Message Fetch: The malware retrieves an asset from
the web app for malware’s internal use (e.g., C&C
commands). Specifically, Marsea tracks that the
retrieved asset data is stored in the malware’s memory
and used in subsequent operations (e.g., compared to a
hard-coded string or used as a decryption key) but
never written to a local file on the victim’s system.
File Upload: The malware reads one or more files on
the victim’s system and uploads the data to an asset
on the web app.
Message Push: The malware sends data to an asset
on the web app. The data does not originate from a
file on the victim’s system. This is commonly used to
exfiltrate victim information (e.g., IP, username).
Jump Server: The malware retrieves an asset from
a web app which is used to resolve a new connection
endpoint.

As shown in Table 1, we define the rule primitives
based on the vectors, which represent a set of APIs that
perform a task that the primitive is named for.
Column 1 (bottom half of the table) lists the abuse
vectors considered in this study. To decide on the abuse
vector rules, we referenced reports from security
experts [32], [33] and the MITRE ATT&CK
Framework [34] to understand how malware vectors are
generally applied. Column 2 presents the matching
priority for each vector. Specifically, Ri,j has a higher
priority than Ri,m when j < m. Given Prop and the
Rule set, Marsea identifies abuse vectors by evaluating
if the path presented by Rij exists in Prop (Line 21
of Algorithm 1). Since the exploration logic does not
depend on vector identification, vector rules are both
composable and extensible with no need to re-analyze.

Up until now, Marsea has identified Zusy contacting
Pastebin by invoking InternetConnect and performing
the File Download vector by verifying the information
flow from InternetReadFile to WriteFile. However,
to conclude that Zusy is abusing Pastebin, Marsea
needs to find the connection between InternetConnect
and InternetReadFile. To do so, Marsea reveals the
connection using handles (e.g., HINTERNET, socket),
shown in Lines 3 to 7 of Algorithm 1. For each
exploration state S, Marsea maintains a map M , which
maps the handles defined by system APIs to the web
app. When Marsea identifies vectors, it checks the map
to attribute vectors to abused web apps. For example,
amid Zusy’s analysis, Marsea tracks the handle through
InternetConnect → InternetOpenRequest →
InternetReadFile. Armed with the ability to
attribute the abused web app to the malicious vector
(e.g., File Download), Marsea confirms Zusy abusing the
file hosting capability of Pastebin (RQ2).

3.3 Session Reconstruction

Unfortunately, reporting Zusy and the abuse vector to
Pastebin is not enough to pinpoint the abuse on the
platform and remediate the abuse. Instead,
proof-of-abuse, including partitioned abuse vectors
based on identities and assets, is needed. Since WAE
malware abuse web apps through network sessions,
identifying the identities and assets requires Marsea to
extract the network sessions first.

However, given the multi-path nature of concolic
analysis, acquiring in-order network sessions at the
operating system layer is challenging. For example,
concolic analysis can switch the exploration state after
Zusy invokes InternetConnect. Then, on the system
level, the new network sessions appear to be appended
after InternetConnect of the old state, which is not
true in the malware. To overcome this challenge, we
introduce a graph automata model of network session
states, which enables Marsea to reconstruct sessions by
interleaving different exploration states. As shown
in Figure 1, we generalized the session states into
opened (o), connected (c), sent (s), and closed (cl).
The transitions between different states fall into five
categories: (1) a transition from the opened state to a
connected state by connecting to the target (function
ho.c()), (2) a transition from the old connected state to
a new connected state by assigning session parameter
information through headers (function hc.a()) and
parameters (function hc.p()), (3) a transition from the
connected state to sent state by sending the request
(function hc.s()), (4) a transition to the closed state by
freeing the resource (function hs.cl() and ho.cl()). Each
transition function in Figure 1 presents a group of
system APIs. During the analysis of Zusy, the session
state transition o → c happens when Zusy invokes
InternetConnect. As stated in §3.2, Marsea extracts
the abused web app, e.g., pastebin.com, during this
transition. The next session state transition Marsea
observed in Zusy was c to c , caused by invoking
InternetOpenRequest. During this transition, Marsea
extracts the session parameters. For Zusy, this is the
verb (GET) and object name (pQKAdpkY). When Zusy
invokes HttpSendRequest, the session state transitions
from c to s . Note the transition from s to cl can
include more operations (e.g., receiving). We abstracted
those into a dotted line since Marsea only needs
sessions composed by the malware to extract the
abused identities and assets. Given Marsea’s session
graph automata model, it reconstructs multiple network
sessions by interleaving execution states.

o

ccl
s

௦

Figure 1: Graph Automata Model To Guide Session
Reconstruction From Interleaving Execution States.

3.4 Web App Modeling

Given reconstructed network sessions, Marsea is ready
to identify the identities and assets. However, since web
apps do not share the same session syntax, it is
challenging to parse the reconstructed network sessions.
Luckily, each web app provides public documents to
regulate the network sessions. Motivated by this, we
proposed a web app model, Φ = (ϕα,ϕβ), to model the
API described in the web app’s documentation. ϕα

includes the compositions of the public frontends of the
web apps. ϕβ = [θ1,θ2, ...] includes web app APIs. Each
web app API θi embeds the response format to
annotate the identity, asset, time, engagement, and raw
data. Now, Marsea can uncover the web app’s identifier
specific to the abused asset from the reconstructed
network sessions. Then, Marsea uses the identifier and
web app APIs, ϕβ , to harvest and parse the information
fetched from the web app. For example, to query the
abused post from Pastebin through the public frontend,
Zusy appends a Pastebin paste key QKAdpkY after the
URL pastebin.com/raw. Using ϕα, Marsea extracts
the paste key from the reconstructed network sessions.
Meanwhile, Pastebin APIs api_scrape_item and
api_scrape_item_meta can be used to query the raw
data and the metadata information, respectively. By
modeling these APIs, Marsea queries Pastebin using the
paste key and parses the response to uncover: (1) the
raw data of the abused post, (2) the identity (Username
anthrax_), (3) asset (post named active), (4) creation
time (12-19-2021), and (5) the engagement data (796
views).

With the identity, Marsea uses the modeled frontend
(ϕα) and modeled APIs (ϕβ) to query the frontend and
APIs accepting the identity as input. For Zusy, Marsea
uses modeled frontend pastebin.com/u/ to query
other posts from anthrax_. Notably, given the finite
number of web apps and the APIs they provided,
Marsea can be easily extended to support additional
web apps. Till now, the partitioned vectors constitute
the admissible proof-of-abuse, which enables fast
collaboration. (RQ5). Meanwhile, Marsea can evaluate
the extent of infection using the harvested engagement

data (RQ4). By querying the first detection date of the
malware and comparing the date with the harvested
time information, Marsea can calculate the Response
Delay and the Post-detection Window (RQ3).

4 Validating Our Techniques

Implementation. Marsea is implemented in C++
(12K lines) leveraging S2E [35], which has been used in
top-tier research, for concolic analysis [36]–[38], and
Python (8K lines) to attribute identified malicious
vectors to abused identities and assets and harvest
corresponding engagement information on the abused
web app platforms. We used AVClass2 [39], a
state-of-the-art malware labeling tool, to label our
dataset. We used an Ubuntu 20.04 LTS system to host
Marsea. Given one malware, Marsea spawns a Windows
7 virtual machine (20GB RAM and 6 x 3.9GHz CPUs)
based on the snapshot of a bare-metal machine to
mimic the victim system.

In this section, we validate Marsea’s ability in (1)
abuse vector identification, (2) attributing vectors to
abused identities and assets, and (3) comparing the
identified vectors with concrete execution. We randomly
selected malware samples from our dataset until we
found those with industry security reports, resulting in
20 WAE malware from 11 families. We manually
reverse-engineered these samples and used industry
reports to derive ground truth2.

4.1 Vector Identification
Table 2 presents Marsea’s abuse vector identification
evaluation. Columns 1-4 list the abused web apps,
malicious vectors, malware families, and the number of
samples (#V) in our ground truth dataset. Column 5
presents the ground truth results (G) derived from the
industry report and manual investigation. Column 6
presents the concrete execution results (C). Specifically,
we count the vectors the concrete execution could reveal
by manually verifying the information flow. The results
generated by Marsea (M) and the evaluation metrics
are presented in Columns 7-10, including True Positive
(TP), False Positive (FP), and False Negative (FN).
The paths Marsea explored are shown in the last
column.

Overall, Marsea correctly (TP) identified 40 abuse
vectors across 20 malware samples. As shown in
Column 5 of Table 2, compared with single-path
concrete execution, Marsea identified 37 more vectors,
accounting for 86% of the vectors in the ground truth.

2Note that Marsea does not need nor have access to this ground
truth data.

Web
Apps Vec Family #V G C M TPFPFN #ID #A TPFN Path

G M G M

GitHub
EXE

Ramnit 1 2 0 2 2 0 0 1 1 2 2 3 0 887
Apost 2 2 0 0 0 0 2 1 0 1 0 0 2 1,117
Zorex 5 5 0 5 5 0 0 1 1 1 1 2 0 943
Dldr 1 1 1 1 1 0 0 1 1 1 1 2 0 1,043

FD Apost 2 4 0 6 4 2 0 1 1 2 2 3 0 1,117
Dldr 1 1 1 1 1 0 0 1 1 1 1 2 0 1,043

Twitter JS Vtflooder 5 5 0 5 5 0 0 1 1 1 1 2 0 279

Dropbox
EXE Banload 1 1 0 1 1 0 0 1 1 1 1 2 0 1,503

Lowball 1 2 0 2 2 0 0 1 1 2 2 3 0 2,474
FD Lowball 1 4 0 4 4 0 0 1 1 4 4 5 0 2,474
FU Lowball 1 2 0 2 2 0 0 1 1 2 2 3 0 2,474
MP Lowball 1 3 0 3 3 0 0 1 1 3 3 4 0 2,474

VrsTotal3 FU Vtflooder 5 5 0 5 5 0 0 1 1 1 1 2 0 279

GDrive EXE Ramnit 1 1 1 1 1 0 0 1 1 1 1 2 0 803
Formbook 1 1 1 1 1 0 0 1 1 1 1 2 0 341

Telegram MF Sstealer1 1 1 1 1 1 0 0 1 0 1 1 1 1 1,631

Pastebin JS Msil 2 2 0 1 1 0 1 1 1 1 1 2 0 803

MF Dkomet2 1 1 0 1 1 0 0 1 1 1 1 2 0 1,325
Total All 11 20 43 5 42 40 2 3 1816 2726 42 3 1,0524

1,2,3: Short for Stellarstealer, Darkkomet and VirusTotal
4: Average explored paths for each sample
#ID: Number of identities #A: Number of assets

Table 2: Evaluation Of Abuse Vector Identification And
Identity and Assets Attribution.

Understandably, since remote endpoint network
communication can be implemented through multiple
API calls (e.g., socket, connect, recv), single-path
exploration can halt during connection establishment if
the endpoint is unavailable. Next, our manual
investigation found 43 abuse vectors, revealing an
overall accuracy of 93%. As seen in Row 2, Row 5, and
Row 17 of Table 2, Marsea produced 2 FPs and 3 FNs
when it analyzed Apost and Msil. For each variant of
Apost, our manual investigation revealed that the
malware retrieved 3 files from a GitHub repository. One
of these files is a binary executed by the malware, which
accounts for the 1 Execute (EXE) abuse vector, while
the other 2 files were dropped as configuration files.
However, Marsea reported no EXE vector (Row 2) and
3 File Download (FD) vectors (Row 5). Similarly, for
one Msil variant, our manual investigation uncovered
Pastebin abuse to resolve the new network connection
target. However, Marsea reported no Jump Server (JS)
vector. Upon closer inspection, we found that both
cases were due to unresolved symbolic constraints
accumulated through exploration, which further
impedes Marsea’s exploration. We confirmed these are
rare occurrences. Note, since the FD vector is the
precondition of the EXE vector (the malware needs to
download the file before executing it), in the case of
Apost, the FP is the direct cause of the FN. Therefore,
once Marsea can escalate FD vector to EXE vector, it
will not introduce any FPs or FNs. Overall, Marsea was
93% accurate in abuse vector identification, making it

robust for our large-scale study.

4.2 Identities & Assets Attribution
While analyzing the ground truth dataset, Marsea
located the identities and assets during exploration. We
compared the results Marsea generated with our
manually-derived ground truth and concrete execution,
and the results are presented in Columns 10-15
of Table 2. Specifically, Columns 11-16 show unique
identities (#ID) and assets (#A) Marsea identified.
Columns 17-19 present Marsea ’s evaluation metrics,
including the True Positive (TP), False Negative (FN),
and explored paths. To illustrate, Row 9 shows the
results of Marsea’s analysis of Lowball. Marsea revealed
2 EXE vectors tied back to 2 assets (files) hosted on
Dropbox using 1 identity (API key). Overall, Marsea
found a total of 42 different assets and identities out of
45 manually-derived assets and identities in 20 WAE
malware samples, which yield over 93% accuracy.

Next, Marsea introduced 3 FNs when analyzing
malware Apost and Stellarstealer. The FN in Apost is
caused by the prior vector identification FN in §4.1 (if
Marsea misses a vector, then it can not attribute that
vector). Upon closer inspection, we found that the FNs
in Stellarstealer are because the abused Telegram
channel is no longer available. Even though Marsea can
extract the asset’s content (Telegram channel) from the
network session, Marsea cannot identify the identity
(i.e., Username) since that information is hosted in the
channel and not included in the network sessions. Still,
given the low number of FNs and over 93% accuracy,
Marsea provides the means to attribute abuse vectors
to identities and assets effectively.

5 WAE Malware Study Insights

To study the prevalence of WAE malware (RQ1), we
deployed Marsea on 3K malware randomly pulled from
VirusTotal [28], spanning 2020-2022 (1K samples per
year). Specifically, we used VirusTotal Intelligence
Search [40] to fetch signatures of all Windows PE
malware with a first submission date in each of the 3
years and at least 5 AV engine detections, indicating
maliciousness [41]. Then, we randomly selected 1K
signatures from each year and deployed Marsea on the
fetched samples. For RQs 2-5, we extend our dataset
with an additional 7K suspected WAE malware samples
collected by Netskope (totaling 10K samples) to
investigate WAE malware-specific topics.

5.1 WAE Malware Prevalence
Marsea extracted communication endpoints from the
3K samples randomly pulled from VirusTotal. Based on

Year Vector WAE Hybrid Malicious Total

2022

Execute 47 3 177 227
File Download 38 6 143 187
Message Fetch 10 0 255 265
Jump Server 33 0 21 54
File Upload 15 3 274 292
Message Push 41 2 235 278

Subtotal +22% YoY 173 14 813 1,000

2021

Execute 52 0 218 270
File Download 34 9 147 190
Message Fetch 5 0 213 218
Jump Server 19 0 33 52
File Upload 9 7 297 313
Message Push 31 0 144 175

Subtotal +166% YoY 141 16 843 1,000

2020

Execute 21 1 329 351
File Download 13 3 158 174
Message Fetch 7 0 293 300
Jump Server 4 1 79 84
File Upload 3 0 194 197
Message Push 5 0 53 58

Subtotal 53 5 942 1,000
Total +226% 2020→2022 367 35 2,598 3,000

Table 3: RQ1 Malware Reliance On WAE And Year Over
Year (YoY) Increase Of WAE Adoption.

the endpoints, the malware are categorized as
WAE-only (i.e., communicates solely with web apps),
hybrid (i.e., communicates with both web apps and
attacker-controlled C&C servers), and malicious
backend-only (i.e., communicates solely with
attacker-controlled C&C servers). Marsea evaluates the
reputation of the endpoint effective Second-Level
Domain (eSLD) using Tranco 1M top sites [42] and
Cisco Talos [43]. If the eSLD is categorized as untrusted
by Cisco Talos or is not listed in the Tranco top sites,
Marsea considers it an attacker-controlled C&C server.

Notably, malware can contact endpoints only to verify
the network connectivity of the infected victim system.
Failing to exclude these cases would lead to a biased
prevalence measurement. However, Marsea would not
report any abuse vector for a connectivity check since
the information flow (e.g., status code) fetched from
the websites would not flow to the system APIs Marsea
modeled. The overall results are presented in Table 3. We
made several observations from Table 3: (1) As shown in
the Total row of Table 3, in the last three years, malicious
backend-only malware, WAE-only malware, and hybrid
malware account for 2598 (86.6%), 367 (12.2%), and 35
(1.2%) of all 3K malware. (2) As shown in Column 5
of Table 3, the malware using only malicious backends has
decreased by 13.7%. (3) Marsea found notably few hybrid
malware (only 35 across all 3 years), which suggests that
WAE malware authors prefer to shift entirely to web
apps. (4) From the Total row of Table 3, the WAE-only
malware has increased by 226% in the last three years

(increased by 22% and 166% in 2022 and 2021), indicating
the recent prevalence of WAE-only malware.

RQ1: Marsea identified 2,598 (86.6%) malware
that rely on attacker-controlled servers. Marsea
also revealed a 226% increase in WAE-only
malware since 2020, showing malware’s growing
adoption of web app abuse. This steep increase
should alert the IRs and the web app providers
to be prepared for future growth.

Category Web Apps Vector Mal Fam F AD LAD History
(Days)

File
Sharing

GDrive
EXE 263 24 2020-01 2022-06 894
FD 36 6 2020-03 2022-03 716
JS 23 5 2019-06 2022-03 1,002

Dropbox
EXE 13 6 2010-07 2020-10 3,734
FD 1 1 2016-05 2022-02 2,091
FU 4 3 2016-09 2021-07 1,756

Pastebin
FD 5 3 2021-12 2022-04 130
MF 26 11 2018-02 2022-02 1,463
JS 25 10 2014-02 2022-04 2,990

Zippyshare EXE 1 1 2018-06 2018-06 3
Imgur EXE 1 1 2013-10 2013-10 1

Tietuku EXE 17 1 2016-05 2020-06 1,490
FD 17 1 2016-05 2020-06 1,490

Software
Hosting

GitHub
EXE 29 10 2020-09 2022-10 772
FD 4 2 2020-09 2022-10 762
MF 9 5 2019-10 2022-04 922
JS 4 1 2020-03 2022-03 732

SourceForge EXE 9 1 2022-01 2022-02 33
JS 11 6 2022-01 2022-02 20

Social
Networking

Telegram MF 4 2 2022-02 2022-03 30
Twitter JS 54 7 2014-06 2022-01 2,773

Discord EXE 49 11 2021-03 2022-01 314
MP 37 9 2021-10 2022-03 153

Slack MP 13 4 2020-08 2022-03 585
Facebook MF 1 1 2018-07 2018-08 29
V Kontakte FD 1 1 2018-02 2020-01 705

Website
Builder

Wordpress EXE 3 2 2011-11 2014-05 914
JS 9 3 2011-05 2020-05 4,026

Webs EXE 5 2 2010-03 2019-10 3,596
FD 3 1 2012-05 2017-11 2,021

Tripod EXE 1 1 2007-03 2014-05 2,628
FD 1 1 2012-01 2021-07 3,474

Blog Blogspot
EXE 1 1 2018-07 2018-08 853
FD 1 1 2011-11 2014-05 932
MF 1 1 2018-07 2018-08 29
JS 3 3 2017-05 2020-02 1,014

Dynamic
DNS

Afraid JS 110 8 2020-09 2022-03 544
DuckDNS JS 8 1 2022-02 2022-02 1

Local Info

Cmyip MF 6 2 2011-11 2014-05 910
Wikidates MF 5 1 2022-03 2022-03 1
Ip-api MF 3 2 2020-10 2020-12 59
wimip MF 2 2 2011-11 2014-05 898
Ip2location MF 2 2 2011-11 2014-05 898
Ip-address MF 2 2 2011-11 2014-05 898
Ipify MF 11 6 2022-01 2022-02 27
Timeanddate MF 1 1 2022-03 2022-03 1

Anti-Virus VirusTotal FU 106 10 2014-06 2022-05 2,281
Summary 29 6 893 1 971 2007-03 2022-03 5,493

Table 4: WAE Vector Landscape.

5.2 WAE Malware Capabilities

Deploying Marsea on 10K malware samples confirmed
893 WAE malware across 97 malware families, abusing 29
web apps. Since WAE malware abuse vectors indicate the
web app capabilities abused by the malware, we present
the vectors Marsea identified in Table 4. We aimed to
study the temporal adoption of each abuse vector on
different web apps. To do so, we computed the First
Abuse Date (FAD) and Last Abuse Date (LAD) for each
vector v on every web app w, shown in Columns 6-7. The
FAD is the earliest VirusTotal “first submission date”
across all WAE malware samples found abusing v on w.
The LAD is the most recent VirusTotal “first submission
date” across all WAE malware samples abusing v on w
(i.e., when VirusTotal discovered the most recent variant).
Then, we measured the time difference to evaluate the
abuse history of malware abusing v on w, shown in the
History column of Table 4. Notably, the lifetime of abused
assets can be longer than the abuse history, which will
be evaluated in §5.3.

As shown in the Summary row of Table 4, Marsea
found a total of 893 (8.9%) WAE malware in 10K samples.
Notably, 32% of the 7K samples that Netskope suspected
as being WAE malware were only performing network
connectivity checks using web apps. As mentioned in §5.1,
connectivity checks present no malicious vectors and are
omitted from our study. This accounts for the drop in
the percentage of WAE malware compared with §5.1.

Row 1 Columns 4-5 of Table 4 show that 263 (29.4%)
WAE malware in 24 (24.7%) families abuse GDrive to
perform the Execute (EXE) vector. GDrive is the most
abused web app, illustrating the attackers’ preference for
reputable web apps. Surprisingly, GDrive not only gives
the WAE malware the capability of hosting malicious
executables, as shown in Row 1, but also enables the
resolution of next-hop endpoints, shown as JS vector
in Row 3. Similarly, from Rows 37-38 (Dynamic DNS),
Afraid and DuckDNS provide 118 WAE malware with
the capability to resolve additional endpoints, protecting
attacker-controlled C&C servers. Consequently, when
the resolved endpoints are denylisted, the attackers can
update the record in the web app to re-activate the WAE
malware on the victim system.

From the category Local Info, Marsea found 8 web
apps abused to query the IP, geo-location, and the local
time of the victim system. Since identity and assets are
not required to use these services, it is challenging to
remediate the abuse. We suggest that these web app
providers require an identity in the network session
when providing service to prevent abuse by blocking the
malicious identity. The wide range of capabilities and
the benefit of the benign traffic incentivizes malware
authors to integrate web apps, which explains the

Web
Apps

Live
Mal #ID #A Live Assets Growth

(2011-2022)
Response Delay µpw

(Days)Min Max Med Avg

GDrive 214 41 42 2 104 72 59 -59

GitHub 34 19 27 0 1,320 446 583 173

Pastebin 33 12 13 1 242 122 118 -118

Telegram 2 2 2 296 359 327 327 -328

Twitter 26 1 1 -51 -51 -51 -51 51

WordPress 3 3 3 5 38 37 29 1,635

Discord 21 21 21 7 100 34 51 -17

Blogspot 3 4 4 -72 12 7 -13 26

Dropbox 10 10 10 1 1,440 741 813 -813

Webs 1 1 1 398 398 398 398 -398

Afraid 110 1 1 1,812 1,812 1,812 1,812 -1,812

Tripod 1 1 1 -19 -19 -19 -19 19

Facebook 1 1 1 85 85 85 85 10

VK 1 1 1 1 1 1 1 1

DuckDNS 1 1 1 759 759 759 759 -759
Summary 430 119 129 0 1812 344 253 -49

Table 5: Collaboration Evaluation By Measuring RD
And PW of Live Identity (ID) and Asset (A).

growth of WAE malware found in §5.1. Unnervingly, we
found that this incentivization happened earlier than
we thought. As shown in the Summary row of Table 4,
the WAE malware can be traced back to 2007, and the
average abuse history of web apps can reach up to 5,493
days.

RQ2: Marsea revealed 893 WAE malware (97
families) abusing 29 web apps. Identifying 6
malicious vectors in WAE malware indicates
a wide range of web-app-provided capabilities.
Worse still, WAE malware in our dataset spans
back to 2007, with an average of 5,493 days of
abuse history for each abused web app.

5.3 Collaboration Evaluation
To evaluate collaboration effectiveness, we measure RD
by calculating the time difference between the First
Creation Date (FCD) of assets the WAE malware
abused and the First Submission Date (FSD) of the
WAE malware on VirusTotal. RD also presents the
time window that the WAE malware could have to
infect systems without being identified as malware.
Similarly, we calculate PW using the time difference
between the malware’s First Submission Date (FSD)
and the attacker’s Last Update Date (LUD) of the
assets the malware abused. Notably, Marsea uses web
app modeling (§3.4) to harvest the information. Since
the web app abuse identification does not rely on web
app modeling, we curated the web app modeling based
on the identified web apps during our study. The web

apps and their available information are listed
in Appendix A.

The results of this evaluation are shown in Table 5.
Note that WAE malware can abuse legitimate web app
assets as its components (e.g., pulling legitimate proxy
software), in which case they are omitted in Table 5
since RD and PW could not reflect the efficiency of the
current collaboration. We will further discuss how we
identified the legitimate assets in §5.4.

Shown in Column 2 of Table 5, before we started
collaborating with the web app providers, 96% WAE
malware Marsea analyzed still had live assets on the
abused web app platform. Column 5 shows that assets
on Website Builders (i.e., WordPress, Tripod, Webs) are
particularly long-lived. For example, Marsea identified
the Symmi malware abusing the WordPress website
turrona5.wordpress.com to resolve the next-hop
endpoint. Surprisingly, the content on the website was
posted in 2011 and is still live until 2022. Since we took
down these assets by collaborating with web app
providers (discussed in §5.5), it is evident that IRs
failed to initialize the collaboration. Worse still, the
Summary row of Table 5 shows that the RD of IRs
reaches 253 days on average. In other words, analyzed
WAE malware could go undetected for approximately
253 days. More interestingly, Column 10 shows the
average PW (µpw) for each abused asset. A positive
µpw (e.g., Github) indicates that the abused assets were
updated even after the malware was detected.

RQ3: Marsea found that 48% of 893 WAE
malware remained active until our study. An
average RD of 253 days reveals deficient
collaboration between the IRs and the web app
providers. Marsea found some abused assets
updated for hundreds or thousands of days after
the malware was detected.

5.4 WAE Malware Engagement Data
In this section, we perform a large case study to estimate
the extent of a WAE malware infection by analyzing the
assets’ engagement data. Starting with the 15 web apps
shown in Table 5, 6 of them (which host 93 live assets)
expose engagement data to the public. We randomly
picked 5 malware families from each abused web app,
resulting in 33 assets for our case study. For GitHub,
WAE malware use benign and malicious repos, so we
randomly picked 5 malware families for each case.

Surprisingly, the engagement data of malicious assets
indicate that WAE malware could have infected up to
909,788 victims. Interestingly, most engagement data is
from the view numbers exposed by Pastebin. Notably,
this number is likely inflated by multiple accesses from

the same sample and views from other sources like
crawlers.

The engagement data results are presented in Table 6.
Columns 4-5 show abused assets’ First and Last Creation
Date (FCD and LCD). Column 6 shows the geo-location
(Geo) or language (Lan) of the abused assets derived
using polygot [44]. Column 7 presents the engagement
data supported by each web app. Rows 1-5 of Table 6
present the 5 Pastebin users and posts used by WAE
malware, from which Marsea harvested the view number
of the posts (Visits). Surprisingly, Marsea uncovered
908,109 views from 5 posts, averaging 181,621 views per
post, indicating a significant extent of infection.

Benign & Malicious Assets. WAE malware also
abuse benign web app assets (e.g., Xray-core Github
repo used by Aauto, Verium cryptocurrency miner used
by Msilzilla). To distinguish, given the extracted
identity and assets, Marsea uses GitHub APIs to query
the identity information and calculate the information
completeness (Info in Column 7). Specifically, given all
fields defined by the web app in the user class, U , and
the fields filled by the identity, Id, Marsea calculates
the information completeness using Info = |Id|/|U |.
Similarly, by visiting the abused repositories, Marsea
counts the lines of code (LoC) in the README.md file.

From Rows 6-18 of Table 6, we made several
observations: (1) Column 7 shows that the average LoC
of the README of benign repos and malicious repos
are 91 and 1, respectively. Unlike benign projects that
use README files, malicious repos do not require such
comprehensive information. (2) Rows 6-16 show that
the average information completeness (Info) of
identities that create benign repositories and malicious
repositories are 82.88% and 73.3%, respectively.
Understandably, attackers prefer to leave this
information blank during registration. Interestingly,
Rows 13-16 of Table 6 show that attackers created 4
different GitHub repos on the same day, which the same
malware family abused. We suspect that weak
registration verification encourages attackers to create
multiple assets using different identities.

Unfortunately, our study found several web apps that
do not collect engagement data or expose it to the public.
Given the significant extent of WAE malware infection
revealed by Marsea, we suggest the web app providers
collect and provide engagement.

Family Identity Asset F CD LCD Lan/Geo Engagement

Pastebin (Asset: Post)
Neshta vinmarcio g3w5Zkzi 2022-01-01 2022-01-01 Alabanian AllAssets: 3 Types: TXT(3) AllFCD: 2022-01-01

AllViews: 6,142 Visits: 6,099

Bymeria Huynhnhi92 Y8VWhxtG 2021-07-22 2021-07-22 English AllAssets: 5 Types: TXT(3) AllFCD: 2019-09-19
AllViews: 426,979 Types:AutoIT(2) Visits: 108,629

Ursu pastwahman xkkQYFEa 2018-01-09 2018-01-09 English AllAssets: 47 Types: TXT(47) AllFCD: 2016-11-11
AllViews: 5,389,380 Visits: 793,381

Wacatac sdfgsdf qiMfPtmr 2021-12-21 2021-12-21 Russian Visits: 3866

Zusy anthrax_ QKAdpkY 2021-12-19 2021-12-19 English Visits: 796
Github (Asset: Repo)
Aauto XTLS Xray-core1 2020-11-09 2022-05-25 English

README: 99 Star: 8,499 Fork: 1,448
Contributors: 39 Repos: 17 Info: 84%

Apost clangremlini ayeloader-dll-repo1 2020-04-16 2022-02-03 English README: 24 Star: 4 Fork: 3
Contributors: 2 Repos: 13 Info: 81%

Ayajbrci kevlu8 OpenFRE1 2022-01-16 2022-03-28 Canada README: 13 Followers: 12 Fork: 2
Star: 3 Repos: 50 Info: 90.6%

Msilzilla fireworm71 veriumMiner1 2014-04-23 2022-01-25 English README: 274 Star: 59 Fork: 38
Info: 71.8% Followers: 8 Repos: 4

Onlinegames blaumaus le_chiffre1 2020-11-14 2022-04-03 Ukraine README: 45 Star: 178 Fork: 27
Info: 87.5% Followers: 35 Repos: 32

Redcap maks88192939 Programm 2020-09-28 2020-09-28 English README: 0 Followers: 49
Info: 71.8% Repos: 32

Lazy 0x00BAD st_mod 2020-05-25 2022-01-28 English README: 0 Fork: 2
Info: 78% Repos: 4

Wacatac aaleaf Lite 2020-04-10 2022-11-16 English README: 0 Fork: 0
Info: 78% Repos: 9

Tasker max444432 RMS2 2021-09-09 2022-07-14 English README: 1 Fork: 0
Info: 71.8% Repos: 12

Growtopic

aphony12 imcool 2021-06-27 2021-09-20 English README: 2 Repos: 1
Contributors: 1 Info: 71.8%

deviluker jszpy 2021-06-27 2021-06-27 English README: 2 Repos: 1
Contributors: 1 Info: 71.8%

giganiga nothing 2021-06-27 2021-09-20 English README: 2 Repos: 2
Contributors: 1 Info: 71.8%

rosen6 rosesareroses 2021-06-27 2021-06-27 English README: 2 Repos: 1
Contributors: 1 Info: 71.8%

Telegram (Asset: Channel)
Razy h_money_1 h+money+1 2020-09-29 2020-09-29 English Subscribers: 3 Views: 12

Zenpak johnyes13 johnyes1121 2020-12-20 2020-12-20 English Subscribers: 3 Views: 6
GDrive (Asset: File)
Onlinegames sahnoila24 hwid 2021-10-17 2021-10-17 English Text: 76 Bytes

Avemaria reubzjohn Egcs 2020-08-26 2020-08-26 Unknown Binary: 574KB

Netwiredrc moham2 Aqzm 2020-04-03 2020-04-03 Unknown Binary: 815KB

Remcos Lorenz Kraft Bftv 2020-04-23 2020-04-23 Unknown Binary: 378KB
Formal D.O.O. Ortl 2020-07-13 2020-07-13 Unknown Binary: 1MB

Sabsik yuser20 XeroTool.a3x 2021-10-24 2021-10-24 Unknown Binary: 85KB
Blogspot (Asset: Web Page)
Sisron Nemorent Blog Post 2012-02-05 2014-01-12 Egypt Blogs: 230 Profile Views: 535

Vobfus nmournt Blog Post 2012-02-05 2014-01-01 Egypt Blogs: 116 Profile Views: 535

Zpevdo freechecking911 Blog Post 2018-07-29 2018-11-08 Thai Blogs: 118 Profile Views: 14

Virut togpage Blog Post 2012-12-09 2014-03-11 Egypt Blogs: 2,380 Profile Views: 667
Wordpress (Asset: Web Page)
Symmi turrona5 Blog Post 2011-05-14 2011-05-14 English Blogs: 1

Sysn negragarchada Blog Post 2011-07-01 2011-07-01 English Blogs: 1

Ayajbrci tenah3 Blog Post 2017-07-26 2017-07-26 Turkish Blogs: 1
1: Benign repositories hosting general-purpose programs that are fetched by WAE malware. See §5.4 for details. All other assets
were manually verified as hosting malicious content. 2: Short for mohamedshokry19792016. 3: Short for tenahukame6823496829.

Table 6: WAE Engagement Information.

Collab
Type

Web App
Providers

Avg. Resp Time
(days) Reported Taken

Down

Bilateral

Discord 2 21 17
GitHub 103 27 1
DuckDNS 2 1 1
Afraid 2 1 1
MediaFire 1 1 1
Twitter 3 1 0
Facebook 12 1 0

Unilateral

Pastebin 1 13 13
Google 138 42 11
WordPress 7 3 3
Webs 3 1 1
Tripod 4 1 1
Blogspot 5 4 4
Telegram 14 2 2
Dropbox 11 10 10

Summary 24 129 65

Table 7: Reporting To Web App Providers.

RQ4: By harvesting engagement data, Marsea
revealed that WAE malware could have infected
up to 909,788 victims from 33 abused assets.
Marsea allows IRs to separate malicious and
benign assets via identity completeness (82.88%
complete for benign versus 73.3% for malicious
identities) and asset comprehensiveness (91
average LoC for benign versus only 1 for malicious
assets).

5.5 Novel Collaboration
The end goal of IR and web app collaboration is the
remediation of web app abuse. During our study,
Marsea identified 129 active malicious assets directly
abused by 439 WAE malware. Using the proof-of-abuse
generated by Marsea, we collaborated with web app
providers who have taken down 65 malicious assets
(50%) to date. The detailed results of these
collaborations are shown in Table 7. Unfortunately, as
shown in Rows 2 and 9, GitHub and Google took 103
and 138 days to take action. Consequently, only 12 of
the 69 live assets reported to GitHub and Google have
been remediated. Of the remaining 60 reported assets
on other web apps, 53 (83%) were taken down within 2
weeks. We continue to pursue the remediation of the
remainder.

We categorize the collaboration into bilateral and
unilateral in Column 1 of Table 7. Bilateral means web
app providers update IRs throughout the remediation
process and provide IRs with a response. This allows
IRs to track the remediation process and assist web app
providers when necessary. Unilateral means that IRs
can only report the asset/identity as abusive via a ticket
system. Reporting tools are often as simple as a button

on the web app (e.g., Google does not provide any way
for IRs to provide proof-of-abuse). Consequently, IRs
are excluded from the subsequent remediation process.
The directly abused assets we reported and took down
are shown in Columns 4-5. Interested readers are
directed to Appendix B for responses we received for
bilateral collaboration. From Table 7, we observe the
lengthy response period by more popular and reputable
web app providers. For example, Google took 138 days
to react. Even though unilateral collaboration can
remediate the abuse relatively quickly, it can easily
create hurdles for follow-up actions initialized by IRs if
the remediation is slow. Therefore, rapid bilateral
collaboration should be encouraged.
Lateral Remediation. As shown in Rows 1-3
of Table 6, besides the 3 posts directly abused by WAE
malware, Marsea found 52 more posts from these
identities. These additional assets give us a unique
opportunity to perform lateral remediation during our
novel collaboration. As shown in Row 3 of Table 6,
Marsea found the Ursu malware using the post (with
paste key xkkQYFEa) by pastwahman on Pastebin.
Enabled by the Pastebin API, Marsea can locate
another 46 posts from pastwahman. The earliest
creation date spans 424 days before the FCD of the
directly abused post. Marsea found that these
potentially malicious posts have 5,822,501 views,
4,909,908 more than the directly abused posts. We
collaborated with Pastebin to remove these assets from
the same identity. Surprisingly, during our investigation
of all posts from the pastwahman identity, we found the
DARKOM (paste key kE8tbd6t) post with a VB script.
The script queried a Pastebin post named allinone
(paste key q6dVaKSf) under a different identity,
Getsilent. Through further collaboration with
Pastebin to remediate Getsilent, we took down 30
additional posts. Overall, starting from 1 post, lateral
collaboration enabled us to take down an additional 76
assets.
Early Stage Remediation. During our study,
Marsea observed WAE malware fetch additional
malware from web apps. We also used Marsea on these
dropped malware to rebuild the abuse chain and
explore the possibility of early-stage remediation.
Table 8 presents 3 first-stage WAE malware families
with multi-stage abuse chains. Columns 1-2 of Table 8
present the malware families and the number of
malware observed (Mal). Column 3 presents the abused
web apps, and Column 4 shows the malicious vectors.
Column 5 presents the attacker-controlled C&C server
communication targets in each stage. Columns 6-8
present the number of web app sessions reconstructed
(W), the number of malicious endpoints (M), and the
percentage of malicious sessions (%M), respectively. We

Family Mal Web Apps Vec Malicious
C&C W M %M

Dkomet2 11 GDriveEXE - 3 0 0%Afraid JS -

4 Razy 2
GDriveEXE

mooo.com
itvhacker.gq1 4 2 33%Ipify MF

Discord MP
Afraid JS

Zapchast 1 - - 212.193.30.45 0 2 100%212.193.30.21

Disco 3 Discord MP itvhacker.gq1 2 1 33%Ipify MF

Hosts 1 - - 61.160.247.187 0 1 100%

Dkomet2 1
Discord MP

mooo.com 3 1 25%Ipify MF
Afraid JS

Bdbd3 1 Discord MP itvhacker.gq1 2 1 33%Ipify MF

Binder 2
GDriveEXE

- 6 0 0%Ipify MF
Discord MP

Afraid JS

Disco 2 Discord MP itvehacker.gq1 4 1 20%Ipify MF

Dkomet2 2
GDriveEXE

mooo.com 4 1 20%Ipify MF
Discord MP

Afraid JS

Disco 1 Discord MP itvhacker.gq1 2 1 33%Ipify MF

Wapomi 1 GDriveEXE - 3 0 0%Afraid JS

Wapomi 1 - - ddos.dnsb8.net 0 3 100%
1,2,3: Short for itroblvehacker.gq, Darkkomet, Bladabindi.
4: Presents the payload dropping.

Table 8: Multi-Stage Abuse Chain.
use to present the dropper chain.

From Table 8, we observed that from 14 first-stage
WAE malware (from 3 families), Marsea revealed 15
additional dropped malware from 6 families. More
importantly, as shown in Column 8 of Table 8, the
initial infections only abuse web apps (0% in the %M
column). Later-stage malware increasingly rely on
attacker-controlled C&C servers as the abuse chain gets
longer (ending at 100% in the %M column). Ensuring
the initial stage remains stealthy and persistent allows
the attackers to update the assets on the web apps to
drop new payloads once the later-stage malware are
flagged as malicious. It is also interesting to note that
38% of malware dropped by GDrive connects back to
GDrive to download different next-stage payloads,
seeking persistent infection. This suggests a malware
development toolkit abusing GDrive and Discord.

Our findings show that IRs have a key opportunity:
Early-stage remediation cuts this abuse chain, preventing
WAE malware from dropping additional malware.
Migration Remediation. Marsea observed 4 cases of
WAE malware migrating across different web apps or
different identities under the same web app. We hand-

Family Mal F SD Web Apps Vector Iden Assets

Sohanad 2 2013-06 Webs FD se***3 settigs.xls
1 2013-08 Webs FD ad***9 settings.doc

Sabsik 1 2021-06 GitHub MF cu***u uattached
8 2022-10 GitHub MF Ar***k auth

Hynamer 2 2021-05 Github EXE sw**a Nsudo.exe
1 2021-09 Discord EXE 88***2 Nsudo.exe

Msil 1 2022-01 Dropbox MF 4g****a hwid.txt
1 2022-01 GDrive MF sa****a hwid.txt

Table 9: WAE Malware Migration.

verified the content of the abused assets, and if the abused
assets share the same content or format, we use it as
proof of the migration. The results are shown in Table 9.

From Table 9, we made the following observations:
(1) WAE migration can be divided into intra- and inter-
web apps, as shown in Rows 1-4 and 5-8, respectively.
(2) 100% of WAE malware in this case study changed
identity names during migration. (3) 2 malware families
(shown in Row 5-8), which account for 29.4% of the
malware samples in Table 9, keep the same asset name
during the migration. The attackers only update the
assets name during intra-web app migration Therefore,
an information-sharing process among web app providers
is needed to enable content-based asset monitoring.

RQ5: We reported 129 abused assets to web
app providers, who took down 65 (50%) of them.
We presented 3 novel collaboration opportunities.
Marsea enabled us to identify web app abuse
migration. From Lateral Remediation, Marsea
found an additional 76 assets that we successfully
remediated.

6 Related Works

Empirical Study of WAE Malware. Past research
studied WAE as seen from the botnet [16], [18], [19],
[45], [46] by detailing one or several specific attacks.
Barroso et al. [47] presented a survey of cybercriminals
exploiting public web servers to carry out different
attacks. Zhang et al. [48] proposed an approach to
detect compromised websites for searching poisoning
attacks. Wang et al. [17] performed a comprehensive
analysis of Economic Denial of Sustainability (EDoS)
attacks conducted through free public third-party
services. Liao et al. [20] conducted a study on the abuse
of cloud repositories as a malicious service by analyzing
redirection chains. Li et al. [49] studied abusive hosts on
Internet Service Providers (ISP). Alrwais et al. [50]
studied the malicious activities which were hosted on
the sub-allocations of the legitimate service provider.
Botacin et al. [27] performed a longitudinal analysis of

Brazilian Financial Malware, revealing the abuse of web
apps. Han et al. [46] performed a large-scale analysis of
malware interacting with Amazon EC2 [51]. Lever et
al. [52] used the malware execution traces and the DNS
queries to study the efficacy of network detection.
While these studies focused on different attacks and
analyzed cloud services, Marsea analyzes WAE malware
to support live actions against malware. Our approach
goes beyond investigating web apps to reveal
unexpected abuse of non-standard web apps.
Malware Behavior Analysis. There are works using
taint analysis [53], [54], API trace analysis [55]–[60],
and network traffic analysis [61]–[63] to reveal malware
behaviors. However, Marsea uses symbolic data
propagation to track the information flow and to
perform multi-path exploration. Marsea bridges the gap
between analyzed WAE malware and the abused web
apps by attributing malicious vectors to the abused
identities and assets. Further, Marsea harvests the
engagement information of abused identities and assets
to evaluate the extent of the infection.
Concolic Analysis. Several tools perform concolic
analysis on a source code level [64]–[66] and a binary
level [35], [67]–[70]. Since these tools suffer from path
explosion, the research community has several strategies
to mitigate this problem [71], [72]. However, these tools
are largely geared toward vulnerability analysis. There
are also existing works built on top of S2E [37], [38], [73],
[74]. Unfortunately, these works serve different goals from
WAE malware analysis. Instead, Marsea uses a new code-
orientated exploration strategy and introduces symbolic
data through peripheral inputs and evasive functions.
This enables Marsea to categorize WAE through data
flow analysis and will not face the challenge introduced
by context-sensitive malware or logic bombs.

7 Discussion and Limitations

Ethical Discussion. We remediated WAE malware
by collaborating with the web app providers. During
the remediation process, we strictly followed the
guidelines and terms of service provided by web app
providers (e.g. [75]–[80]) We do not store or use private
credential information extracted from the malware to
access any remote endpoints. We do not attempt to
remediate the identities and assets WAE malware used
without collaboration from web app providers.
Challenges of Concolic Analysis on Malware.
Marsea is built upon concolic analysis. Like other
concolic and symbolic analysis techniques [68], [81]–[83],
Marsea can suffer from the path explosion motivating
our design in §3.1. Our validation in §4 empirically
shows that Marsea avoids path explosion in WAE
malware. Furthermore, malware often employ packing

or obfuscation techniques. Since Marsea uses concolic
analysis, the malware can unpack itself at runtime [29].
Prior works [60], [70], [84], [85] explored handling
sophisticated malware deploying code obfuscation
specifically aiming to thwart symbolic analysis. We
followed their best practices while designing Marsea.

8 Conclusion

Marsea revealed a 226% increase in WAE-only malware
since 2020, showing malware’s growing adoption of web
app abuse. Marsea identified 893 WAE malware (97
families) abusing 29 web apps. Worse still, Marsea also
found 430 WAE malware (48% of the 893 total)
remained active with available web app assets. Assets
for these WAE malware remained available for an
average of 253 days. Enabled by Marsea, we reported
129 cases of abuse to web app providers, who took down
65 (50%) of them, and we continue to pursue the
remediation of the remainder.

9 Acknowledgement

We thank the anonymous reviewers for their
constructive comments and feedback. In particular, we
thank our shepherd for their guidance throughout the
revision process. We also thank our collaborators at
Netskope for their support, insights, and suggestions
throughout this research. This material was supported
in part by the Office of Naval Research (ONR) under
grants N00014-19-1-2179 and N00014-18-1-2662; the
Defense Advanced Research Projects Agency (DARPA)
under contract N66001-21-C-4024; the National Science
Foundation (NSF) under grant 2143689; and Cisco
Systems under an unrestricted gift. Any opinions,
findings, and conclusions in this paper are those of the
authors and do not necessarily reflect the views of our
sponsors, collaborators, the United States Military
Academy, the Department of the Army, or the
Department of Defense.

References
[1] Cloud CDN: Content Delivery Network, https://cloud.

google.com/cdn, [Accessed: 2022-04-05].
[2] Azure Content Delivery Network, https://azure.microsof

t.com/en-us/services/cdn/, [Accessed: 2022-04-05].
[3] Content Delivery Network (CDN) - Amazon CloudFront,

https://aws.amazon.com/cloudfront/, [Accessed: 2022-04-
05].

[4] GitHub, https://github.com/, [Accessed: 2022-04-15].
[5] Pastebin.com - #1 paste tool since 2002! https://pastebin.

com/, [Accessed: 2021-07-22].

https://cloud.google.com/cdn
https://cloud.google.com/cdn
https://azure.microsoft.com/en-us/services/cdn/
https://azure.microsoft.com/en-us/services/cdn/
https://aws.amazon.com/cloudfront/
https://github.com/
https://pastebin.com/
https://pastebin.com/

[6] Dropbox, https://www.dropbox.com/, [Accessed: 2021-04-
06].

[7] Google Drive, https://www.drive.google.com/, [Accessed:
2021-04-06].

[8] Amazon S3, https://aws.amazon.com/s3/, [Accessed: 2021-
04-06].

[9] Twitter, https://twitter.com/, [Accessed: 2021-04-06].
[10] Instragram, https://www.instagram.com/, [Accessed: 2021-

04-06].
[11] Telegram Messenger, https://telegram.org/, [Accessed:

2021-04-06].
[12] Turla Hacking Group Launches New Backdoor in Attacks

Against US, Afghanistan, https://www.zdnet.com/arti
cle/turla-hacking-group-launches-new-backdoor-in-
attacks- against- us- afghanistan/, [Accessed: 2022-04-
05].

[13] Russian Hacking Group Uses Dropbox to Store Malware-
stolen Data, https://www.bleepingcomputer.com/news/
security / russian - hacking - group - uses - dropbox - to -
store-malware-stolen-data, [Accessed: 2022-04-05].

[14] Turla’s Crutch Backdoor Leverages Dropbox in Espionage
Attacks, https://threatpost.com/turla-backdoor-dropb
ox-espionage-attacks/161777/, [Accessed: 2022-04-05].

[15] Iranian Hackers Abuse Slack For Cyber Spying, https://
www . forbes . com / sites / thomasbrewster / 2021 / 12 / 15 /
iran-backed-hackers-use-slack-for-cyber-espionage,
[Accessed: 2022-04-05].

[16] H. Badis, G. Doyen, and R. Khatoun, “Understanding
botclouds from a system perspective: A principal
component analysis,” in Proceedings of the IEEE/IFIP
Network Operations and Management Symposium
(NOMS), IEEE, 2014.

[17] H. Wang, Z. Xi, F. Li, and S. Chen, “Abusing public third-
party services for edos attacks,” in Proceedings of the 10th
USENIX Workshop on Offensive Technologies (WOOT),
Austin, TX, Aug. 2016.

[18] N. Pantic and M. I. Husain, “Covert Botnet Command and
Control Using Twitter,” in Proceedings of the 31st Annual
Computer Security Applications Conference (ACSAC), Los
Angeles, CA, Dec. 2015.

[19] G. Lingam, R. R. Rout, D. V. L. N. Somayajulu, and
S. K. Das, “Social Botnet Community Detection: A Novel
Approach based on Behavioral Similarity in Twitter
Network using Deep Learning,” in Proceedings of the 15th
ACM Symposium on Information, Computer and
Communications Security (ASIACCS), Taipei, Taiwan, Oct.
2020.

[20] X. Liao, S. Alrwais, K. Yuan, et al., “Cloud repository as a
malicious service: Challenge, identification and implication,”
Cybersecurity, vol. 1, no. 1, p. 14, 2018.

[21] S. Gheewala and R. Patel, “Machine learning based twitter
spam account detection: A review,” in 2018 Second
International Conference on Computing Methodologies and
Communication (ICCMC), IEEE, 2018, pp. 79–84.

[22] S. Lee and J. Kim, “Warningbird: A near real-time
detection system for suspicious urls in twitter stream,”
IEEE Transactions on Dependable and Secure Computing,
vol. 10, no. 3, pp. 183–195, 2013.

[23] A. Sanzgiri, A. Hughes, and S. Upadhyaya, “Analysis of
malware propagation in twitter,” in 2013 IEEE 32nd
International Symposium on Reliable Distributed Systems,
2013, pp. 195–204.

[24] F. Concone, A. De Paola, G. L. Re, and M. Morana, “Twitter
analysis for real-time malware discovery,” in 2017 AEIT
International Annual Conference, 2017, pp. 1–6.

[25] V. Radunović and M. Veinović, “Malware command and
control over social media: Towards the server-less
infrastructure,” SJEE, vol. 17, no. 3, pp. 357–375, 2020.

[26] S. Miller and P. Smith, “Rise of legitimate
services for backdoor command and control,” Anomali,
Tech. Rep., 2017.

[27] M. Botacin, H. Aghakhani, S. Ortolani, et al., “One size
does not fit all: A longitudinal analysis of brazilian financial
malware,” ACM Trans. Priv. Secur., vol. 24, no. 2, Jan.
2021.

[28] VirusTotal, https : / / www . virustotal . com/, [Accessed:
2022-1-5].

[29] J. Fuller, R. P. Kasturi, A. Sikder, et al., “C3PO: Large-
Scale Study of Covert Monitoring of C&C Servers via Over-
Permissioned Protocol Infiltration,” in Proceedings of the
28th ACM Conference on Computer and Communications
Security (CCS), Seoul, South Korea, Nov. 2021.

[30] C. Rossow, D. Andriesse, T. Werner, et al., “Sok: P2pwned
- modeling and evaluating the resilience of peer-to-peer
botnets,” in Proceedings of the 34th IEEE Symposium on
Security and Privacy (S&P), San Francisco, CA, May 2013,
pp. 97–111.

[31] B. B. Kang, E. Chan-Tin, C. P. Lee, et al., “Towards
Complete Node Enumeration in a Peer-to-peer Botnet,” in
Proceedings of the 4th ACM Symposium on Information,
Computer and Communications Security (ASIACCS),
Sydney, Australia, Mar. 2009, pp. 23–34.

[32] MITRE ATT&CK Web Service, https://attack.mitre.
org/techniques/T1102/, [Accessed: 2021-04-21].

[33] Malpedia: Free and Open Malware Reverse Engineering
Resource offered by Fraunhofer FKIE, https://malpedia.
caad.fkie.fraunhofer.de, [Accessed: 2021-05-02].

[34] Web Service, Technique T1102 - Enterprise | MITRE
ATT&CK®,
https : / / attack . mitre . org / techniques / T1102/,
[Accessed: 2020-09-19].

[35] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A
Platform for In-vivo Multi-path Analysis of Software
Systems,” ACM SigPlan Notices, vol. 46, no. 3,
pp. 265–278, 2011.

[36] Y. Hu, G. Huang, and P. Huang, “Automated reasoning
and detection of specious configuration in large systems
with symbolic execution,” in 14th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 20),
2020, pp. 719–734.

[37] A. Altinay, J. Nash, T. Kroes, et al., “Binrec: Dynamic binary
lifting and recompilation,” in Proceedings of the Fifteenth
European Conference on Computer Systems, 2020, pp. 1–16.

[38] S. Walla and C. Rossow, “Malpity: Automatic identification
and exploitation of tarpit vulnerabilities in malware,” in
2019 IEEE European Symposium on Security and Privacy
(EuroS&P), IEEE, 2019, pp. 590–605.

[39] S. Sebastián and J. Caballero, “AVclass2: Massive Malware
Tag Extraction from AV Labels,” in Proceedings of the
36th Annual Computer Security Applications Conference
(ACSAC), Virtual Conference, Dec. 2020, pp. 42–53.

[40] VirusTotal - Intelligence Search, https://developers.vir
ustotal.com/reference/intelligence-search, [Accessed:
2022-10-01].

https://www.dropbox.com/
https://www.drive.google.com/
https://aws.amazon.com/s3/
https://twitter.com/
https://www.instagram.com/
https://telegram.org/
https://www.zdnet.com/article/turla-hacking-group-launches-new-backdoor-in-attacks-against-us-afghanistan/
https://www.zdnet.com/article/turla-hacking-group-launches-new-backdoor-in-attacks-against-us-afghanistan/
https://www.zdnet.com/article/turla-hacking-group-launches-new-backdoor-in-attacks-against-us-afghanistan/
https://www.bleepingcomputer.com/news/security/russian-hacking-group-uses-dropbox-to-store-malware-stolen-data
https://www.bleepingcomputer.com/news/security/russian-hacking-group-uses-dropbox-to-store-malware-stolen-data
https://www.bleepingcomputer.com/news/security/russian-hacking-group-uses-dropbox-to-store-malware-stolen-data
https://threatpost.com/turla-backdoor-dropbox-espionage-attacks/161777/
https://threatpost.com/turla-backdoor-dropbox-espionage-attacks/161777/
https://www.forbes.com/sites/thomasbrewster/2021/12/15/iran-backed-hackers-use-slack-for-cyber-espionage
https://www.forbes.com/sites/thomasbrewster/2021/12/15/iran-backed-hackers-use-slack-for-cyber-espionage
https://www.forbes.com/sites/thomasbrewster/2021/12/15/iran-backed-hackers-use-slack-for-cyber-espionage
https://www.virustotal.com/
https://attack.mitre.org/techniques/T1102/
https://attack.mitre.org/techniques/T1102/
https://malpedia.caad.fkie.fraunhofer.de
https://malpedia.caad.fkie.fraunhofer.de
https://attack.mitre.org/techniques/T1102/
https://developers.virustotal.com/reference/intelligence-search
https://developers.virustotal.com/reference/intelligence-search

[41] O. Alrawi, C. Lever, K. Valakuzhy, K. Snow, F. Monrose,
M. Antonakakis, et al., “The circle of life: A large-scale
study of the iot malware lifecycle,” in Proceedings of the 30th
USENIX Security Symposium (Security), Virtual Conference,
Aug. 2021.

[42] V. Le Pochat, T. Van Goethem, S. Tajalizadehkhoob, M.
Korczyński, and W. Joosen, “Tranco: A Research-Oriented
Top Sites Ranking Hardened Against Manipulation,” in
Proceedings of the 2019 Annual Network and Distributed
System Security Symposium (NDSS), San Diego, CA, Feb.
2019.

[43] Cisco Talos Intelligence Group - Comprehensive Threat
Intelligence, https : / / www . talosintelligence . com,
[Accessed: 2022-04-15].

[44] M. A. Islam, A. B. M. A. A. Islam, and M. S. H. Anik,
“Polygot: An approach towards reliable translation by name
identification and memory optimization using semantic
analysis,” in 2017 4th International Conference on
Networking, Systems and Security (NSysS), 2017, pp. 1–8.

[45] K. Clark, M. Warnier, and F. M. Brazer, “The future of
cloud-based botnets?” In Proceedings of the 1st
International Conference on Cloud Computing and
Services Science (CLOSER), Noordwijkerhout,
Netherlands, May 2011.

[46] X. Han, N. Kheir, and D. Balzarotti, “The role of cloud
services in malicious software: Trends and insights,” in
International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment, Springer, 2015,
pp. 187–204.

[47] D. Barroso, “Botnets - the silent threat,” European Network
and Information Security Agency (ENISA), vol. 15, p. 171,
2007.

[48] J. Zhang, C. Yang, Z. Xu, and G. Gu, “Poisonamplifier:
A guided approach of discovering compromised websites
through reversing search poisoning attacks,” in Proceedings
of the 15th International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), Amsterdam, Netherlands,
Sep. 2012.

[49] Z. Li, S. Alrwais, Y. Xie, F. Yu, and X. Wang, “Finding the
linchpins of the dark web: A study on topologically dedicated
hosts on malicious web infrastructures,” in Proceedings of
the 34th IEEE Symposium on Security and Privacy (S&P),
San Francisco, CA, May 2013.

[50] S. Alrwais, K. Yuan, E. Alowaisheq, Z. Li, and X. Wang,
“Understanding the dark side of domain parking,” in
Proceedings of the 22th USENIX Security Symposium
(Security), Washington, DC, Aug. 2013.

[51] Amazon EC2 - Secure Cloud Services, https://aws.amazon.
com/ec2/, [Accessed: 2022-10-01].

[52] C. Lever, P. Kotzias, D. Balzarotti, J. Caballero, and
M. Antonakakis, “A Lustrum of Malware Network
Communication: Evolution and Insights,” in Proceedings of
the 38th IEEE Symposium on Security and Privacy (S&P),
San Jose, CA, May 2017, pp. 788–804.

[53] L. Martignoni, E. Stinson, M. Fredrikson, S. Jha, and
J. C. Mitchell, “A Layered Architecture for Detecting
Malicious Behaviors,” in Proceedings of the 11th
International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), Cambridge,
Massachusetts, Sep. 2008, pp. 78–97.

[54] E. Stinson and J. C. Mitchell, “Characterizing Bots’
Remote Control Behavior,” in Proceedings of the
Conference on Detection of Intrusions and Malware, and
Vulnerability Assessment (DIMVA), Lucerne, CH, Jul. 2007,
pp. 89–108.

[55] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R. Kemmerer,
“Behavior-based Spyware Detection,” in Proceedings of the
15th USENIX Security Symposium (Security), Vancouver,
Canada, Jul. 2006, p. 694.

[56] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda,
X.-y. Zhou, and X. Wang, “Effective and Efficient Malware
Detection at the End Host,” in Proceedings of the 18th
USENIX Security Symposium (Security), vol. 4, Montreal,
Canada, Aug. 2009, pp. 351–366.

[57] G. J. Széles and A. Coleşa, “Malware Clustering Based on
Called API During Runtime,” in Proceedings of the
International Workshop on Information and Operational
Technology and Security (IOSec), Crete, GR, Sep. 2018,
pp. 110–121.

[58] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro,
“Copperdroid: Automatic reconstruction of android
malware behaviors,” in Proceedings of the 2015 Annual
Network and Distributed System Security Symposium
(NDSS), San Diego, CA, Feb. 2015.

[59] A. Lanzi, M. I. Sharif, and W. Lee, “K-tracer: A system
for extracting kernel malware behavior,” in Proceedings of
the 16th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2009.

[60] O. Alrawi, M. Ike, M. Pruett, et al., “Forecasting Malware
Capabilities From Cyber Attack Memory Images,” in
Proceedings of the 30th USENIX Security Symposium
(Security), Virtual Conference, Aug. 2021.

[61] X. Deng and J. Mirkovic, “Malware Analysis Through
High-level Behavior,” in Proceedings of the 11th USENIX
Workshop on Cyber Security Experimentation and Test
(CSET), Baltimore, MD, Aug. 2018.

[62] U. Bayer, I. Habibi, D. Balzarotti, E. Kirda, and C. Kruegel,
“A View on Current Malware Behaviors,” in Proceedings of
the 2nd USENIX Workshop on Large-Scale Exploits and
Emergent Threats (LEET), Boston, MA, Apr. 2009.

[63] S. Wang, Q. Yan, Z. Chen, B. Yang, C. Zhao, and
M. Conti, “Detecting android malware leveraging text
semantics of network flows,” IEEE Transactions on
Information Forensics and Security, 2018.

[64] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed
automated random testing,” in Proceedings of the 2005 ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), Chicago, IL, Jun. 2005.

[65] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and
D. R. Engler, “EXE: Automatically generating inputs of
death,” ACM Transactions on Information and System
Security, 2008.

[66] C. Cadar, D. Dunbar, D. R. Engler, et al., “Klee:
Unassisted and automatic generation of high-coverage tests
for complex systems programs,” in Proceedings of the 8th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), San Diego, CA, Dec. 2008.

[67] P. Godefroid, M. Y. Levin, D. A. Molnar, et al.,
“Automated whitebox fuzz testing,” in Proceedings of the
15th Annual Network and Distributed System Security
Symposium (NDSS), San Diego, CA, Feb. 2008.

https://www.talosintelligence.com
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

[68] Y. Shoshitaishvili, R. Wang, C. Salls, et al., “Sok:(state of)
the art of war: Offensive techniques in binary analysis,” in
Proceedings of the 37th IEEE Symposium on Security and
Privacy (S&P), San Jose, CA, May 2016.

[69] S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley,
“Unleashing Mayhem on Binary Code,” in Proceedings of
the 33rd IEEE Symposium on Security and Privacy (S&P),
San Francisco, CA, May 2012, pp. 380–394.

[70] L. Martignoni, S. McCamant, P. Poosankam, D. Song, and
P. Maniatis, “Path-exploration lifting: Hi-fi tests for lo-fi
emulators,” ACM SIGARCH Computer Architecture News,
vol. 40, no. 1, pp. 337–348, Mar. 2012.

[71] E. Bounimova, P. Godefroid, and D. Molnar, “Billions and
billions of constraints: Whitebox fuzz testing in
production,” in Proceedings of the 35th International
Conference on Software Engineering (ICSE), San
Francisco, CA, May 2013.

[72] I. Haller, A. Slowinska, M. Neugschwandtner, and H. Bos,
“Dowsing for overflows: A guided fuzzer to find buffer
boundary violations,” in Proceedings of the 22th USENIX
Security Symposium (Security), Washington, DC, Aug.
2013.

[73] M. N. Alsaleh, J. Wei, E. Al-Shaer, and M. Ahmed,
“Gextractor: Towards automated extraction of malware
deception parameters,” in Proceedings of the 8th Software
Security, Protection, and Reverse Engineering Workshop,
2018, pp. 1–12.

[74] S. Y. Kim, S. Lee, I. Yun, et al., “Cab-fuzz: Practical
concolic testing techniques for cots operating systems,” in
2017 USENIX Annual Technical Conference (USENIX
ATC 17), 2017, pp. 689–701.

[75] GitHub Terms of Service, https://docs.github.com/en/
site- policy/github- terms/github- terms- of- service,
[Accessed: 2022-10-01].

[76] Report Abuse, https : / / support . github . com / contact /
report-abuse, [Accessed: 2022-10-01].

[77] Discord’s Terms of Service, https://discord.com/terms,
[Accessed: 2022-10-01].

[78] Discord’s Request Submission, https://dis.gd/request,
[Accessed: 2022-10-01].

[79] Pastebin.com Terms of Service, https://pastebin.com/
doc_terms_of_service, [Accessed: 2022-10-01].

[80] Pastebin Report, https : / / pastebin . com / contact,
[Accessed: 2022-10-01].

[81] D. Brumley, C. Hartwig, M. G. Kang, et al., “Bitscope:
Automatically dissecting malicious binaries,” CS-07-133,
School of Computer Science, Carnegie Mellon University,
Tech. Rep., 2007.

[82] Y. Li, Z. Su, L. Wang, and X. Li, “Steering symbolic
execution to less traveled paths,” ACM SigPlan Notices,
vol. 48, no. 10, pp. 19–32, 2013.

[83] V. Kuznetsov, J. Kinder, S. Bucur, and G. Candea, “Efficient
state merging in symbolic execution,” Acm Sigplan Notices,
vol. 47, no. 6, pp. 193–204, 2012.

[84] U. Bayer, A. Moser, C. Kruegel, and E. Kirda, “Dynamic
analysis of malicious code,” Journal in Computer Virology,
vol. 2, no. 1, pp. 67–77, 2006.

[85] A. Moser, C. Kruegel, and E. Kirda, “Exploring multiple
execution paths for malware analysis,” in 2007 IEEE
Symposium on Security and Privacy (SP’07), IEEE, 2007,
pp. 231–245.

A Web Apps And Available Information

Category Web Apps Identity Assets CT1 UT1 OA2 Views

File
Sharing

GDrive Email File - -

Dropbox Username File - -

Pastebin Username Post

Zippyshare - File - - -

Imgur Username Image -

Tietuku Username File - - -
Software
Hosting GitHub Username Repo/File -

Social
Engineering

Telegram Username Channel -

Twitter Username Tweet -

Discord Channel File/Hook - -
Slack Channel Hook - - - -

Facebook Username File/Text -

V kontakte Username File/Text

Website
Builder

WordPress Username Web Page -

Webs Username Web Page -

Tripod Username Web Page -

Blog Blogspot Username Web Page -

Dynamic
DNS

Afraid API key DNS record - -

DuckDNS API key DNS record - -
Anti-Virus VirusTotal API key - - - - -

1: Creation Time (CT) and Update Time (UT).
2: Other assets from the same identity.

Table 10: Web Apps And Available Information

Table 10 presents the web apps Marsea found during
our study and the information publicly available from
each web app. Columns 1-2 present the web app category
and the corresponding web apps. Columns 3-4 present
the identity and assets Marsea supported to identify.
Columns 5-8 show whether the web apps expose asset
Creation Time (CT), Update Time (UT), other assets
from the same identity (OA), and the views of the assets,
respectively.

Please note that as stated in §5.2, Local Info web
apps shown in Column 1 of Table 4 have no concept of
identity and assets, thus, are not included in Table 10.
Interestingly, as shown in Row Rows 10-11 of Table 10,
Marsea found that WAE malware abuse webhook.
However, Slack does not expose information to the
public, given only a webhook. Unlike Slack, as shown in
Row 11 of Table 10, Discord revealed the channel ID in
the webhook endpoint, through which Marsea could
harvest CT and UT . As shown in Columns 7-8, only 10
(50%) and 4 (20%) web apps expose the OA and views
of assets to the public. Given the importance of OA and
views of assets when IRs and web app providers pursue
the Lateral Remediation (§5.3) and extent of infection
evaluation, making these data publicly available or at
the early stage of collaboration should be encouraged.

https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://docs.github.com/en/site-policy/github-terms/github-terms-of-service
https://support.github.com/contact/report-abuse
https://support.github.com/contact/report-abuse
https://discord.com/terms
https://dis.gd/request
https://pastebin.com/doc_terms_of_service
https://pastebin.com/doc_terms_of_service
https://pastebin.com/contact

Meanwhile, given Marsea’s ability to identify vectors
and attribute sessions to them, IRs could still
collaborate with the web app providers.

B Response From Web App Providers

Figure 2 presents our communication with Discord
when they experienced high reporting volume, and
Figure 3 shows the takedown confirmation by Discord.
Figure 5 shows the takedown confirmation by
MediaFire. Figure 4 shows the case where GitHub
needed 103 days to initialize the investigation.

Figure 2: Late Response From Discord.

Figure 3: Confirmation By Discord.

Figure 4: Response From GitHub.

Figure 5: Response From MediaFire.

	Introduction
	Challenges and Motivation
	Methodology
	Concolic Exploration Strategy
	Web App and Vectors Identification
	Session Reconstruction
	Web App Modeling

	Validating Our Techniques
	Vector Identification
	Identities & Assets Attribution

	WAE Malware Study Insights
	WAE Malware Prevalence
	WAE Malware Capabilities
	Collaboration Evaluation
	WAE Malware Engagement Data
	Novel Collaboration

	Related Works
	Discussion and Limitations
	Conclusion
	Acknowledgement
	Web Apps And Available Information
	Response From Web App Providers

